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Abstract— We present an analysis of a point mass, point foot,
planar inverted pendulum model for bipedal walking. Using
this model, we derive expressions for a conserved quantity, the
“Orbital Energy”, given a smooth Center of Mass trajectory.
Given a closed form Center of Mass Trajectory, the equation
for the Orbital Energy is a closed form expression except for
an integral term, which we show to be the first moment of
area under the Center of Mass path. Hence, given a Center
of Mass trajectory, it is straightforward and computationally
simple to compute phase portraits for the system. In fact, for
many classes of trajectories, such as those in which height is a
polynomial function of Center of Mass horizontal displacement,
the Orbital Energy can be solved in closed form.

Given expressions for the Orbital Energy, we can compute
where the foot should be placed or how the Center of Mass
trajectory should be modified in order to achieve a desired
velocity on the next step.

We demonstrate our results using a planar biped simulation
with light legs and point mass body. We parameterize the Center
of Mass trajectory with a fifth order polynomial function. We
demonstrate how the parameters of this polynomial and step
length can be changed in order to achieve a desired next step
velocity.

I. INTRODUCTION

Bipedal walking is difficult to analyze mathematically
because the equations of motion are nonlinear, high di-
mensional, and a hybrid mixture of continuous and dis-
crete dynamics. In addition, the foot-ground contact forces
have friction-limited, unilateral constraints. Due to these
difficulties, simplified models of bipedal walking have been
explored. Many of these models have proven very useful for
both analysis and control.

One such simplified model is the Linear Inverted Pen-
dulum Model of Kajita and Tanie [8]. In this model, a
biped is approximated as a point mass with point feet and
a Center of Mass trajectory that is constrained to a line for
planar walking, or to a plane for three dimensional walking,
i.e., the derivative of height with respect to forward motion
or sideways motion is constant. With these constraints,
the equations of motion become linear and a conserved
orbital energy, the “Linear Inverted Pendulum Energy” can
be derived. For example, for constant height sagittal plane
walking,

ẍ =
g

zc
x
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ELIP =
1
2
ẋ2 − g

2zc
x2 (1)

where x is the horizontal displacement from the foot to the
Center of Mass, zc is the constant Center of Mass height,
g is the gravitational acceleration constant, and ELIP is the
Linear Inverted Pendulum energy. Similar results have been
derived for three dimensional walking [6].

Given expressions for the Linear Inverted Pendulum En-
ergy, state space phase portraits can then be determined as
they consist of curves, each corresponding to constant values
of the orbital energy. If one assumes a lossless transfer
of support on each step, one can then determine where to
place the foot in order to achieve a new Linear Inverted
Pendulum Energy, and hence the velocity on the next step.
Therefore, the Linear Inverted Pendulum model gives closed
form expressions of where to step in order to achieve a next
step velocity. While it is only a simplified model of walking,
it has been applied, as an approximation, to several bipeds
that do not hold all of the assumptions used in deriving the
model [7], [8].

While the Linear Inverted Pendulum model is a useful
model for determining foot placement, one of its main
drawbacks is that the Center of Mass trajectory is linear. In
this paper, we relax the Center of Mass trajectory constraint
and only constrain the trajectory to be continuous. We derive
a new expression for a conserved quantity during single
support, which we refer to in this paper simply as the “Orbital
Energy”,

Eorbit =
1
2
ẋ2h2(x) + gx2f(x)− 3g

∫ x

0

f(ξ)ξdξ (2)

where
h(x) = f(x)− f ′(x)x (3)

where z = f(x) is the Center of Mass height as a function
of the horizontal displacement from the foot to the Center of
Mass, f ′(x) is the derivative of f(x) with respect to x and
g is the acceleration of gravity.

