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Abstract— This paper presents a new particle method, with
stochastic parameter estimation, to solve the SLAM problem.
The underlying algorithm is rooted on a solid probabilistic
foundation and is guaranteed to converge asymptotically, unlike
many existing popular approaches. Moreover, it is efficient
in storage and computation. The new algorithm carries out
filtering only in the marginal filtering space, thereby allowing
for the recursive computation of low variance estimates of
the map. The paper provides mathematical arguments and
empirical evidence to substantiate the fact that the new method
represents an improvement over the existing particle filtering
approaches for SLAM, which work on the joint path state space.

I. INTRODUCTION

For many years, Simultaneous Localization and Map-

ping (SLAM) has occupied the center-stage in robotics

research [1], [2]. Probabilistic methods, such as Bayes filters,

have often been adopted to manage the uncertainty in the

sensors and actuators. This sound approach in conjunction

with considerable heuristic engineering has produced reason-

able solutions; to the point that some researchers have begun

voicing the opinion that “the SLAM problem is solved”.

While not endorsing the view that SLAM should occupy

the center-stage, it is the thesis of this paper that the existing

SLAM solutions are built upon questionable assumptions

and procedures, including linearity, Gaussian distributions,

treating static maps with dynamic models and neglecting the

variance increase due to sampling in spaces of increasing

(potentially unbounded) dimension. The paper provides some

arguments as well as empirical evidence to substantiate this

statement. The bottom line is that there is an urgent need for

designing a principled SLAM framework so as to relax these

assumptions and eliminate the need for brittle heuristics. It

is the intent of this paper to take a step in this direction and

to note that the problem is still open.

The first probabilistic treatment of SLAM dates back

to the seminal work of Smith et al. [3]. Having cast the

SLAM problem as one of optimal filtering, a solution was

obtained with the extended Kalman filter (EKF-SLAM). This

solution, still popular, relies on linearization of the process

and measurement functions as well as the assumption that

all the involved distributions are Gaussian.

Since then, we have witnessed a large proliferation of

EKF-SLAM implementations in indoors, outdoors, under-

water and airborne domains. Sophisticated techniques that
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exploit sparsity in the information matrix, such as thin

junction trees, have allowed for significant increases in the

computational efficiency of the method [4]. However, the

consistency issues of EKF-SLAM have started attracting the

attention of the research community recently, taking priority

over faster computation.

It is well known that the EKF linearization can lead to

filter divergence [5], [6], [7]. In the last few years, several

works have proposed techniques to reduce the linearization

effect. Among these techniques are higher order approxima-

tions with unscented transformations and changes of coordi-

nates [8], [9], [10]. Though these techniques result in some

improvement, the inherent approximations continue to cause

accumulation of errors and irreversible filter divergence.

The introduction of particle filters (PFs) gave researchers

the power and flexibility to handle nonlinearity and non-

Gaussian distributions routinely [11]. Moreover, it enabled

researchers to exploit conditional independence, using the

Rao-Blackwellized particle filtering (RBPF) variance re-

duction technique, to obtain more efficient Monte Carlo

schemes. RBPFs were applied to dynamic maps [12] and

subsequently to static maps with the celebrated FastSLAM

algorithm [13]. The application of RBPF to dynamic maps is

only sensible inasmuch as one has a good model to describe

the evolution of the dynamic map. On the other hand, the

application of RBPF to static maps has come into question.

It has become popular knowledge that the approach can

diverge. The inconsistency of FastSLAM was indeed the

topic of a recent robotics paper [14]. In loose terms, learning

static variables (the map) by conditioning on increasing

histories of the state variables results in an accumulation

of Monte Carlo errors and explosion of variance. Heuristic

approaches to ameliorate the situation [15], [16] have been

proposed, but these do no solve the fundamental problem at

hand. We note that the problem of PF divergence resulting

from learning fixed variables by conditioning on increasing

paths was already described in as early as 1999 [17].

This lack of statistical consistency of the most popular

SLAM methods has naturally created some justified concern.

