
 
 

 

  

Abstract—In this paper we present a novel interactive method 
and interface techniques for controlling the behavior of 
physically-based simulation of deformable objects. The goal of 
our research is to provide users an ability to control the motion 
which appears physically correct, preserves the moving pattern 
of the original motion, and satisfies goals for a deformable 
object. In our approach, a user can select any part of the 
deformable structure, called control points, and can define 
target poses by moving control points. A user also can define 
target poses then our system automatically generates the motion 
path to achieve the target pose. With this technique patient 
specific organ simulation can be achieved by using a stream of 
image data. A series of sectional images can be the target poses. 
The optimal path generator computes the required control 
parameters that steer the intended node to the desired goal 
position while preserving the moving pattern of the original 
motion. It guarantees that the edited motion is physically 
conforming and natural. 

I. INTRODUCTION 
Physically-based simulation techniques have been 

widely used in dynamic simulation of robots. While most of 
existing dynamic simulation of robots has focused on either 
rigid bodies or articulated structures, deformable object 
simulation is becoming increasingly important in industrial 
and surgical applications [1, 8, 28]. One way to approximate 
flexibility is to approximate the robot as an articulated robot, 
a linkage of rigid bodies. While this representation is 
sufficient for some situations, a more flexible representation 
is needed for situations that require robots to have larger 
deformations. Ability to control the behavior of deformable 
objects is a very important feature since it can provide a 
framework where we can try many “what if” questions and 
users can steer the simulation based on the intended target 
poses.  

However, the direct and precise control of the behavior 
and trajectories of objects is difficult because it is based on a 
passive simulation model where the initial parameters and 
external forces are set upfront to compute the future motion. 
Motion of deformable objects is mostly generated using 
passive dynamic simulation because manually generating 
natural-looking deformation is extremely difficulty and time 
consuming. On the other hand, it is also difficult to control the 
trajectory and the final resting location of a simulated 
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deformation object. Under the current passive dynamic 
simulation paradigm, a small adjustment of the initial 
parameters can drastically affect the subsequent motion and 
result in different behaviors in the end. 

Another important cause of the difficulties in predicting 
and controlling the behavior of a deformable structure is that 
the widely used physical modeling techniques involve too 
much approximation and simplification to enhance the 
efficiency and programmability. The outcome of a simulation, 
using both the mass spring model and the finite element 
method (FEM), is heavily dependent to the combination of an 
element structure, the topology of connectivity, the 
granularity of elements, and coefficients that define the 
mechanical properties of the target deformable objects. If the 
granularity of the element structure is fine enough and all 
involved physical phenomena are precisely modeled, more 
realistic simulation can be achieved, but still it is insufficient 
to guarantee an exactly matched motion. Therefore, due to the 
limitation of the simplified modeling methods, certain 
behavior is somewhat unobtainable unless with a long, 
tedious trials and errors of parameter tweaking. As long as we 
use approximated models like mass-spring or FEM, localized 
motion editing is inevitable to get the exactly intended 
behavior and therefore an intuitive, interactive controllable 
simulation is important and desirable. 

Controlling the dynamic behavior to a user’s liking is 
very challenging since it requires sophisticated algorithms 
that steer the simulation by managing space and time 
dependent control forces over the neighboring structures on 
the fly. The thrust of this work is to automatically generate a 
set of appropriate control forces from user interaction 
metaphors. We adopt the two-phase simulation model: a pilot 
first-phase simulation with tentative coefficients is conducted 
and let the user edit the behavior of target nodes directly so 
that a desired behavior can be achieved in the second-phase 
simulation with added control parameters. Instead of 
repeating the initial parameter tweaking, we propose to use a 
set of time-encoded localized control parameters to steer the 
simulation. The proposed path generation algorithm 
automatically computes the motion paths and the required 
control parameters for the designated node and surrounding 
affected nodes, so that the goals can be satisfied in the second 
phase.  

An attractive feature of our system is that the user is able 
to directly edit the motion at any time without adjusting the 
underlying physical parameters. The effect of control and 
behavioral changes are localized to the intended time and 
space without altering the material properties or fundamental 
conditions of the simulation. The proposed method generates 
a path for the deformable object by applying control forces to 
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the deformable object until it reaches a configuration near the 
goal configuration. The main contribution of our locally 
optimal method is the substantial performance improvement 
and ease of implementation for the path generation by 
removing the expensive gradient computation of 
conventional optimal methods. Typically the gradient 
computation has been the bottleneck for computing control 
parameters because each parameter required its own 
derivative computation at every time step. 

