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Abstract— This paper investigates the energetic effects of
adding springs at the passive ankles of a planar five-link, four-
actuator walking biped robot. The energetic cost of walking
with springs was determined by using a walking motion
designed for the biped without springs added. The walking
motion was then optimized for the presence of springs of various
arbitrarily chosen stiffnesses and offset angles. The stability
properties of the motions that resulted were checked. The
energetic costs of walking and standing were then computed. It
was found that standing with springs was more efficient, while
walking was more costly than the same action without springs.
Finally, the spring characteristics (stiffness and offset angle)
and the motion were optimized simultaneously. The costs for
walking and standing were computed, revealing that walking
with springs was more efficient and standing was more costly
than doing either without springs. A methodical approach to
choosing the size of the feet based on this analysis of the spring
characteristics is also presented.

I. INTRODUCTION

The objective of the study presented in this paper is to
analyze the effect of adding springs at the passive ankles of
a planar biped robot that contacts the ground via a planar
horizontal foot. The study was motivated by the hypotheses
that bipeds with compliant ankles may be able to exhibit
more ‘natural-looking’ gaits and gaits with better efficiency,
as compared with bipeds without compliant joints. The use
of compliant joints and springs at ankles has been studied by
others, including [1], [5], [10], [12]. The work presented here
differs from these studies in that a methodical approach to
selecting the foot size and the spring characteristics is given.

The biped in question was previously studied as a five-link
robot with point feet [3], [11] but now has massless feet and
springs at the ankles. Since the ankles of the biped studied
are passive, the biped is underactuated in single support. The
control law must accommodate the underactuation; only the
shape of the biped may be directly controlled. The control
law used in this work uses a reference motion determined by
optimization that ensures the existence of a stable gait [4].

The addition of feet and springs at the ankles has the
potential of lowering the cost of walking and the cost of
standing. In this paper it is assumed that all time spent
in double support is spent standing still, and the biped’s
configuration while standing is identical to its configuration
at the end of the step, when it enters double support. This
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Fig. 1. Underactuated 5-link planar biped with feet and springs at the
ankles. The compliance at the ankles follows a linear spring law.

TABLE I

BIPED PARAMETERS (DETAILED PARAMETERS MAY BE FOUND IN [3]).

Tibia Femur Torso

length m 0.40 0.40 0.63
mass kg 3.20 6.80 17.1

study investigates the effects of feet and springs on these
costs. Three studies were performed. In the first, the springs
added to the biped were of arbitrarily chosen stiffness and
offset angle. Costs were computed for this configuration. The
second study optimized the walking motion for these springs
and cost was computed. A third study was done in which
the feet and springs and walking motion were optimized
simultaneously.

The paper is structured as follows. Section II presents
the dynamic model of the biped. Section III overviews the
control strategy. Section IV summarizes the study of the exis-
tence and stability of periodic gaits of the biped. Section V
proposes an optimization strategy for determining efficient
motions for the robot with and without springs. Section VI
presents a numerical study of the effects of springs and
energy consumption for different reference motions with
various average velocities. Section VII draws conclusions.

II. MODEL OF THE BIPED

The biped under study consists of a torso and two identical
legs. Each leg is composed of two massive links and a mass-
less foot, all connected by frictionless joints; see Fig. 1. Apart
from the feet, the biped is identical to the prototype RABBIT
[3]. The biped’s parameters are given in Table I.
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The biped’s gait is assumed to be composed of stance
phases separated by instantaneous double support phases in
which the legs swap their roles as stance and swing legs.
The double support phase is assumed to be modeled by a
rigid impact [9]. Since the steady-state gait is assumed to be
symmetric with respect to consecutive steps, only one model
for single support is needed.

A. The single support phase model

In the single support phase the ankle joints are assumed to
have a linear spring in parallel with the joint. It is assumed
that the massless feet are always parallel to the ground. For
the supporting leg, the spring generates a torque that acts
between the ground and the tibia. The potential energy of
the supporting spring is Pk = 1/2K(qa − q0)2 where qa =
q1+q2+q5 is the absolute orientation of the supporting tibia,
q0 is the spring offset angle, and K is the spring’s stiffness.