In this paper, we present Marginal-SLAM, a novel approach

with two key ingredients to ensure consistency. The first in-

gredient is to consider SLAM as a robot localization problem

with unknown observation model parameters. Thus, the core

is to treat static maps as parameters, which by necessity

are learned using maximum likelihood (ML) or maximum a

posteriori inference. The idea of treating maps as parameters

is not new. It has been central to the incremental ML method

[18]. However, this method resorts to an ML estimate of

the state and hence fails to manage the uncertainty in the
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robot state properly, as elaborated in [2]. A variation based

on learning the distribution of the robot states and using

an ML estimator of the map as a function of the existing

and growing state trajectories was proposed in [19]. This

approach unfortunately suffers from the same consistency

problems as FastSLAM. EM approaches have been proposed

[2], but they apply only when learning the map off-line.

The second key ingredient in Marginal-SLAM is being

able to compute the filter derivative for the recursive ML.

This has only become possible very recently following new

advances in particle simulation [20], [21], which will be

presented in Section III.B. Static parameter estimation in

nonlinear, non-Gaussian dynamic models is a formidable

challenge, so it comes as no surprise that probabilistic SLAM

has proved to be so demanding. We note that we adopt

recursive ML estimates of the map because the problem of

doing efficient full-Bayesian recursive parameter estimation

has not been solved.

II. PROBLEM FORMULATION

We present a general formulation of the problem that

is applicable to both feature-based maps and grid-based

maps. A more specific and detailed model appears in the

experimental section. The unknown robot pose (location and

heading), xt ∈ X , is modelled as a Markov process of initial

distribution p (x1) and transition prior p (xt|xt−1), which

represents the motion model1. The observations, yt ∈ Y , are

assumed to be conditionally independent given the process

{xt} and of marginal distribution p θ(yt|xt), where θ is a

vector describing the elements of the map. Hence, the model

consists of the following two distributions:

p(xt|xt−1)

p θ(yt|xt) t ≥ 1.

We denote by x1:t , {x1, ...,xt} and y1:t , {y1, ...,yt},

respectively, the robot state and the observations up to time

t, and define p(x1|x0) , p(x1) for notational convenience.

In this formulation, we have used θ to describe the map

only. However, θ could be used to include other parameters in

the transition and measurement models, as well as, to include

data association variables [2]. For simplicity of presentation,

we will assume that the associations are given.

Our aim is to compute sequentially in time the filtering

distribution p (xt|y1:t) and point estimates of the map θ.

III. PARTICLE METHODS

A. The Joint Path Space Approach

In classical Rao-Blackwellized particle filtering, one first

notes the following decomposition of the joint posterior:

p(θ,x1:t|y1:t) = p(θ|x1:t,y1:t)p(x1:t|y1:t).

Consequently, given the state path x1:t, we can solve for the

map θ analytically. This leaves us with only having to carry

out particle filtering to compute the posterior distribution of

the robot state p(x1:t|y1:t).

1For clarification, we drop the action value or motion command from the
transition prior p (xt| xt−1,ut)

If we had a set of samples (or particles) {x(i)
t }N

i=1 from

p(xt|y1:t), we could approximate the distribution with the

Monte Carlo estimate

p̂(dxt|y1:t) =
1

N

N∑

i=1

δ
x

(i)
t

,

where δ
x

(i)
t

= δ
x

(i)
t

(dxt) denotes the delta Dirac function.

This estimate converges almost surely to the true expectation

as N goes to infinity. Unfortunately, one cannot easily

sample from the marginal distribution p(xt|y1:t) directly.

Instead, we draw particles from p(x1:t|y1:t) and samples

x1:t−1 are ignored. This is a valid way to draw samples

from a marginal distribution and is at the core of most Monte

Carlo statistical methods. The unknown normalizing constant

precludes us from sampling directly from the posterior.

Instead, we draw samples from a proposal distribution q and

weight the particles according to the following importance

ratio:

wt(x1:t) =
p(x1:t|y1:t)

q(x1:t|y1:t)

The proposal distribution is constructed sequentially

q(x1:t|y1:t) = q(x1:t−1|y1:t−1)q(xt|yt,xt−1)

and, hence, the importance weights can be updated recur-

sively in time

wt(x1:t) =
p(x1:t|y1:t)

p(x1:t−1|y1:t−1)q(xt|yt,xt−1)
wt−1(x1:t−1).

(1)

Given a set of N particles {x(i)
1:t−1}N

i=1, we obtain a set

of particles {x(i)
1:t}N

i=1 by sampling from q(xt|yt,x
(i)
t−1) and

applying the weights of equation (1).