II. RELATED WORK 
Motion sketching and relevant interactive technique for 

controlling and manipulating rigid body simulation are 
introduced in [25, 26]. To achieve a desired motion, they 
changed initial physical parameters (position, velocity, etc.), 
so the result of editing affects the simulation globally due to 
the tweaked fundamental parameters for the entire simulation. 
This method works well for rigid bodies but it is difficult to 
apply the same technique to deformable objects because of 
the large number of degrees of freedom and associated 
computational complexity in a deformable object. Motion 
synthesis techniques that generate motions by cutting and 
pasting motion capture data [2, 3], parameterization of 
motions [19] and path-based editing of existing motion data 
[15] were successfully applied to human motion synthesis. 
Similarly an inverse kinematics system, based on a learned 
model of human poses, was introduced in [16] but it is also 
limited to articulated figures like human body. James et al. 
[17] used pre-computation based data driven tabulation of 
state space for quick computation of shape and appearance of 
deformable objects. Their method permits real-time hardware 
synthesis of nonlinear deformation and real-time user 
interaction. But the pre-computing process to encompass 
possible future motions requires a heavy computation and it 
only covers a small portion of frequently animated modes. 
Constrained dynamic schemes have been widely studied in 
robotics and computer graphics for motion control. Putting a 
proper set of geometric constraints over a dynamic system is 
often used to control the behaviors of dynamic system [4, 5, 9, 
14, 22]. Constraint-based methods work well for enforcing 
geometric constraints but it is very difficult to generate 
particular motions since the desired motion is in a higher 
abstract form and it should be parameterized with a set of 
proper constraints. Realistic simulation and motion control of 
smoke and water has drawn a lot of attention from the special 
effects industry. These phenomena require high-level control 
mechanisms for physics-based fluid simulations; for example, 
keyframe fluid simulation [21, 27], target-driven simulation 
[11], and level-set method [10, 12, 20, 23]. While these 
studies were successful in achieving the desired configuration 
of fluid, still the generation of optimal paths to form the 
configuration and an interactive editing in the middle of a 
simulation remain a significant challenge. 

III. MOTION CONTROL 
In most motion control task, the first problem is to reach 

the desired position. To meet the goal, the control vector u = 

[u0 u1 … uN-1] that guarantees meeting the goal positions 
within a finite time frames must be calculated. There are N 
unknown control forces but we only have one given condition 
(The final position, qN, is equal to the desired position, #

Nq ). It 
is not enough condition to solve the problem and infinite 
number of solutions are possible so additional conditions are 
required. We create the cost function J which measures 
required energy and evaluates the goal satisfaction criteria.  In 
addition the time range N over which the control forces are 
engaged should be defined. In our simulation, the first 
simulation (the original motion) is run with tentative 
coefficients then a user can select the motion at any time and 
edit the motion by moving selected nodes (control points). 
The target poses also can be predefined or patient specific 
sectional images. The target motions can be achieved in the 
second simulation with added control forces. Another 
condition is that the new path should preserve the moving 
pattern of the original motion. If the objective is to minimize 
the energy only, then it may violate the moving pattern of the 
original motion. It may generate a jerky motion with sharp 
turns which cause discontinuity and uneven velocity 
distribution, resulting unnatural motion. 

A. The Deformable Model and Numerical Integration 
Mass-spring, FEM and point-based systems are among 

the most commonly used strategies for building deformable 
objects. Mass-spring systems that we have chosen to work 
with are one of the most common forms for modeling 
deformable objects due to its simplicity and efficiency. The 
basic concept of mass-spring system is the deformable object 
is discritized into set of mass points which are connected by 
springs and dampers. Structural springs are connected in a 
rectangular format and shear springs are connected in 
diagonal direction. Primary and secondary bending spring 
structures are similar to [7]. 