Like the Linear Inverted Pendulum Energy equation, this
expression for Orbital Energy allows us to determine where
to step to achieve a next step velocity, but without assuming a
linear height trajectory. While it still requires the assumption
of a point mass body and a point foot, we believe that its
application to more complicated bipeds will be successful
for several reasons including the following,

• Bipedal walking is an inherently robust problem, not
requiring precision, accuracy, or repeatability. Hence
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errors resulting from the use of simplified models can
often be tolerated.

• Any errors introduced from the use of a simplified
model often converge to an acceptable steady state
error. Though a simple model may not result in a
perfect controller, the choice of a good model will
result in one whose feedback is qualitatively correct and
quantitatively sufficient.

• There are many redundant opportunities for control in
bipedal walking beyond the choice of footsteps. For
example, modulating the Center of Pressure on the
feet, distributing forces between legs during the double
support phase, and accelerating internal inertia can all
be used to control velocity during walking.

In the next Sections we detail the derivation of Equation
2, show example trajectories and phase portraits, including
closed form expressions for polynomial trajectories, and
present simulations verifying our results.

II. INVERTED PENDULUM DYNAMIC MODEL

The xz-plane dynamics of the inverted pendulum model
rotating around the origin x = 0, z = 0 is

Mẍ = F
x√

x2 + z2
(4)

Mz̈ = −Mg + F
z√

x2 + z2
, (5)

where F is the translational knee force.
Let us assume that the force F maintains the constraint

z = f(x) between the variables x and z, where f(x) is a
function describing the Center of Mass trajectory in the xz-
plane. We treat this constraint as a manifold in the system’s
4-dimensional space defined by σ = z − f(x) = 0.

Differentiating σ twice we have:

σ̈ = z̈ − f ′(x)ẍ− f ′′(x)ẋ2

= F
1

M
√
x2 + z2

[z − f ′(x)x]− g − f ′′(x)ẋ2 (6)

If σ(t) ≡ 0 then σ̇ ≡ 0 and σ̈ ≡ 0, and, hence,

F
1√

x2 + z2
= M

g + f ′′(x)ẋ2

z − f ′(x)x
,

or

F = M
√
x2 + z2

g + f ′′(x)ẋ2

z − f ′(x)x
. (7)

In order to keep the state on the manifold Σ = {σ =
z− f(x) = 0}∩{σ̇ = ż− f ′(x)ẋ = 0} the amplitude of the
force F which creates the constraint should be not greater
than the maximum permissible force Fmax: ‖F‖ ≤ Fmax.
We also require that the foot should not leave the ground, so
F should be nonnegative:

0 ≤M
√
x2 + z2

g + f ′′(x)ẋ2

z − f ′(x)x
x ≤ Fmax.

Substituting Equation 7 into Equation 4, and since on the
manifold Σ we have z ≡ f(x), the equation of constrained

motion along the x-axis is:

ẍ =
g + f ′′(x)ẋ2

f(x)− f ′(x)x
x (8)

We now consider a few particular simple cases to verify
Equation 8. In the following Sections we study in more detail
the cases when f(x) is a polynomial of x.

Case I: If f(x) = z = const then, as one can see
from Equation 8, we obtain the Linear Inverted Pendulum
Dynamics presented in Equation I,

ẍ =
g

z
x.

Case II: If the horizontal velocity is a constant, ẋ = v =
const, then

v̇ = 0 ⇒ g + f ′′(x)v2 = 0 ⇒ f ′′(x) = − g

v2
.

and hence f(x) will be a parabola. Assuming that the starting
x-point is x0 and the final point is x1 and, correspondingly,
z0 and z1 are starting and final heights, we have

f(x) = − g

2v2
(x− x0)(x− x1) + z0

x− x1

x0 − x1
+ z1

x− x0

x1 − x0
.

If −x0 = x1 and z0 = z1:

f(x) = − g

2v2
(x2 − x2

0) + z0.

As can be easily seen such motion is a free fall with
constant x-speed (assuming there are no losses). The force
F , in this case, is zero since in Equation 7 the term
g + f ′′(x)ẋ2 = 0.

