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Abstract— This paper presents an indoor human localiza-
tion system for the visually impaired. A prototype portable
device has been implemented, consisting of a pedometer and
a standard white cane, on which a laser range finder and a
3-axis gyroscope have been mounted. A novel pose estimation
algorithm has been developed for robustly estimating the head-
ing and position of a person navigating in a known building.
The basis of our estimation scheme is a two-layered Extended
Kalman Filter (EKF) for attitude and position estimation. The
first layer maintains an attitude estimate of the white cane,
which is subsequently provided to the second layer where a
position estimate of the user is generated. Experimental results
are presented that demonstrate the reliability of the proposed
method for accurate, real-time human localization.

I. INTRODUCTION

Mobility is an essential capability for any person who
wishes to have an independent life-style. It requires suc-
cessful execution of several tasks including path planning,
navigation, and obstacle avoidance, all of which necessitate
accurate assessment of the surrounding environment. For a
visually impaired person these tasks may be exceedingly
difficult to accomplish, and there are high risks associ-
ated with failure in any of these. Seeing-eye dogs and
white canes are widely used for the purpose of guidance
and environment sensing. The former, however, has costly
and often prohibitive training requirements, while the latter
can only provide cues about ones immediate surroundings.
Human performance on information-dependant tasks, can
be improved by sensing which provides information (e.g.,
position, orientation, or local geometry) and environmental
cues via the use of appropriate sensors and sensor fusion
algorithms. This paper presents a novel indoor localization
method for the visually impaired which has the potential
for prodigious humanitarian impact. With the use of this
localization aid, guidance and navigation algorithms can
be implemented which will greatly increase the safety and
overall mobility of its user.

When designing a suitable sensor package for use in a
human localization application, the sensor placement must
be carefully considered. Body-mounted sensor packages have
been presented, which require the user to wear an electronic
vest or belt fitted with sensing devises [1], [2]. Although
mounting a sensor directly on the body simplifies the
interpretation of the sensor data (i.e., the transformation
from body to sensor is constant and known), it introduces
complications when considering the variations in body types
between users. Significant sensor calibration and harness
adjustment may be required in order to use such a system.
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Additionally, a body-mounted sensor package will likely
interfere with common tasks (e.g., sitting in a chair), and may
prevent certain articles of clothing from being comfortably
worn (e.g., a jacket). In contrast to this approach, we propose
using a sensor package mounted on a white cane (cf. Fig. 3).
The main advantages of utilizing a white cane as a sensor
platform are: (i) the sensor package is unobtrusive to the user,
(ii) there is no need to calibrate the system for specific body
types, and (iii) the user maintains the ability to physically
touch the environment with the white cane.

After considering the proposed sensor placement, one
can appreciate the stark difference between indoor human
localization, and traditional formulations of mobile (wheeled)
robot localization. When constructing an estimator for the
pose of a mobile robot, accurate linear and rotational velocity
measurements are available from its wheel encoders. In the
case of a blind person carrying a white cane, the sensors
providing these measurements are not rigidly connected,
which makes the task of combining information from them
significantly more challenging. Specifically, a pair of sensors
(a laser scanner and a 3-axis gyroscope) mounted under the
white cane handle provide attitude information about the
cane, and a lightweight, foot-mounted pedometer measures
the user’s walking speed. Ideally, information from these
three sources should be fused in a single pose estimator. All
the sensors, however, move in 3-D and the coordinate trans-
formation from the pedometer to the laser/gyro is unknown
and time varying.

In order to address this problem, we have designed and
implemented a two-layered (2.5-D) estimator. In the first
stage, rotational velocity measurements from the 3-axis gy-
roscope are combined with relative attitude measurements
inferred from the laser scan data to estimate the 3-D attitude
of the cane. The second stage incorporates corner features
extracted from the laser data, linear velocity measurements
from the pedometer, and a filtered version of the cane’s yaw
to compute 2-D position estimates of the user.1 By exploiting
a priori information about the location of environmental
features (corners), and considering that many of the primary
structural planes (floor, ceiling, walls) of a building lie
perpendicular to each other, the described method generates
a reliable localization estimate of a person traveling indoors.

Section II of this paper reviews the relevant literature on
obstacle avoidance, navigation, and localization systems for
the visually impaired. The problem of estimating the 3-D
attitude of the white cane is discussed in Section III-A.
Section III-B details the use of a low-pass filter to extract the
heading of the user from the attitude estimate of the cane.