For each mass point, the governing equation is written as 
mi i ij i

j
q g f+ =∑                                (1) 

Here m is mass of a point node, q  is position of a node, q  is 
acceleration of a node, g is spring and damping force between 
springs and f is net forces. Equation (1) expresses Newton’s 
second law of motion for discrete masses. The spring force g 
is calculated by 

( )k r k Δ Δ Δ
Δ

Δ Δsij d

v q qg q
q q

⎡ ⎤⎛ ⎞⋅
⎢ ⎥= − − + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

              (2) 

where ks is spring stiffness constant, kd is damping coefficient, 
Δ i jq q q= − , and Δ i jv v v= −  (v is velocity of a node). We 
use a second order implicit integration as our numerical 
integration scheme as described in [7] and shown as 
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                  (3) 

where h is time step and F is the force vector. The nonlinear 
term Fn+1 by using a first order Taylor series approximation is 
replaced with 
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where ∂
∂
F
q

 and ∂
∂
F
v

 are the Jacobian matrices of the particle 

forces with respect to position and velocity. By combining 
equation (3) and (4), we can obtain a linear system. If we 
rearrange the linear system, the equation becomes, 
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The second order implicit method is more stable and large 
time step can be used in our simulation. 

B. Control Parameters 
We define a control vector, u, which encodes all the 

external influences the system has over simulation. The 
physical system equation of movement of discrete masses 
with external control forces is 

Mq F u= +                                     (6) 
where F are applied, gravitational, damping, and spring 
forces acting on the discrete masses. With the Euler method, 
the equation of motion (equation (6)) along with the 
kinematic relationship between q and q is discretized as 

1 1
n n nn+1

nn+1 n+1

+   (7)
(8)

q q tM F tM u                          
q q tq                                                 

− −= + Δ Δ

= + Δ
 

Substituting n+1q from equation (7) into equation (8) we 
obtain 

1 1
n n n nn+1 +q q tq t tM F tM u− −⎡ ⎤= + Δ + Δ Δ Δ⎣ ⎦                (9) 

{ }2 1
n n n nn+1u M q q tq t M F t−⎡ ⎤= − + Δ + Δ Δ⎣ ⎦             (10) 

Our system tries to generate the new motion path q* using the 
locally optimal method, computed by the control forces 
described in equation (10). These control forces should 
guarantee the preservation of original motion pattern and 
meeting the goal poses. 

C. Motion Path Generation using the Locally Optimal 
Control 

The formulation of an optimal control problem requires a 
mathematical model of the process to be controlled, a 
statement of the physical constraints, and specification of a 
performance criterion [6, 18]. Equation (6) is our 
mathematical model. The next step is to define the physical 
constraints on the state and control values but the time range 
N which a user wants to control must be defined in advance. 
A user selects one node which a user wants to move at current 
time Tc and simply drag it to a desired location #

Nq . We set a 
time range to be directly proportional to the length of change 
between the current position Nq  and the desired position #

Nq  
(See Figure 1). 

N α #
N Nq q= −                                (11) 

where α  is a scale factor. The physical constraints are that 
the final state of  a system, N

*q , must be in a specified regions 
D called target set and the control forces must be less than and 
equal to the maximum control force Fmax. When the control 
forces are included in the system to influence the simulation, 
there should be criteria to measure how well the user’s 
desired path is met. The cost function J measures how closely 
the affected node reaches the desired position and also 
penalizes the system for using too much control forces. These 
physical conditions and the cost function can be written as: 

1 2 2

1
0

max

1
2

subject to : and  for 0F i N

β γ
N

# *
N i i

i

# *
N N i     

                    J q q u

 q q D  u

−

+
=

⎡ ⎤= − +⎢ ⎥⎣ ⎦

− ⊆ ≤ ≤ <

∑   (12) 

where 0β ≥  and 0γ ≥  are weighting factors. Large γ  puts 
more emphasis on the amount of control force while 
β concerns about the goal satisfaction. The optimal control 
problem is to find an admissible control force u which causes 
the system to follow an admissible trajectory *q . 

Conventional methods to find the control vector that 
minimizes the cost function typically use the Riccati equation 
[24] or a set of Lagrange multipliers [13]. Since those 
methods are gradient based, we must not only evaluate J , but 
also compute its gradient dJ/du.  This gradient computation 
for deformable structure is very costly, as the matrix dJ/du 
consists of an entire state sequence for each control. A major 
drawback of these gradient based methods is the computation 
of a large linear system given that inverting a general n x n 
matrix is O(n3). Deformable structure typically involves 
thousands of nodes so the Jacobian matrix of them can be 
very large. We cast the problem to a combinatorial discrete 
optimization to avoid the expensive computation. Instead of 
solving the problem with the conventional nonlinear 
optimization method, our algorithm tries to find local radial 
vectors only for the new control force direction that can 
improve the cost function at every iteration step 
independently. This multistage decision process to get a 
locally optimal path is shown in Figure 2. Let us denote the 
scalar ratio L between the length of original path and the 
length of desired path;  

0

0 N

L δ
-
-

#
Nq q

q q
=                                   (13) 

 
Fig. 1. This figure shows how to set the time range N. We set a time 
range to be directly proportional to the length (blue line) of change 
between the current position and the desired position. 