The familiar particle filtering equations for this model are

obtained by remarking that

p(x1:t|y1:t) ∝ p (x1:t,y1:t) =
t∏

k=1

p(yk|xk)p(xk|xk−1),

given which, equation (1) becomes

w̃
(i)
t ∝ p(yt|x(i)

t )p(x
(i)
t |x(i)

t−1)

q(x
(i)
t |yt,x

(i)
t−1)

w̃
(i)
t−1.

This iterative scheme produces a weighted measure

{x(i)
1:t, w

(i)
t }N

i=1, where w
(i)
t = w̃

(i)
t /

∑
j w̃

(j)
t , and is known

as Sequential Importance Sampling (SIS).

It has been proved [22] that the variance of the importance

weights in SIS increases over time. This causes most particles

to have very small probability. A common strategy to solve

this degeneracy, consist on using a resampling step (SIR)

after updating the weights to replicate samples with high

probability and prune those with negligible weight [23].

This is the procedure in common use by practitioners.

It can be deceptive: although only the state xt is being

updated every round, the algorithm is nonetheless importance

sampling in the growing joint path space X t.

Formally, the resampling step should be done along the full

path {x(i)
1:t, w

(i)
1:t}N

i=1. Since dynamic systems forget the past
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exponentially fast, several authors carry out resampling over

the marginal space {x(i)
t , w

(i)
t }N

i=1. This would be fine if, for

example, we were interested in tracking dynamic maps.

Static parameter estimation and model selection problems

do not necessarily exhibit an exponential forgetting behav-

ior. For example, static maps depend on the whole state

trajectory. Resampling these trajectories in the joint path

space is guaranteed to deplete the past in finite time; since

there is only a bounded number of trajectories. Alternatively,

resampling from the marginal space still leaves us with an

accumulation of Monte Carlo errors over time. The estimate

of the map will depend on this increasing sequence of errors.

Some implementations have introduced artificial dynamics or

Markov chain Monte Carlo (MCMC) rejuvenation steps to

reduce the severity of the problem, but these approaches do

not overcome the problem [24]. In conclusion, whether we

resample or not, learning the static map as a function of a

growing path in Monte Carlo simulation is a bad idea.

The same degeneracy problem arises if we try to obtain

estimates of the filter derivative ∇θp θ(xt|y1:t) for recursive

(online) map estimation. To see this, let ∇θp θ(x1:t|y1:t)
denote the gradient vector of the path posterior with respect

to the map. Then, we have

∇θp θ(x1:t|y1:t) =
∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
p θ(x1:t|y1:t)

and, consequently the filter derivative, necessary for online

map learning, is given by:

∇θp θ(xt|y1:t) =

∫

X t−1

∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
p θ(x1:t|y1:t)dx1:t−1

(2)

Using standard particle filters to approximate the filter deriv-

ative we are implicitly carrying out importance sampling on

a vast growing space with proposal p θ(x1:t|y1:t) and weight
∇θp θ(x1:t|y1:t)

p θ(x1:t|y1:t)
. This should be enough reason to call for a

new approach. Yet, the problem is even worse.

The filter derivative is a signed-measure, and not a stan-

dard probability measure. It consists of positive and negative

functions over disjoint parts of the state space and it sums

to zero over the entire state space. A serious problem, when

carrying out classical particle filtering to estimate this signed-

measure, is that particles with positive and negative weights

will cancel each other, say, in parts of the space where the

derivative is close to zero. This is wasteful and statistically

harmful. See Figure 1 of [21] for a beautiful depiction of

this problem.

The technique presented in the following section over-

comes these deficiencies.

B. The Marginal Space Approach

1) Marginal Filtering and Filter Derivative: To eliminate

the problems discussed in the previous section, we will

perform particle filtering directly on the marginal distribution

p(xt|y1:t) instead of on the joint space [20], [25], [21]. To

do so, we begin by noting that the predictive density can be

obtained by marginalization:

p θ(xt|y1:t−1) =

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1 (3)

To simplify the exposition later on, we introduce the follow-

ing notation [21]:

p θ(xt|y1:t) ,
ξ θ(xt,y1:t)∫
ξ θ(xt,y1:t)dxt

(4)

where ξ represents the unnormalized distribution.

Using equation (3) and Bayes rule, the unnormalized

filtering distribution can be expanded as follows:

ξ θ(xt,y1:t) = p θ(yt|xt)

∫
p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1.