Case III: If f(x) =
√
r2 − x2, or x2 + z2 = r2 is a

semicircle, where r = const, then in this case the easiest way
to derive the motion equation is to use the polar coordinates

x = r sin(θ) (9)
z = r cos(θ), (10)

where θ is the angle between the direction to the point (x, z)
and the vertical direction. It satisfies the equation

Jθ̈ = rMg sin(θ),

where J = Mr2, hence

θ̈ =
g

r
sin(θ).

This is the equation of the standard inverted pendulum with
constant length, and together with Equation 9 it is equivalent
to Equation 8 in this case.

III. THE SOLUTION OF THE DYNAMIC EQUATIONS OF
MOTION

In this section we derive an exact first integral of the
general constrained Equation (8), resulting in Equation 2
presented in the Introduction.

Let us write Equation 8 in the standard state-space form:

ẋ1 = x2 (11)

ẋ2 =
g + f ′′(x1)x2

2

f(x1)− f ′(x1)x1
x1, (12)
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where x1 = x, and x2 = ẋ.
Considering x1 as the independent variable, the system

(11)-(12) can be written as one equation:

dx2

dx1
=

g + f ′′(x1)x2
2

[f(x1)− f ′(x1)x1]x2
x1, (13)

or returning to the original notation for x1 = x, and using a
new notation Y (x) = x2

2 = ẋ2 we obtain

Y ′(x) = 2
g + f ′′(x)Y (x)
[f(x)− f ′(x)x]

x

=
2xf ′′(x)

f(x)− f ′(x)x
Y (x) +

2gx
f(x)− f ′(x)x

. (14)

Equation 14 is a linear first order differential equation with
a variable coefficient with respect to the unknown function
Y (x):

Y ′(x) = φ(x)Y (x) + ψ(x), (15)

where
φ(x) =

2xf ′′(x)
f(x)− f ′(x)x

,

and
ψ(x) =

2gx
f(x)− f ′(x)x

.

The solution of (15) can be written as

Y (x) = Φ(x, x0)Y (x0) +
∫ x

x0

Φ(x, ξ)ψ(ξ)dξ,

where Φ(x, x0) is a fundamental solution:

Φ(x, x0) = exp
[∫ x

x0

φ(ξ)dξ
]

= exp
[∫ x

x0

2ξf ′′(ξ)
f(ξ)− f ′(ξ)ξ

dξ

]
= exp

{
−2

∫ x

x0

d[f(ξ)− f ′(ξ)ξ]
f(ξ)− f ′(ξ)ξ

}
= exp {−2 log[f(x)− f ′(x)x]
+ 2 log[f(x0)− f ′(x0)x0]}

=
[
f(x0)− f ′(x0)x0

f(x)− f ′(x)x

]2

. (16)

Therefore, we have

Y (x) =
[
f(x0)− f ′(x0)x0

f(x)− f ′(x)x

]2

Y (x0)

+2g
∫ x

x0

[
f(ξ)− f ′(ξ)ξ
f(x)− f ′(x)x

]2
ξ

f(ξ)− f ′(ξ)ξ
dξ

=
[
f(x0)− f ′(x0)x0

f(x)− f ′(x)x

]2

Y (x0)

+
2g

[f(x)− f ′(x)x]2

∫ x

x0

[f(ξ)− f ′(ξ)ξ] ξdξ. (17)

The last equation means that

ẋ2[f(x)− f ′(x)x]2 − ẋ0
2[f(x0)− f ′(x0)x0]2

= 2g
∫ x

x0

[f(ξ)− f ′(ξ)ξ] ξdξ. (18)

Let’s introduce a function h(x) as

h(x) = f(x)− f ′(x)x, (19)

then (18) can be written as

ẋ2h2(x)− ẋ0
2h2(x0) = 2g

∫ x

x0

h(ξ)ξdξ. (20)