With the coordinates chosen as in Fig. 1, the first four
joints are actuated. Hence, the dynamic model is written as

D(q)q̈ + h(q, q̇) + hk(q) =
[

Γ
0

]
, (1)

where q ∈ Q ⊂ R
5, D(q) is the mass-inertia matrix, vector

h(q, q̇) contains the terms due to centrifugal, Coriolis, and
gravitational forces, Γ ∈ R

4 is the vector of the joint torques,
and vector hk(q) contains the terms due to the added springs,

hk(q) :=

⎡
⎢⎢⎢⎢⎣
K(qa − q0)
K(qa − q0)

0
0

K(qa − q0)

⎤
⎥⎥⎥⎥⎦ . (2)

The state space is taken as TQ = Q×R
5, with (q, q̇) ∈ TQ.

The angular momentum of the biped around the point A is
denoted σA and is given by

σA = d5(q)q̇, (3)

where d5(q) is the fifth row of the inertia matrix, which
corresponds to the unactuated coordinate. For simplicity it is
assumed that hp = 0. In single support the ankle is fixed to
the ground and the externally-applied torque about the stance
contact point A is equal to the time derivative of σA. Since
the only external forces that generate a torque about A are
gravity and the spring, it follows that

σ̇A = mg(xg − xA) −K(qa − q0), (4)

where g is the gravity acceleration, xg is horizontal position
of the mass center, xA is horizontal position of the contact
point A.

1) Equilibrium of the supporting foot: The reaction force
exerted by the ground,R, and the torque at the ankle between
the tibia and the foot,K(qa−q0), are considered when taking
moments about the ankle of the supporting foot. Since the
foot is stationary, it follows that (see Fig. 2)

K(qa − q0) − lRz − hpRx = 0. (5)

x

z

K(qa − q0)

A

R

hp

l

lmin lmax

Fig. 2. The equilibrium of the supporting foot.

As defined in [7], the foot rotation indicator (FRI) is the
location on the foot where the reaction force must act in
order for the foot to remain still. Thus, since hp = 0, the
abscissa of the FRI, l, is

l = K(qa − q0)/Rz. (6)

To avoid rotation of the feet, the FRI must be contained
within the foot-ground contact segment, that is, l must satisfy

−lmin < l < lmax. (7)

Since during the single support phase the stance foot is
not moving with respect to the ground, it follows that

m

[
ẍg

z̈g

]
+mg

[
0
1

]
=

[
Rx

Rz

]
. (8)

In addition, the reaction force exerted by the ground (Rz)
must be positive, and, to keep the biped from sliding,
the reaction force must be inside the friction cone. These
conditions may be written as Rz > 0 and |Rx/Rz| < μ,
where μ is the coefficient of static friction.

B. The impact model

The rigid impact at double support is modeled as an
algebraic map [9]

q̇+ = E�(q)q̇−, (9)

where �(q) ∈ R
5×5 and E ∈ R

5×5 is a permutation matrix
that permutes the coordinates at leg exchange. Since the
torque produced by the spring is finite, the torque does not
affect the impact. Since the foot is massless and its height
is assumed to be zero, the reaction force is applied at the
ankle, which is denoted P . Thus, the angular momentum
around the ankle of the impacting foot is conserved.

At impact, the supporting leg switches, thus the contact
point switches from A to P . At the moment of impact, the
angular momenta about each of the two points is related by

σP = σ−
A +m(xP − xA)ż−g , (10)

where σ−
A is the angular momentum about A before the

impact, ż−g is the vertical velocity of the mass center before
the impact, σP is the angular momentum around P (before
and after the impact), and (xP −xA) is the distance between
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the two feet. Since P is located at the ankle of the supporting
foot after impact, σ+

A = σP . Thus, it follows that

σ+
A = σ−

A +m(xP − xA)ż−g . (11)

The overall model is described by (1) and (2) in the single
support phase, separated by impacts described by (9).

III. THE CONTROL LAW

The objective of the control law is to track a reference
motion. This is accomplished using the time scaling control
law of [6]. The key feature of the control is that the reference
motion qd ∈ R

5 of the biped is enforced as a function of a
time-scaling parameter s.

A. Constraints on reference motion choice

The evolution of the scalar s is assumed to be strictly
monotonically increasing over a step from 0 to 1 with respect
to time. For 0 < sk < 1, where sk is the time scaling
parameter s for the kth step, the robot configuration qd(sk)
is such that the swing leg end touches the ground at sk =
0, 1 and is otherwise above the ground. To correspond to a
periodic gait, the reference motion and its derivative must be
periodic. Since the legs swap their roles from one step to the
following step, the desired configurations must be such that
qd(1) = E qd(0).