In order to obtain the gradient vector with respect to the

map variables, we apply standard differentiation rules to

equation (4), yielding:

∇θp θ(xt|y1:t) =
∇θξ θ(xt,y1:t)∫
ξ θ(xt,y1:t)dxt

− p θ(xt|y1:t)

∫
∇θξ θ(xt,y1:t)dxt∫
ξ θ(xt,y1:t)dxt

. (5)

Similarly, using the expansions for the derivatives of logs,

the gradient of ξ(·) can be written as follows:

∇θξ θ(xt|y1:t) = ξ θ(yt|xt)∇θ log p θ(yt|xt)

+p θ(yt|xt)

∫
p(xt|xt−1)∇θp θ(xt−1|y1:t−1)dxt−1 (6)

2) Monte Carlo Implementation: We are now ready to

present the particle algorithm of [21] for approximating

the filter derivative efficiently. Assume that at time

t − 1, we have a Monte Carlo approximations of

the filter and its gradient. We denote the normalized

and unnormalized filter and gradient approximations by:

p̂ θ(xt−1|y1:t−1)=
∑
w

(i)
t−1δx(i)

t−1

, ξ̂ θ(xt,y1:t)=
1
N

∑
w̃

(i)
t δ

x
(i)
t

,

∇̂θp θ(xt−1|y1:t−1) =
∑N

i=1 w
(i)
t−1β

(i)
t−1δx(i)

t−1

,

∇̂θξ θ(xt,y1:t) = 1
N

∑N
i=1 ρ̃

(i)
t δ

x
(i)
t

. The integral in

equation (3) is generally not solveable analytically, but since

we have the particle approximation, we can approximate it

as the weighted kernel density estimate

p̂ θ(xt|y1:t−1) =

N∑

j=1

w
(j)
t−1p(xt|x(j)

t−1).

While we are free to choose any proposal distribution that

has appropriate support, it is convenient to assume that the

marginal proposal takes a similar form, namely

q θ(xt|y1:t) =
N∑

j=1

w
(j)
t−1q θ(xt|yt,x

(j)
t−1).

We can easily draw particles from this proposal using

multinomial or stratified sampling and compute the new

unnormalized importance weights:

w̃
(i)
t =

p θ(yt|x(i)
t )
∑N

j=1 w
(j)
t−1p(x

(i)
t |x(j)

t−1)

q θ(x
(i)
t |y1:t)

ρ̃
(i)
t = w̃

(i)
t ∇θ log p θ(yt|x(i)

t ) +

∑
jw

(j)
t−1p(x

(i)
t |x(j)

t−1)β
(j)
t−1

q θ(x
(i)
t |y1:t)
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Finally, substituting the above Monte Carlo estimates into

the expression for the derivative of p θ in terms of ξ θ, we

obtain the normalized weights at time t.

w
(i)
t =

w̃
(i)
t∑

j w̃
(j)
t

; w
(i)
t β

(i)
t =

ρ̃
(i)
t∑

j w̃
(j)
t

− w
(i)
t

∑
j ρ̃

(j)
t

∑
j w̃

(j)
t

Note the advantages of marginal filtering. First, the impor-

tance sampling process now happens in the marginal space.

In addition, the last integral in equation (6) can be expanded

using the score identity:
∫
p(xt|xt−1)∇θ log[p θ(xt−1|y1:t−1)]p θ(xt−1|y1:t−1)dxt−1

That is we sample from the marginal filtering distribution

and weight with β , ∇θ log[p θ(xt−1|y1:t−1)]. Contrast this

with equation (2). The other thing to note, as pointed out in

[21] is that the marginal filter derivative allows us to obtain

a particle approximation of the Hahn-Jordan decomposition.

This implies that we can surmount the problem of particles

of opposite signs cancelling each other out in infinitesimal

neighborhoods of the state space (see Figure 1 of [21]).