Since ∫ x

x0

h(ξ)ξdξ =
∫ x

x0

[f(ξ)− f ′(ξ)ξ] ξdξ

= 3
∫ x

x0

f(ξ)ξdξ − x2f(x) + x2
0f(x0), (21)

we can write (18) as
1
2
ẋ2h2(x)− 1

2
ẋ0

2h2(x0)

= 3g
∫ x

x0

f(ξ)ξdξ − gx2f(x) + gx2
0f(x0), (22)

or
1
2
ẋ2h2(x) + gx2f(x)− 3g

∫ x

x0

f(ξ)ξdξ

=
1
2
ẋ0

2h2(x0) + gx2
0f(x0), (23)

Collecting all the terms dependent on x on the left hand
side, and the terms dependent on the initial conditions on the
right hand side we have

1
2 ẋ

2h2(x) + gx2f(x)− 3g
∫ x

0
f(ξ)ξdξ

= 1
2 ẋ0

2h2(x0) + gx2
0f(x0)− 3g

∫ x0

0
f(ξ)ξdξ. (24)

We see that the left hand side of the last expression is
a conserved quantity during the evolution of the dynamic
equations of motion and is the Orbital Energy we introduced
in the Introduction (2),

Eorbit =
1
2
ẋ2h2(x) + gx2f(x)− 3g

∫ x

0

f(ξ)ξdξ

Thus, (24) can be interpreted as

dEorbit

dt
= 0.

IV. VELOCITY CONTROL

Given the expression for Orbital Energy in Equation 2, we
can determine where to step to achieve a desired next step
velocity using the following method. If we let vdes be the
desired velocity at the top of the next stride (when x = 0),
then

Edes =
1
2
v2

desh
2(0) (25)

This is the Orbital Energy that needs to be achieved as a
result of the step,

Edes =
1
2
ẋ0

2h2(x0) + gx2
0f(x0)− 3g

∫ x0

0

f(ξ)ξdξ (26)

We then can solve Equations 25 and 26 for x0, which
gives us the location to step to achieve the desired velocity.
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Note that if we assume lossless steps, then we can assume
that the initial velocity of the next step (ẋ0) equals the end
of velocity of the current step. Otherwise, we need to use an
impact model to determine the velocity loss due to impact.

The above method assumes that f(x) and h(x) are given.
However, note that on each step we don’t have to choose
the same function f(x) and we can adapt this function
to the conditions on the next step. Although, to prevent
the magnitude of the force F from becoming infinite, it is
important to have smooth connections between steps so that
on the next step the following conditions are fulfilled:

fold(x1old) = fnew(x0new), (27)

f ′old(x1old) = f ′new(x0new), (28)

ẋ(t1old) = ẋ(t0new). (29)

Here fold and fnew are functions f on the previous and the
next step, while x1old and x0new represent the same spatial
point in the coordinate frame of the previous and the next
step, respectively. Similarly, t1old and t0new is the same time
moment when the new step is done.

The conditions (27) and (28) mean that there is no jump
in the height of the center of gravity and the velocity vector
direction, while (29) means that there is no jump in the
velocity magnitude.

As a special case of velocity control, let us consider a
problem of choosing the step size to stop the walking system.
The system is stopped when the state trajectory reaches the
origin of the constrained system phase space (x = 0, ẋ = 0).
The phase trajectory which leads into the origin is defined
by the points x0 and ẋ0, which correspond to an Orbital
Energy of 0.0. This also corresponds to Equation 22 having
a solution x = 0, ẋ = 0, i.e.

−ẋ0
2h2(x0) = 2g

∫ 0

x0

h(ξ)ξdξ (30)

V. POLYNOMIAL TRAJECTORIES

Let us consider the situation with steady walking when
the function f is the same on the next step fnew = fold = f
and there is a “smooth connection” between steps so that
conditions (27-29) are fulfilled.