If the motion is tracked perfectly, the joint velocities before
impact, q̇− = (dqd(1)/ds)ṡk(1), and after impact, q̇+ =
(dqd(0)/ds)ṡk+1(0) must satisfy

dqd(0)
ds

= E�(qd(1))
dqd(1)
ds

α, (12)

where α := ṡk(1)/ṡk+1(0).

B. Definition of the control law

The control law allows a classic tracking controller (i.e.,
one for a fully-actuated robot) to be used despite the robot’s
underactuation. Use of a classic tracking controller is possi-
ble by treating the parameterizing scalar s as a virtual input.

Define the output y := q(t)−qd(s(t)) on (1). When y ≡ 0,
the velocity and acceleration of the joint variables are

q̇d(t) =
dqd(s(t))

ds
ṡ

q̈d(t) =
dqd(s(t))

ds
s̈+

d2qd(s(t))
ds2

ṡ2.

(13)

The desired behavior in closed loop is

q̈ =
dqd(s)
ds

s̈+ v(s, ṡ, q, q̇) (14)

with v(s, ṡ, q, q̇) = d2qd(s)/ds2ṡ2 + ψ, where ψ is chosen
to obtain a finite-time stabilization of the desired trajectories
using the control law given in [2]. Define

L(q, q̇) :=
∂d5(q)
∂q

q̇2 −mg(xg − xs) +K(qa − q0). (15)

The second derivative of s and the torques required to
achieve the desired behavior, (14), may be obtained using
(1), (3), (4), and (15),

s̈ = (−d5(q)v − L(q, q̇))
(
d5(q)

dqd(s)
ds

)−1

(16)

Γ = [I4×4 0]
[
D(q)

[
dqd(s)
ds

s̈+ v

]
+ h(q, q̇) + hk(q)

]
.

(17)

If d5(q)(dqd(s)/ds) �= 0, the control law (16) and (17)
ensures that q(t) converges to qd(s(t)) in a finite time, which
can be chosen as less than the duration of one step [8]. After
the output is driven to zero, the control law guarantees perfect
tracking (i.e., y ≡ 0).

IV. PERIODIC MOTION AND STABILITY STUDY

The control law (16) and (17) ensures that after one step
the motion of the biped will match the reference motion.
To determine stability of a periodic motion, the behavior of
the evolution of ṡk(t) is studied. The dynamics of s may be
deduced from (3) and (4). The unconstrained dynamics are

σA = d5(q(s))
dqd(s)
ds

ṡ(s) =: I(s)ṡ(s) (18a)

σ̇A = mg(xg(qd(s)) − xA) −K(qa(qd(s)) − q0). (18b)

Combination of (18a) and (18b) results in

1
2
σA(0)2 =

1
2
σA(s)2 + V (s), (19)

V (s) =

s∫
0

I(ξ)(K(qa(ξ) − q0) −mg(xg(ξ) − xA))dξ

(20)
for 0 ≤ s ≤ 1; see [4].

Assume that the function I(s) has a constant sign and
define ζ := 1/2σ2

A. Since V (s) can be calculated for any
given qd(s), it follows that

ζk(s) = ζk(0) − V (s). (21)

The reference motion qd(s) is defined with the assumption
that s is an increasing function. Thus, ζk(0) must be such
that ζk does not vanish:

ζk(0) > max
s
V (s). (22)

Since the evolution of the angular momentum is given by
(11) and żg and σA are proportional to ṡ at impact, (11) can
be rewritten as σ+

A = δσ−
A , where

δ := 1 +m(xP − xA)
dzg(1)
dq

dq(1)
ds

(I(1))−1. (23)

The value of ζk+1(0) can be written as a function of ζk(1),

ζk+1(0) = δ2ζk(1). (24)

Combining (21) and (24), define ϕ : R → R as

ϕ := δ2(ζk(0) − V (1)). (25)

FrB3.2

3593



The stability of a periodic motion of the model (1) may
be studied via the function ϕ as it is classically done using
the technique introduced by H. Poincaré. The method of
Poincaré is applied by first defining a Poincaré section, a
hypersurface that is transverse to the orbit corresponding
to the periodic motion. The discrete-time (first) return map
of ϕ to the section may be studied to discern the stability
properties of the orbit.