3) On-Line Map Learning: Armed with Monte Carlo

estimates of the filter derivative, we can now attack the

problem of developing recursive map estimators. Here, we

choose to maximize the predictive likelihood (also known as

the innovations or evidence):

p θ(yt|y1:t−1) =

∫∫
p θ(yt|xt)p(xt|xt−1)p θ(xt−1|y1:t−1)dxt−1:t

To accomplish this, we adopt the following stochastic ap-

proximation algorithm:

θt = θt−1 + γt∇θ log p̂ θ(yt|y1:t−1)

Provided that the step size γt satisfies standard stochastic

approximation criteria, see for example [26], it can be shown

that θt converges to true parameters which are the global

maxima of l(θ), where [21]

l(θ) = lim
k→∞

1

k + 1

k∑

t=1

log p θ(yt|y1:t−1)

A detailed analysis is presented in [27]. The only remaining

detail is to derive the Monte Carlo approximation of the

gradient of the predictive distribution

∇θ log p̂ θ(yt|y1:t−1) =
∇̂θp θ(yt|y1:t−1)

p̂ θ(yt|y1:t−1)
=

=

∫
∇̂θξ θ(xt,y1:t)dxt∫
ξ̂ θ(xt,y1:t)dxt

=

∑N
j=1 ρ̃

(j)
t

∑N
j=1 w̃

(j)
t

4) Pseudo-Code for Marginal-SLAM: The Marginal-

SLAM algorithm is depicted in Figure 1. Note that it is linear

in the number of features. It has an O(N2) complexity in

terms of the number of samples, but this can be reduced to

O(N logN) using the fast multipole expansions and metric

tree recursions proposed in [20].

The marginal particle filter is an old idea [28], [29]. Yet,

because of its large computational cost, it was not fully

Marginal-SLAM

• For i = 1, ..., N , sample the robot state from the proposal

x
(i)
t ∼

N∑

j=1

w
(j)
t−1q(xt|yt,x

(j)
t−1)

• For i = 1, ..., N , evaluate the importance weights

w̃
(i)
t =

p θ(yt|x(i)
t )
∑N

j=1 w
(j)
t−1p(x

(i)
t |x(j)

t−1)

q θ(x
(i)
t |y1:t)

ρ̃
(i)
t = w̃

(i)
t ∇θ log p θ(yt|x(i)

t )+

∑
jw

(j)
t−1p(x

(i)
t |x(j)

t−1)β
(j)
t−1

q θ(x
(i)
t |y1:t)

• Normalise the importance weights

w
(i)
t =

w̃
(i)
t∑

j w̃
(j)
t

; w
(i)
t β

(i)
t =

ρ̃
(i)
t∑

j w̃
(j)
t

−w(i)
t

∑
j ρ̃

(j)
t

∑
j w̃

(j)
t

• Update the map vector

θt = θt−1 + γt

∑
j ρ̃

(j)
t

∑
j w̃

(j)
t

• Update the learning rate γt.

Fig. 1. The Marginal-SLAM algorithm at time t.

explored until the introduction of fast methods [20]. When

using the transition prior as proposal, the marginal filter and

classical particle filter are equivalent, but this is no longer

true when computing the derivative of the filter as outlined

in [25] and this paper.

IV. EXPERIMENTS

We compare Marginal-SLAM and FastSLAM in a large

scale, highly noisy simulated environment with known data

association. The environment is a square-like corridor with

point landmarks in the walls. For simplicity, we use the tran-

sition prior as the proposal distribution for both techniques.

In future work, optimal proposals could be considered like

in FastSLAM 2.0.

The robot motion, that is, the transition model, is based

on a simple differential drive vehicle


Xt

Yt

ψt


 =



Xt−1

Yt−1

ψt−1


+



dt cos(ψt−1)
dt sin(ψt−1)

αt




where xt = [Xt, Yt, ψt] denotes the robot position and orien-

tation and ut = [d, α] is the motion command (displacement

and heading) at time t with corresponding Gaussian noise

vt ∼ N (0, diag(σd, σα)). The observations are gathered

using range and bearing sensors yt = [ρ, φ] with a point

feature detector

[
ρ̂

φ̂

]
=




√
∆2

x + ∆2
y

arctan
(

−∆x sin(θR
t )+∆y cos(θR

t )

∆x cos(θR
t )+∆y sin(θR

t )

)



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Fig. 2. The plots represent the average number of effective particles Neff , with corresponding confidence intervals, in 25 long term simulations. The
total number of particles is 200 in both cases. The left plot corresponds to Marginal-SLAM, where the filter achieves a steady state with a 25% effective
number of particles, allowing to update the same are for indefinite tima. The middle plot shows the same experiment for FastSLAM. It quickly drops in
every simulation and fails after 200 steps. Just few realizations survive more steps. The right plot is a zoomed view of the middle plot.