Assume that the function f(x) is a polynomial of order n
:

f(x) =
n∑

i=0

aix
i.

The corresponding function h(x) defined by (19) is

h(x) = f(x)− f ′(x)x =
n∑

i=0

ai(1− i)xi. (31)

and the integral portion of the Orbital Energy is∫ x

0

f(ξ)ξdξ =
n∑

i=0

1
i+ 2

aix
i+2 (32)

Thus the Orbital Energy is a polynomial function of x. For
different values of Orbital Energy, we get different functions

Fig. 1. Phase portrait for a symmetric 4th order polynomial function f(x).

of horizontal velocity versus horizontal displacement. These
level curves are the phase portrait of the dynamic equations
of motion. In Figure 1 we show such a phase portrait for the
polynomial trajectory z = f(x) = a0 + a2x

2 + a4x
4 with

a0 = 0.682, a2 = −2.0, a4 = 9.1827. Outside the interval
−0.33 < x < 0.33 then f(x) is constant. The curves that
enter and leave the origin correspond to Orbital Energy levels
of 0.0. For a linear system, those curves would correspond
to the stable and unstable eigenvectors of the system. For
our system, which is nonlinear, those curves are not straight
lines. In both cases however, the origin is a saddle point.

From f(x0) = f(x1), and f ′(x0) = f ′(x1) we have the
following two equations for n+ 1 coefficients ai:

n∑
i=0

ai(xi
1 − xi

0) = 0 (33)

n∑
i=1

aii(xi−1
1 − xi−1

0 ) = 0. (34)

The third equation is obtained by substituting (31) into (22)

n∑
i=0

ai
1− i

i+ 2
(xi+2

1 − xi+2
0 ) = 0, (35)

As an example, if n ≤ 3 then these equations are

a1(x1 − x0) + a2(x2
1 − x2

0) + a3(x3
1 − x3

0) = 0
a22(x1 − x0) + a33(x2

1 − x2
0) = 0

a0
1
2
(x2

1 − x2
0)− a2

1
4
(x4

1 − x4
0)

−a3
2
5
(x5

1 − x5
0) = 0
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For symmetric legs, when x0 = −x1

a1x1 + a3x
3
1 = 0 (36)

a22x1 = 0 (37)

−a3
2
5
x5

1 = 0. (38)

This leaves only one possible solution f(x) ≡ const = a0.
So, we need to consider n > 3.

For n ≤ 5 we have

a1(x1 − x0) + a2(x2
1 − x2

0)
+a3(x3

1 − x3
0) + a4(x4

1 − x4
0) + a5(x5

1 − x5
0) = 0

a22(x1 − x0) + a33(x2
1 − x2

0)
+a44(x3

1 − x3
0) + a55(x4

1 − x4
0) = 0

a0
1
2
(x2

1 − x2
0)− a2

1
4
(x4

1 − x4
0)− a3

2
5
(x5

1 − x5
0)

−a4
1
2
(x6

1 − x6
0)− a5

4
7
(x7

1 − x7
0) = 0.

For the symmetric legs, when x0 = −x1

a12x1 + a32x3
1 + a52x5

1 = 0 (39)
a24x1 + a48x3

1 = 0 (40)

−4
5
a3x

5
1 −

8
7
a5x

7
1 = 0, (41)

or

a1 + a3x
2
1 + a5x

4
1 = 0 (42)

a22 + a44x2
1 = 0 (43)

−1
5
a3 −

2
7
a5x

2
1 = 0, (44)

Therefore, in this case, f(x) has three free parameters.
Choosing as these parameters the coefficients a0, a4 and a5

this function can be written as

f(x) = a0 +
3
7
x4

1a5x−2a4x
2
1x

2− 10
7
x2

1a5x
3 +a4x

4 +a5x
5.

As can be seen from this expression

f(x1) = f(x0) = f(−x1) = a0 − a4x
4
1.