Here, the section is taken at s = 0 so that the fixed
point ζ∗(0) of the Poincaré return map corresponds to the
intersection between ϕ and the identity function. Equation
(25) implies that the fixed-point is

ζ∗(0) =
−δ2V (1)
1 − δ2

. (26)

The corresponding value of ṡ is

ṡ∗(0) =

√
−2V (1)

α2I(1)2 − I(0)2
. (27)

Note that if −2V (1)/(α2I(1)2 − I(0)2) is negative, no
periodic motion corresponds to the periodic trajectory qd(s).
A gait will exist if I(s) has a constant sign for 0 ≤ s ≤ 1
and if ζ∗(0) is defined and greater than maxs V (s) (for a
smaller value of ζ∗(0) the biped will not complete the step).
These two conditions imply that the angular momentum σA

has constant sign during a step. Note that ζ(0) is also upper-
bounded because of ground reaction force constraints [4].

If the norm of the slope of the function ϕ is less than 1,

δ2 < 1, (28)

then for an initial state close to the periodic motion, the
biped’s state will converge towards the periodic motion.

V. DEFINITION OF OPTIMAL PERIODIC MOTION

The design of a valid reference motion for the biped is not
a trivial task. The motion has to satisfy constraints on the
limits of the actuators and the ground contact reaction forces,
among others. To make the design systematic, constrained
parameter optimization is used for reference motion design.

Unlike the approach of [4], where the desired reference
internal motions were chosen to be polynomials in time, the
desired joint motions are chosen to be polynomials in s. The
polynomial coefficients are chosen to enforce periodicity of
the desired walking motion.

A. The optimized parameters

To ensure periodicity and avoid contact between the swing
foot and the ground, an intermediate configuration is defined
for the biped at s = 0.5. Thus, each of the five joint variables
is defined by a fourth-degree polynomial function of s,

qj(s) =
4∑

k=0

ajks
k, j = 1, . . . , 5, (29)

where j is the joint number. The polynomial functions qj(s),
j = 1, . . . , 5, are uniquely defined by qi, qf , qint, dqi/ds, and
dqf/ds. The subscripts i, f and int correspond to the initial

(at s = 0), final (at s = 1) and intermediate (at s = 0.5)
states of the robot, respectively.

Since the initial and final configurations for the stance
phase are double support configurations, only four indepen-
dent variables are necessary to define these configurations.
Here, the step length, (xP − xA), the position of the hips,
(xh, zh), and angle q5 are used (see Fig. 1).

Since the position of the robot is constant during the
impact and the legs swap their roles from one step to the
next, it follows that

q1i = q3f , q2i = q4f , q3i = q1f , q4i = q2f , q5i = q5f . (30)

Using (30), the polynomial functions q(s) can be defined
as function of qint, (xP − xA), xhf , zhf , q5f , dqf/ds, and
α. These 15 parameters are the parameters of optimization.

B. The optimization setup

Note that the reference motion must be compatible with
the dynamic model. The corresponding gait will only be
stable if ζ∗(0), given by (26), satisfies (22) and if (28) holds.

Since the Joule effect in the motors causes the greatest
energetic loss when walking, the cost function is chosen to
be proportional to this loss of energy. The cost function is
defined as follows

Cw =
1

(xP − xA)

∫ T

0

|Γ(s) q̇|dt. (31)

To avoid the stance foot lifting from the ground, the minimal
vertical reaction force is constrained to be greater than 100 N.
The required friction coefficient is constrained to be less than
2/3. The initial orientation of the torso is constrained to be
between 0 and 15 degrees. To ensure a gait with feasible final
hip height and step length, the values of zhf and (xP −xA)
are constrained to be such that 0.6 < zhf < 0.78 m and
0.1 < (xP − xA) < 0.8 m.

C. The cost of standing

In addition to walking, most bipeds also stand. Hence, it is
important to assess the added cost associated with standing
on the robot’s design. Here, the cost of standing is assumed
to be the static power dissipated by supplying the torque
required to maintain quiescent standing.