0q

N

#
Nq

Nq

ThC6.3

2584



 
 

 

where δ  is a scale factor. Also we define the radius vectors 
Ri; 

+1L -i i iR q q⎡ ⎤= ⎣ ⎦      for  0 i N≤ <                 (14) 
Then the algorithm initially sets a seek angle range θ  and 
searches for a condition that reduces the cost function by 
altering the search angle at a discrete interval, from θ−  to θ . 
q + 1i ,θ  is the new point after the rotation Ri for θ  degrees 
centered at qi

*. 
+1 Rot( )*

i , i iq q Rθ θ+ ⋅                          (15) 
where Rot( )θ  is a rotation matrix. Control forces u i ,θ  for 
every point q 1i + ,θ  on the circle with the radius Ri can be 
calculated by equation (10) for 0 i N≤ < . 

{ }* * 2 1
+1,i , i i i iu M q q tq t M F tθ θ

−⎡ ⎤= − + Δ + Δ Δ⎣ ⎦        (16) 

By repeating this process until the seek angle reaches the 
predefined boundary, locally optimal control forces u to 
minimize the cost function can be found and the motion path 
q* can be generated. In our method, the computation of a 
large linear system is eliminated. The computation of our 
method mostly depends on the number of discretized seek 
angles. 

2 2

+1, ,( ) #
ni , i i

1min J min q q u
2θ θ θβ γ⎛ ⎞⎡ ⎤= − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

       (17) 

The solutions of equation (17) are our newly obtained 
motion path q*. If the final state q* does not reach to the target 
region D, δ must be further adjusted to reach to D. Another 
goal that must be satisfied concurrently is to generate the path 
that reaches the desired position while preserving the moving 
pattern of the current motion. Finding the locally optimal 
control force, obtained in the radial vector form within the 
seek circle, is particularly convenient for preserving the 
moving pattern of the original motion since the arc length of 
new step is proportional to the step length of the original 
motion. Since the moving pattern of a motion is mostly 
dictated by the magnitude and direction of each step, radial 
vectors with proportionally scaled arc lengths, combined with 
minimally deviated seek angles, can help to conserve the 
moving pattern of the original motion in more straightforward 
manner. 

IV. MULTIPLE PATHS CONTROL AND SPATIAL DISTRIBUTION 
OF CONTROL FORCES 

A deformable object involves many particles and in order 
to control the behavior of the object, all affected particles 
need to be handled at the same time. Controlling multiple 
individual particles may incur conflicting control forces, or 
they may affect each other in unexpected ways since they are 
all connected in the mesh structure. To address the conflicting 
control forces issue we use a time-stamped sequential control 
force application for the overlapped control range of multiple 
paths control. For instance, when there are two particles’ 
paths to be edited, the time range of the optimal path 
generation is redefined to deal with the possible interplay. 
Let’s assume the time range of the first particle A is [t1, t2] and 
[t3, t4] for the particle B. If t3 is earlier than t1 the particle B’s 

newly edited behavior will affect the particle A’s force 
computation at time t3. To avoid this conflict, t1 is redefined to 
t3 so that the two particles’ mutual influences can be 
considered in the optimal paths generation. Figure 3 shows 
two optimally generated paths with overlapped time range. 

The examples in Figure 3 and figure 4 use a mesh with 400 
nodes to illustrate a node based control. It is the screen 
capture of a live simulation of free falling soft thin shells. In 
those examples, a user can select any part of the deformable 
structure, move it to the desired position, and the system 
generates the path using our algorithm. Generated control 
forces are only applied to the selected node. The selected 
node and neighbor nodes are connected by springs. Neighbor 
nodes just follow the selected node. These generate very 
sharp final pose (figure4, left). To eliminate this problem we 
spatially distribute control forces to the neighbor nodes. 
Figure 4 shows the result of distributing control force to the 
neighbor nodes. 

 
Fig. 3. This figure shows that the multiple goals are simultaneously 
satisfied and it displays two optimally generated paths. Green lines 
are original motion path and red lines are generated paths. 