The derivative of f(x) is

f ′(x) =
3
7
x4

1a5 − 4a4x
2
1x−

30
7
x2

1a5x
2 + 4a4x

3 + 5a5x
4.

Correspondingly

f ′(x1) = f ′(x0) = f ′(−x1) =
8
7
x4

1a5.

The corresponding function h(x) = f(x)− f ′(x)x is

h(x) = a0 + 2a4x
2
1x

2 +
20
7
x2

1a5x
3 − 3a4x

4 − 4a5x
5. (45)

Fig. 2. Fifth order polynomial function f(x), matching the “smooth
connection” constraints, with differing values of a5.

A. Stopping Condition for Polynomial Trajectories

We can derive the stopping condition for the polynomial
trajectory using Equation 30,

−ẋ2h2(x0) = 2g
∫ 0

x0

h(ξ)ξdξ,

where x0 in the new frame (with respect to the new rotation
point) corresponds to the current x, when the new step is
made.

We now assume a slightly more general situation when the
command to stop comes not necessarily when the previous
step is finished, but at an arbitrary moment at which the
z-coordinate is z0, and the horizontal and vertical velocities
respectively are ẋ0 and ż0. Thus, if we assume further motion
to satisfy the constraint z = fnew(x) we have the following
“smooth connection” conditions:

fnew(x0) = z0,

and
f ′new(x0) =

ż0
ẋ0
.

Then for the polynomial

f(x) =
n∑

i=0

aix
i,

the corresponding constraints and the stopping condition (30)
are

n∑
i=0

aix
i
0 = z0 (46)

n∑
i=1

iaix
i−1
0 =

ż0
ẋ0

(47)

2g
n∑

i=0

ai
1− i

i+ 2
xi+2

0 = ẋ0

[
z0 −

ż0
ẋ0
x0

]2

, (48)

In this case the minimum degree of a non-constant poly-
nomial can be n ≤ 3 and we have
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Fig. 3. Simulation results of single-leg, point mass, planar biped model
showing horizontal velocity, Orbital Energy, horizontal displacement, and
vertical displacement. Note that the Orbital Energy stayed constant to within
3 decimal places. Error beyond that is attributed to numerical effects of
discrete simulation.

a0 + a1x0 + a2x
2
0 + a3x

3
0 = z0 (49)

a1 + 2a2x0 + 3a3x
2
0 =

ż0
ẋ0

(50)

ga0x
2
0 − g

1
2
a2x

4
0 − g

4
5
a3x

5
0 = ẋ0

[
z0 −

ż0
ẋ0
x0

]2

,(51)

These equations allow us to find the polynomial and the point
x0.

VI. SIMULATION RESULTS

To validate our theoretical results, we performed a se-
quence of simulation experiments on two simulation models
using the Yobotics Simulation Construction Set software
package. The first model consisted of a free pin joint at the
ground and an actuated translational leg joint, ending in a
point mass body of 25.0kg. The second model consisted of
a planar biped with body mass of 25.0kg, and legs with
point mass feet, each of 0.05kg. This model had rotational
hip joints and translational knee joints.

In both systems, the support leg was actuated to control the
body’s height as a function of the horizontal distance from

the foot to the body mass, using a proportional-derivative
plus feed-forward computed torque command,

fknee = kz(f(x)− z) + bz(f ′(x)ẋ− ż)

+M
√
x2 + z2

g + f ′′(x)ẋ2

z − f ′(x)x
(52)

where kz is the proportional gain and bz is the derivative
gain.

For the first model, the system was given appropriate
initial conditions and controlled to follow f(x). Because this
model exactly matches the model which was used in the
derivation of Equation 2, the Orbital Energy stayed constant
to within 3 decimal points, as shown in Figure 3. This
was verified for a variety of polynomial trajectories, thus
validating Equation 2.

For the second model, we developed a control algorithm
with the following characteristics:

• Track the Center of Mass height trajectory f(x) using
Equation 52, where f(x) is constant when |x| > x∗.
This will guarantee a smooth connection at exchange-
of-support.