1It is important to note that while the laser data are utilized in both stages
of the filter, statistical correlations in the estimates are avoided by using the
even-indexed data points in the first stage, and the odd-indexed data points
in the second stage.
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The 2-D position filter for estimating the user’s location is
presented in Section III-C. A description of the hardware
utilized is given in Section IV-A. Experimental results of the
method presented here are provided in Section IV-B. Finally,
the conclusions and future work are discussed in Section V.

II. RELATED WORK

Recent work has focused on developing hazard detection
aids for the visually impaired [3]. These employ sensors for
obstacle avoidance such as laser pointers [4], and sonars on
a wheelchair [5], on a robot connected at the tip of a white
cane [6], [7], or as part of a travel aid [1], [2]. Cameras
have also been suggested [8], [9] for object description (in
terms of color and size) in addition to obstacle detection.
While these devices augment the cognitive abilities of a
blind person and reduce the probability of an accident due
to an undetected obstacle, they cannot be explicitly used
as a wayfinding aid without the development of appropriate
algorithms for localization and mapping.

Significant research work (e.g., [10], [11]) has concen-
trated on mobile robot navigation. However, there are only
few attempts to apply this knowledge to assist visually
impaired people in their everyday navigation tasks. Instead
most relevant efforts have focused primarily on GPS-based
outdoor navigation (e.g., [12], [13], [14], [2]) which cannot
be used inside a building. An approach to indoor wayfinding
for the visually impaired is presented in [15], [16], [17]. In
this case, an autonomous robot attached at the end of a leash,
as a substitute for a guide dog, localizes using information
from a network of Radio Frequency Identification (RFID)
tags. One of the main limitations of this approach is that
mobility is restricted to places that a mobile robot can reach.
This rules out areas where stairs or steps are part of the
spatial layout, and tight spaces such as inside an office
or crowded rooms. Additionally, the weight and volume of
the robot, negatively affects its portability by a commuter.
Furthermore, it requires instrumentation of buildings with
RFIDs which is costly and time consuming; this is also the
case for similar ultrasound [2] and Infra Red (IR) [18] based
systems. In contrast, we are interested in designing a white
cane-mounted sensor system to aid visually impaired people
for indoor navigation. This is more challenging due to the
variations in body geometry (e.g., height and stride) and
motion patterns across different people. Additional difficul-
ties arise when dealing with cane-based sensor systems due
to the unknown and time-varying coordinate transformation
between the sensors and the user. However, the white cane is
an ideal platform for indoor human localization for several
reasons: (i) it is a trusted tool, already in use by the target
demographic, (ii) it is lightweight, portable, and unobtrusive
to the user, and (iii) a cane-based localization system requires
no building instrumentation.

III. METHOD DESCRIPTION

The algorithm described in this work consists of three
main components. First, the attitude of the white cane is
estimated using a 3-axis gyroscope, and laser-scan mea-
surements of structural planes in the building. Second, the
heading direction of the person is extracted from the yaw

component of the white cane’s attitude estimate with the
use of a low-pass filter. The purpose of this step is to
provide a heading measurement to the second stage of the
filter. Lastly, the position of the person is estimated using
the heading estimates from the low-pass filter, the linear
velocity measurements from the pedometer, and the relative
coordinates of known corner features detected by the laser
scanner.

A. Attitude Estimation of the White Cane

In this work, attitude is represented using the quaternion
of rotation:

q = S
Gq =

[
k̂ sin θ

2 cos θ2
]T

(1)

where {S} and {G} denote the gyroscope and global frames
of reference, k̂ is the axis of rotation, and θ signifies its
magnitude. This representation of attitude is ideal because
it is compact and singularity-free. For clarity, the notation
employed in this paper results in “natural order” quaternion
multiplication. As such, the symbol ⊗ denotes multiplication
fulfilling L1

L3
q = L1

L2
q ⊗ L2

L3
q, which is the attitude rotation

between successive frames [19].
Attitude estimation is accomplished through the use of

an EKF which fuses measurements from proprioceptive and
exteroceptive sensing devices. Rotational velocity measure-
ments from a 3-axis gyroscope are integrated to propagate
the attitude estimate, and straight lines extracted from the
laser-scan data are used to update the computed estimate.