Fig. 4. This figure shows spatial distribution of control forces. Left: 
the control forces are applied to the selected node. Right: The 
control forces are spatially distributed to neighbor nodes 
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Fig. 2. This figure shows the optimal path generation process 
using the multistage decision process. The red circle is the region 
to find the locally minimum optimal position. Ri is the radius 
vector that determines the direction of control force. Green line is 
the newly generated locally optimal trajectory. 
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V. EXPERIMENTAL RESULTS 
We have performed skirt simulation with human walking 

motion in Figure 5. The example in Figure 5 uses a skirt with 
1980 nodes to illustrate overall procedures of motion control. 
In this example, a user can select control points (green points 
in Figure 5 (b)) to be controlled and predefined curling 
motion that becomes the target pose (blue line in Figure 5 (b)), 
then out system generates the target motion using our 
algorithm (Figure 5 (c)). We also have applied the proposed 
controllable simulation to a patient specific heart model based 
on a generic heart motion. The human heart model has 3372 
nodes. Figure 6 (a) shows a snapshot of a generic heart 
motion, (b) shows a patient specific sectional image and (c) 
shows a modified motion when a part of the heart was guided 
by patient specific geometric changes. It is a dynamic data 
driven simulation of patient specific organ simulation where 
the control terms are automatically extracted from a patient 
sectional image. This sectional image is a guided control 
input. We have another example of human heart simulation. 
In Figure 7, a user can select any node of the heart model to be 
controlled and define the target pose by moving control 
points (Figure 7 (b)). The final controlled motion is shown in 
Figure 7 (c). Those all examples are the screen capture of a 
live simulation.  

Even if the motion can be generated automatically, the 
process involves several user-defined coefficients such as β  
for the evaluation of the goal satisfaction, and γ for the 

admissible amount of control force. β  and γ  are dependent 
on the magnitude of distance error and control force. If γ  is 
too large, that signifies small control forces applied to the 
system, the final position may not reach to the desired 
position. If β  exceeds a threshold, the generated path tends 
to be the shortest path, and the route could be unnaturally 
straight. To avoid this, we limit the seek angle θ  within 
minimal range at initial steps and gradually increase the range. 
Since appropriate coefficients are problem dependent, they 
can be adjusted by the system designer to reflect the intended 
motion. 

VI. CONCLUSION AND DISCUSSION 
This paper reports a locally optimal method to control the 

behavior of physically-based simulation of deformable 
objects. We have shown that the motion path and the required 
control parameters can be automatically generated and the 
new simulation in the second phase satisfies all user defined 
goals by the control parameters. In our simulation, the target 
poses can be defined by selecting and moving control points. 
In addition, a user can predefine target poses such as a curl 
motion. A series of sectional images can be the target poses so 
that patient specific simulation can be achieved. The optimal 
path generator computes the required control parameters that 
steer the intended node to the desired goal position. It helps us 
in preserving the moving pattern of the original simulation in 
more straightforward manner. 

 
                                        (a)                                                                         (b)                                                                         (c) 
Fig. 5. These series of figures show how to control the behavior of a skirt simulation with human walking motion. The target pose (blue line in (b)) is 
predefined. (a) is a snapshot of the original motion. In figure (b), the red dots are nodes of the skirt model, green dots are control points which are selected 
by a user and the blue line is the predefined curl pose which is the target pose. (c) shows the final controlled motion generated by our system. 

 
           (a)                                                                   (b)                                                                  (c) 

Fig. 6. These figures show a patient specific heart simulation. (a) shows a snapshot of a generic heart motion. (b) shows a patient specific sectional image. 
(c) shows a modified motion when a part of the heart was guided by patient specific geometric changes. 
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In the future, to optimize the search space and to 
accommodate the physical conditions of unreachable regions, 
new algorithms to detect the safe regions (physically possible 
regions) and a new scheme to incorporate this condition in the 
heuristic optimal path search needs to be further investigated. 
More studies on user interface to inform the user about the 
unreachable regions or accumulated collisions along the path 
is needed. If the desired motion is very complex or has large 
geometric changes, complex collision problems may be 
occurred. Collision detection for deformable objects is 
particularly difficult since the size and shape of the objects 
are continuously changing. We need to study how to handle 
those collision problems efficiently. 
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  (a)                                                                            (b)                                                                          (c) 

Fig. 7. Those figure show controllable simulation of a human heart motion. (a) shows a snapshot of a generic heart motion. In figure (b), the blue lines are 
the structure springs of human heart model and green dots are control points that are selected by a user. (b) shows the target pose which is defined by a user 
moving the control points. (c) shows the final controlled motion. 
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