• Determine the next step distance by solving Equation
26 for x0.

• Swing the swing leg to the desired step location using
a proportional-derivative (PD) controller on the swing
hip.

• Apply an equal and opposite hip torque to the support
hip to prevent any pitch disturbance on the body.

• Place the swing leg when the horizontal displacement
from the foot to the Center of Mass passes a de-
sired exchange-of-support threshold. Ensure that the
exchange-of-support threshold is large enough so that
f(x) is in a flat region (|x| ≥ x∗). Also, delay exchange-
of-support if necessary until the desired step location is
in the flat region of f(x).

To ensure a smooth connection, we used a symmetric
polynomial f(x) = a0 + a2x

2 + a4x
4 with f(x) = z∗ if

|x| ≥ x∗ where x∗ =
√

−a2
2a4

, corresponding to the point of
zero slope of the polynomial.

Using this algorithm, we achieved walking with the planar
biped model and were able to validate our theoretical results.
Figure 4 shows results from a simulation in which the desired
top-of-support velocity was changed between 0.0m

s to 1.5m
s .

The Center of Mass trajectory f(x) stayed fixed with a0 =
0.9375, a2 = −2.0, and a4 = 30.864, corresponding to x∗ =
0.18 and z∗ = 0.9051. The desired exchange-of-support
horizontal displacement also stayed fixed at 0.25m. We see
that velocity tracking was quite accurate, the Orbital Energy
was nearly constant during the support phase, exchange-of-
support occurred at the desired value, except when it had to
be delayed to accelerate the robot, and the Center of Mass
height tracking was nearly perfect. Note that the desired
Orbital Energy changed in proportion to the square of the
desired velocity.

Figure 5 shows results from a simulation in which the
desired exchange-of-support horizontal displacement was
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Fig. 4. Simulation results. The desired top-of-support horizontal velocity
was changed between 0.0m

s
and 1.5m

s
, while the desired polynomial Center

of Mass trajectory and exchange of support horizontal displacement stayed
fixed.

changed between 0.2m and 0.45m, while the desired top-
of-support velocity stayed fixed at 1.0m

s and the Center of
Mass trajectory stayed fixed with the same values as in
Figure 4. Again, we see that velocity tracking was quite
accurate, the Orbital Energy was nearly constant during
the support phase, and the Center of Mass height tracking
was nearly perfect. Exchange-of-support occurred near the
desired value, but there was some error due to control delays
between determining it was time to place the foot and the
time that foot placement actually occurred. Note that the
desired Orbital Energy remained constant, as the desired top-
of-support velocity and height remained constant.

Figure 6 shows results from a simulation in which the
desired Center of Mass trajectory changed while the desired
top-of-support velocity stayed fixed at 1.0m

s and the desired
exchange-of-support displacement stayed fixed at 0.25m.

Fig. 5. Simulation results. The desired exchange of support horizontal
displacement was changed between 0.25m and 0.45m, while the desired
top-of-support horizontal velocity and polynomial Center of Mass trajectory
stayed fixed.

Again, we see that velocity tracking was quite accurate,
the Orbital Energy was nearly constant during the support
phase, exchange-of-support occurred near the desired value,
and the Center of Mass height tracking was nearly perfect.
Note that the desired Orbital Energy changed in proportion
to the square of the desired top-of-support height.

VII. CONCLUSIONS AND FUTURE WORK

We presented an analysis of the point mass, point foot,
planar inverted pendulum model for bipedal walking, result-
ing in an expression for a conserved Orbital Energy. We then
showed that the expression for Orbital Energy can be used to
determine the next step location in order to control the next
step velocity. This work was motivated by Kajita and Tanie’s
original Linear Inverted Pendulum Model [8] of walking, but
extends on that model by not requiring a constant height or
constant slope Center of Mass trajectory.
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Fig. 6. Simulation results. The desired Center of Mass trajectory was
changed while the desired top-of-support horizontal velocity and exchange
of support horizontal displacement stayed fixed.