where ∆x = θx − Xt and ∆y = θy − Yt; with [θx, θy]
denoting the feature location. The sensor has white Gaussian

noise vt ∼ N (0, diag(σρ, σφ)).
Hence, the likelihood function for a single feature is

p(ρ, φ|x) =
1√

2πσρσφ

exp

[
−1

2

(
(ρ− ρ̂)2

σ2
ρ

+
(φ− φ̂)2

σ2
φ

)]

Thus, the gradient of the log-likelihood corresponds to

∇ log(p(ρ, φ)) =
1

ρ




∆x(ρ−ρ̂)
σ2

ρ
− ∆y(φ−φ̂)

ρσ2
φ

∆y(ρ−ρ̂)
σ2

ρ
+ ∆x(φ−φ̂)

ρσ2
φ




We carried out several simulations by varying the amount

of sensor and motion noise, landmark density and loop size.

The system is able to close large loops with large range and

bearing noise. However, very large sensor noise (e.g. sonar)

in large loops is still a difficult task. Data driven proposals

could be adopted in the future to eliminate this problem.

Figure 2 shows a comparison between the number of

effective particles Neff = 1/
∑N

i=1 w
2
i in Marginal-SLAM

and FastSLAM2. Clearly, the marginal particle filter reaches

a steady state, but FastSLAM quickly loses particle diversity.

The final map using both approaches is shown in Figure 3.

In the Marginal-SLAM plot, the relative locations of the

landmarks and the robot converge to the true solution.

However, the global location is biased with respect to the

ground truth. This is due to the observability assumptions in

our SLAM model. The robot location can only be measured

through the landmark location. The final map is valid up to

an isometric transformation (translation plus rotation). This

effect can be reduced if we fix a landmark location.

Although our goal has been to develop a method for static

maps using decreasing learning rates, it is possible to adopt

small constant learning rates to track slowly changing map

features. Mapping in real scenarios requires the ability to

deal with pseudo-dynamic objects, like chairs and doors.

Those elements are difficult to identify as dynamic, but their

2Results are based on the following parameter settings: N = 200, σd =
0.1m, σα = 0.5deg, σρ = 0.025m, σφ = 3deg.

movements can lead to inconsistent maps. Figure 4 shows

the evolution of a parameter estimate when the true landmark

location changes. This ability to track moving features also

implies that it would enable Marginal-SLAM to recover from

wrong data association, biased map merging and loop clos-

ing, provided that the correct correspondences are obtained in

subsequent steps. The selection of the learning ratio depends

on the required accuracy, the convergency speed and the

ability to track objects.

V. CONCLUSIONS

The experiments and arguments indicate that Marginal-

SLAM is an important new direction in the design of

particle methods for SLAM. Algorithms designed to work

on the marginal space appear to behave better than the ones

designed to work on the path space.

In this preliminary work, Marginal-SLAM exhibits nice

properties, such as being able to track slowly moving objects

and potentially being able to recover from erroneous data-

association. Marginal-SLAM does not suffer from some

shortcomings of existing particle methods for SLAM. When

mapping known areas, the algorithm reaches an accurate

steady state without diverging. However, efficient conver-

gence in large-scale SLAM domains is still an open question.

The presented method requires a considerable amount of

information to converge to the solution, which is a strong

assumption in SLAM. What is missing is a fully Bayesian

way of estimating the static map parameters, while integrat-

ing over the states recursively in time.

In future work, we plan to test the algorithm more thor-

oughly in real domains and introduce known improvements

like the N-body methods or the more efficient Hessian based

maximum likelihood. We also plan to focus on solving

the problem of designing efficient full-Bayesian recursive

parameter estimators for nonlinear state spaces.
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Fig. 3. a) Particle degeneracy in FastSLAM prevents it from closing the loop. b) Marginal-SLAM is able to close the loop and converges to the true map
after 10 laps. Although the map seems rotated, the relative location of the features and the robot location is almost perfect. c) Marginal-SLAM after 10
laps in a bigger loop with high motion and observation noise σα = 10deg, σφ = 10deg. The loop is closed but the convergence is slow.
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Fig. 4. Tracking a moving map feature with Marginal-SLAM with σd =
0.01m, σα = 0.05deg, σρ = 0.1m, σφ = 0.5deg. Black thick line: true
location. Blue thin line: estimated location.
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