The torques may be found by manipulating the single-
support model (1), adding a term to represent the vertical
reaction force at the swing foot and setting q̇ = 0 and q̈ = 0.
For simplicity, the horizontal reaction force is chosen to be
zero since it does not effect the rotational equilibrium of the
biped. The configuration q at the end of each step (when the
biped is in double support) was used. The result is[

Γs

Fsw

]
=

[ [
I
0

]
−JT

sw

]−1

(h(q, 0) + hk(q)) , (32)

where Γs ∈ R
4 is the vector of the static joint torques, Jsw ∈

R
5×1 is the manipulator Jacobian for the swing foot and

Fsw ∈ R is the (vertical) reaction force at the swing foot.
The cost of walking is given by (31), and the cost of

standing by Cs = VmΓ′
sΓs/Kt, where Vm is the voltage of
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TABLE II

CASE 2: OPTIMIZED MOTION WITH ARBITRARILY CHOSEN SPRINGS FOR AN AVERAGE VELOCITY OF 1.25 M/S.

Stiffness Walking Standing Cost Change Cost Change Cost Change
Cost Cost Walking 2 m Standing 2 s Walking 2 m and Standing 2 s

K q0 Cw Cs δC δC δC
Nm/rad rad J/m J/s J J J

0 - 184 563 - - -
25 3.3 187 460 6 -205 -199
50 3.3 223 359 78 -407 -329
75 3.3 257 278 145 -570 -425
50 3.2 295 307 223 -511 -288
50 3.3 223 359 78 -407 -329
50 3.4 208 409 48 -308 -261

the motor, and Kt is the motor torque constant. The total
cost of walking for k steps and standing for Ts seconds is

C = k (xP − xA)Cw + TsCs. (33)

VI. THE EFFECTS OF ADDING THE SPRINGS

The effects of ankles with compliance provided by springs
were analyzed. The study was motivated by the hypothesis
that bipeds with compliant ankles may be able to exhibit
more ‘natural-looking’ gaits. The addition of springs can also
increase the efficiency of the resulting gait. Three cases were
studied.

In the first case, a motion designed for the biped with
point feet (and no springs) was used. Massless feet and
springs at the ankles were added. Three spring stiffnesses
were investigated:1 25 Nm/rad, 50 Nm/rad, and 75 Nm/rad.
The biped was simulated at the steady-state walking gait for
one step. The required foot size and the changes in walking
cost with, compared to without, these springs was computed.

In the second case, the same spring stiffness and offset
angles were used, but the motion was optimized using the
model with springs included. The foot size and cost were
computed and found to be lower than in the previous case.

In the third case, both the motion and the springs were
optimized concurrently, which resulted in walking motions
that were more efficient than those in the first two cases.

In each case, four motions with different average walking
velocities were used to explore how cost changes with
velocity. Due to space constraints, the results presented here
are for only one of these velocities, 1.25 m/s. The results for
the other velocities follow similar trends.

To choose the spring offset angles, the range of qa, the
absolute angle of the stance tibia, was investigated. For an
average walking velocity of 0.75 m/s, qa, varies in the range
(3.04, 3.25) rad, for 1 m/s, (3.12, 3.31) rad, for 1.25 m/s,
(3.22, 3.39) rad, and for 1.5 m/s, (3.34, 3.47) rad. Based
on these ranges for qa and the fact that in double support
the legs are near the equilibrium position of the spring, the
spring offset angles considered were q0 = 3.2 rad, 3.3 rad,
and 3.4 rad.

A. Case 1: Reference motion with arbitrarily chosen springs

The average velocity and energetic cost both increase
(resp. decrease) as the spring offset angle increases (resp. de-

1The stiffness were chosen to obtain reasonable size of the feet; see (7).

creases).2 This effect is more pronounced as stiffness in-
creases. Additionally, increases in stiffness also increase the
required size of the feet. Finally, as the spring offset angle
increases, the mean position of the FRI generally moves
backward.

B. Case 2: Optimized motion for arbitrarily chosen springs

Considering only walking, adding a spring to the pas-
sive ankle increases the energetic cost slightly. When only
standing is considered, adding springs reduces the cost.
As spring stiffness increases, additional cost of standing
with springs decreases; that is, K = 75 Nm/rad is more
efficient than K = 50 Nm/rad, which is more efficient than
K = 25 Nm/rad. As the spring offset angle increases, the
additional cost of standing with springs increases that is,
q0 = 3.2 rad is more efficient than q0 = 3.3 rad, which is
more efficient than q0 = 3.4 rad. These results can be seen
in Table II.