Following a function z = f(x) fully constrains the internal
configuration degrees of freedom of the robot, which has
been shown by Grizzle, Chevallereau, Westervelt, and col-
leagues [1], [2], [3], [5] to allow the remaining lower degree-
of-freedom dynamics to be more easily analyzed. Their
prior work has shown that once the internal configuration
degrees are constrained as a function of the unconstrained
degrees of freedom, that a conserved Orbital Energy exists.
In the general case, the conserved Orbital Energy is a very
complicated expression. In this paper we showed that for the
point-mass inverted pendulum model, the expression is fairly
simple with only one simple integral that happens to be the
first moment of area under the Center of Mass curve.

In another study [11], we extended the Linear Inverted
Pendulum Model to include a flywheel body rather than a
point mass body. With this “Linear Inverted Pendulum Plus
Flywheel Model”, we found closed-form expressions relating

how angular momentum can be used to control velocity, and
in particular how it can extend the “Capture Region”, the
region on the ground in which a biped can come to a stop
if its foot is placed in that region.

Each extension of these simple models closes the gap
between the model and the full dynamics of a bipedal robot.
With each improvement we can more accurately compute
things such as where to place the foot in order to achieve
a next step velocity, or in order to regain balance after a
disturbance. Next steps in this direction include:

• Extending the results of this paper to 3D walking.
• Combining the results from the Linear Inverted Pendu-

lum plus Flywheel model to arbitrary Center of Mass
trajectories.

• Applying the results of this paper to a real, rather than
simulated, bipedal walking robot.

VIII. ACKNOWLEDGMENTS

Support for this work was provided by Honda Research
Institute and the Office of Naval Research.

REFERENCES

[1] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E.R. Westervelt,
C. Canudas-De-Wit, and J.W. Grizzle. Rabbit: a testbed for advanced
control theory. IEEE Control Systems Magazine, 23(5):57–79, 2003.

[2] C. Chevallereau, A. Formal’sky, and D. Djoudi. Tracking a joint path
for the walk of an underactuated biped. Robotica, 22(Part 1):15–28,
2004.

[3] M. Doi, Y. Hasegawa, and T. Fukuda. Passive dynamic autonomous
control of bipedal walking. Proceedings of the IEEE-RAS/RSJ Inter-
national Conference on Humanoid Robots, 2004.

[4] E.R. Dunn and R.D. Howe. Towards smooth bipedal walking.
Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2489–2494, 1994.

[5] J.W. Grizzle, E.R. Westervelt, and C. Canudas-De-Wit. Event-based
pi control of an underactuated biped walker. 42nd IEEE International
Conference on Decision and Control, pages 3091–3096, 2003.

[6] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The
3d linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 239–246, 2001.

[7] S. Kajita and K. Tani. Experimental study of biped dynamic walking.
IEEE Control Systems Magazine, 16(1):13–19, 1996.

[8] S. Kajita, K. Tani, and A. Kobayashi. Dynamic walk control of a
biped robot along the potential energy conserving orbit. Proceedings
of the IEEE International Workshop on Intelligent Robots and Systems,
pages 789–794, 1990.

[9] J. Pratt. Exploiting Inherent Robustness and Natural Dynamics in the
Control of Bipedal Walking Robots. PhD thesis, May 2000.

[10] J. Pratt, Chew Chee-Meng, A. Torres, P. Dilworth, and G. Pratt.
Virtual model control: an intuitive approach for bipedal locomotion.
International Journal of Robotics Research, 20(2):129–143, 2001.

[11] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami.
Capture point: A step toward humanoid push recovery. Proceedings
of the IEEE-RAS/RSJ International Conference on Humanoid Robots,
2006.

FrE3.2

4660