1) Attitude Propagation: The state vector xk consists of
the quaternion q and the gyroscope bias b. The error state
x̃k is comprised of the attitude angle-error vector δθ and the
gyroscope bias error b̃ = b − b̂, i.e.,

xk =
[
q
b

]
, x̃k =

[
δθ

b̃

]
It is interesting to note that while the state vector xk is 7×1,
the error state x̃k is 6×1. Many EKF formulations maintain
equal sized state and error state vectors. The quaternion of
rotation, however, is defined to have unit length which causes
the corresponding covariance matrix to lose rank. To account
for this, the attitude angle-error vector δθ is used in the error
state defined from the following relation:

δq =q ⊗ q̂−1 � [
1
2δθ

T 1
]T

(2)

The error quaternion δq denotes a small rotational error
between the true, q, and the estimated, q̂, attitude of the
cane.

a) Continuous-time model: The state model for the
quaternion representation of attitude is governed by the
quaternion time derivative (3), which is computed in terms
of the instantaneous rotational velocity ω.

q̇ (t) =
1
2
Ω (ω)q (t) (3)

where

Ω (ω) =
[−�ω×� ω

−ω 0

]
, �ω×� =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


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The gyroscope measures the rotational velocity of the cane
expressed with respect to the local (cane-affixed) frame of
reference. These measurements are corrupted by sensor bias
b, as well as measurement noise nr:

ωm = ω + b + nr (4)

where the turn-rate noise nr is distributed as zero-mean white
Gaussian process with covariance σ2

rI3×3. The sensor bias
b is modeled as a random walk with

ḃ =nw (5)

where nw is also distributed as zero-mean white Gaussian
noise process with covariance σ2

wI3×3.
The continuous-time error-state propagation is described

by the following equation [20]:[
˙δθ
˙̃b

]
=

[−�ω̂×� −I3×3

03×3 03×3

] [
δθ

b̃

]
+

[−I3×3 03×3

03×3 I3×3

] [
nr
nw

]
˙̃x =Fc · x̃ + Gc · n (6)

where Fc is the continuous-time system matrix, Gc is the
input noise matrix, and 0m×n and Im×n are the m×n zero,
and identity matrices, respectively.

b) Discrete-time implementation: During each propa-
gation step, the bias estimate is considered constant (cf. (5))

b̂k+1|k = b̂k|k (7)

and the quaternion estimate is propagated by integrating (3):

q̂k+1|k =

 ω̂k|k
||ω̂k|k|| sin

( ||ω̂k|k||
2 δt

)
cos

( ||ω̂k|k||
2 δt

)
 ⊗ q̂k|k (8)

where ||ω̂k|k|| =
√

ω̂T
k|kω̂k|k and ω̂k|k = ωm(tk) − b̂k|k.

Finally, the error-state covariance matrix is propagated as:

Pk+1|k =ΦkPk|kΦT
k + Qdk

(9)

where

Φk = Φ(tk+1, tk) = e
∫ tk+1

tk
Fc(τ)dτ

and

Qdk
=

∫ tk+1

tk

Φ(tk+1, τ)Gc(τ)QcGT
c (τ)ΦT(tk+1, τ) dτ

with Qc =
[
σ2
rI3×3 03×3

03×3 σ2
wI3×3

]
.

2) Attitude Update: Even-indexed laser scan data points
from a laser range finder are employed to measure the
relative orientation between the sensor frame of reference
{S} and the global frame {G}. Specifically, the laser sensing
plane intersects the planar surfaces inside a building (e.g.,
walls, floor, ceiling) along straight lines which can be reliably
detected and extracted from the laser data. The direction of
each of the extracted lines is processed as a measurement
for updating the attitude estimates.

Inside a building, frame {G} can be assigned such that its
principal axes {e1, e2, e3} are perpendicular to the promi-
nent structural planes of the building (i.e., e1 ⊥ Wallx,

e2 ⊥ Wally , and e3 ⊥ Floor, Ceiling). Measurements
to these planes are denoted by their corresponding unit-
vectors (e.g., an x-measurement is a measured line which
is perpendicular to e1). Let ei ∈ {e1, e2, e3} be one of the
three unit vectors of frame {G}, and let G� denote the (unit
vector) direction of the line of intersection between the laser-
scan plane and the measured plane expressed with respect
to {G}. From the geometric constraint, their inner product
should be zero

eT
i
G� = 0, i = 1, 2, or 3 (10)

The inferred measurement equation is derived by rewrit-
ing this constraint using the transformation relation G� =
CT (q) S�:

z = eT
i C

T (q) S� = 0 (11)

where the rotation matrix CT (q) projects vectors expressed
with respect to frame {S} to frame {G}. Note that since
S� is the unit vector direction of a line on the x-y plane
of the laser sensor frame, it can be written as S� =[
sinφ − cosφ 0

]T
where φ is the complimentary angle

to the line direction.