When both walking and standing are considered, the cost
is reduced; see Table II. For example, using a spring stiffness
of K = 50 Nm/rad and an offset angle of q0 = 3.3 rad, the
cost of walking for two meters is 446 J, whereas the nominal
cost, the cost of the same motion without added springs, is
only 368 J. Thus, the addition of springs increased the cost
of walking by 78 J. The cost of standing for two seconds
in this configuration is 719 J, whereas the nominal cost is
1126 J, so the springs decrease the cost of the motion by
407 J. Combining these two motions yields a total cost of
1165 J. Compared to a total nominal cost of 1494 J, the
addition of springs results in a savings of 329 J. Thus, for
the case in which arbitrarily chosen springs are added to a
specific walking motion, the greatest energy savings occurs
when the biped does not walk but simply stands still.

C. Case 3: Simultaneously optimized springs and motion

Since the optimal motion may require an evolution of the
FRI that is incompatible with the design of the robot, the
size of the feet were taken into account in the optimization
process, and optimizations were run for feet ranging in size
from 0 cm to 30 cm. The stiffness and equilibrium position
were also limited to 0 < K < 100 Nm/rad and 3 < qa <
5 rad.

2The data corresponding to this case are not included due to space
limitations.
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TABLE III

CASE 3: SIMULTANEOUSLY OPTIMIZED MOTION AND SPRING FOR AN AVERAGE VELOCITY OF 1.25 M/S.

Maximum Stiffness Walking Standing Cost Change Cost Change Cost Change
%cline6-8 Foot Size Cost Cost Walking 2 m Standing 2 s Walking 2 m and Standing 2 s

lmax K q0 Cw Cs δC δC δC
cm Nm/rad rad J/m J/s J J J

0 0 - 184 563 - - -
5 4.79 4.41 171 591 -27 56 30
10 8.64 4.43 167 622 -34 118 83
15 11.74 4.45 159 653 -50 181 131
20 14.35 4.47 151 684 -67 242 176
25 17.12 4.55 144 730 -80 334 255
30 18.92 4.67 138 776 -93 425 333

In single support (see Table III), the spring offset angle
must be large for low velocities and small feet.3 For a walk-
ing rate of 0.75 m/s, the offset angle reaches the maximum
(5 rad). As foot size and velocity increase, the offset angle
becomes smaller, but never approaches the minimum. The
optimal stiffness increases when the size of the feet increases.
In general, the optimized spring at the ankle reduces the
energetic cost of walking but may require large feet.

Standing with springs optimized for walking has a higher
cost than standing in the same configuration without springs
(see Table III). When the spring is optimized with the
walking motion, as foot size and spring stiffness increase, the
additional cost of standing with springs generally increases.
For example, a maximum foot size of 10 cm increases the
cost of standing for two seconds with springs by 118 J,
whereas a maximum foot size of 20 cm yields a cost increase
of 242 J, and a maximum foot size of 30 cm yields a cost
increase of 425 J. For unreasonably large feet, the cost of
standing decreases with increases in spring stiffness but is
generally still more costly than standing with no springs.

For example, when the maximum foot size is chosen to
be 15 cm, the cost of standing for two seconds in this
configuration is 1307 J, whereas the nominal cost is only
1126 J, so the springs increase the cost of standing by 181 J.
Combining walking and standing yields a total cost of 1625 J.
Compared to a total nominal cost of 1494 J, the addition of
springs increase the cost by 131 J. The cost of walking for
two meters is 318 J, whereas the nominal cost is 368 J. Thus,
the addition of springs decreased the cost of walking by
50 J, making this case, walking with springs simultaneously
optimized for the motion is the most efficient scenario. Thus,
for the case in which the springs and walking motion are
simultaneously optimized, the greatest energy savings occurs
when the biped walks without standing still.

VII. CONCLUSION

Massless feet and springs were added to the leg ends
of a passive biped, and the associated additional costs of
walking and standing with these springs were calculated.
The size of the feet was chosen methodically using (6) and
(7). For the case in which arbitrarily chosen springs were
added to a motion designed for the biped without feet or
springs, it was found that walking with additional springs is

3The data corresponding to the results presented in this paragraph are not
included due to space limitations.

significantly more costly than walking without the springs.
When the motion is optimized for the arbitrarily chosen
springs, standing with springs in double support is more
efficient, but walking with springs is somewhat less efficient
compared to doing so without. Simultaneously optimizing
the springs and motions results in walking that is the most
efficient of any of the previous cases, while standing in
double support is the least efficient.
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