The estimated measurement equation is

ẑ = eT
i C

T (q̂) S�m (12)

where S�m = S� − S �̃ denotes the measured line direction
and S �̃ = �e3 ×�S�mφ̃ is the error in this measurement.
Note that the line direction error φ̃ ∼ N (0, σ2

φ) accounts for
measurement noise as well as inaccuracies in line fitting.

Employing (11) and (12), the measurement error is:

z̃ � [−eT
i C

T (q̂) �S�m×� 01×3

] [
δθ

b̃

]
+ n

=hTx̃ + n (13)

where n = eT
i C

T (q̂) �e3 ×�S�mφ̃.

Updating the state estimates requires to compute the
residual

r = z − eT
i C

T (q̂) S�m = −eT
i C

T (q̂) S�m (14)

and the Kalman gain:

k =Pk+1|kh
(
hTPk+1|kh +R

)−1
(15)

where R = E{n2} =
(
eT
i C

T (q̂) �e3 ×�S�m
)2
σ2
φ.

The error-state estimate is given by the following expres-
sion

x̂(+) =

[
δθ̂(+)
b̂(+)

]
= kr (16)

From δθ̂(+) the error quaternion estimate is computed as

δq̂ =
1√

1 + 1
4δθ̂(+)Tδθ̂(+)

·
[

1
2δθ̂(+)

1

]
(17)

The quaternion and the bias estimates are updated as

q̂k+1|k+1 = δq̂ ⊗ q̂k+1|k (18)
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b̂k+1|k+1 = b̂k+1|k + b̂(+) (19)

The last step in this process is the covariance update:

Pk+1|k+1 = (I − khT)Pk+1|k(I − khT)T + kRkT (20)

3) Attitude Observability: Due to physical limitations of
planar laser scanning, it is impossible to resolve all three
degrees of rotational freedom from a stationary vantage
point. The attitude of the cane, however, is stochastically
observable when the cane is in motion [21]. In what follows,
we prove that the observability requirements are satisfied
when the laser sensor detects all three main directions in
space, at different time steps, over a given time interval.

Since observability of the attitude entails observability
of the bias, we focus on a simplified measurement model
with only the quaternion as state variable, and measurement
matrix

hTi (tk) = −eT
i C

T (q(tk)) �S�i(tk)×� (21)

In order to establish stochastic observability of the attitude,
it suffices to show that the observability Gramian

M =
N∑
k=1

∑
i

ΦT(tk, 0)hi(tk)hT
i (tk)Φ(tk, 0) (22)

is of full rank for some finite N [21].
Noting that in this case the state transition matrix

Φ(tk, 0) = C(q(tk)), the observability Gramian can be
written as the sum of the following vector outer products:

M =
N∑
k=1

∑
i

Ghi(tk)GhT
i (tk)

with Ghi(tk) = G�i(tk) × ei. If over a period of time the
sensor observes surfaces with normals ei that span R

3, and
recalling that G�T

i ei = 0 (cf. (10)), then the vectors Ghi also
span the 3D-space, ensuring M to be of full rank.

Fig. 1 depicts the trace of the attitude covariance matrix
with respect to time. During this experiment, the white cane
was initially stationary for 10sec for the purpose of gyro-
scope bias initialization. As evident from the experimental
results, the trace of the attitude covariance becomes bounded
(as expected since the system is observable) once the cane
is in motion.

B. Heading Estimation of the Person

During regular operation, the yaw angle of the cane will
be an asymmetric cyclostationary random process in which
the amplitude, phase, frequency, and degree of asymmetry
may all change (cf. Fig. 2). These characteristics result from
swinging the white cane which helps the person identify a
clear walking path. Extracting the heading direction of the
person from the cane’s yaw can be accomplished through
the employment of traditional signal processing techniques.
However, due to the constraint that the filter must propagate
in real time, a suboptimal method has been employed.

The heading of a person can be well approximated as the
mean value of the cane yaw over a period of swinging. Thus,
a proper solution would be a combination of frequency esti-
mation, and low pass filtering to remove the high frequency
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Fig. 1. The trace of the attitude covariance demonstrates that while the
cane is stationary (first 10sec during bias initialization) its attitude is initially
unobservable, however, it becomes observable when the cane is in motion.
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Fig. 2. The yaw component of the cane’s attitude estimate plotted before
and after low-pass filtering.

component of the yaw. This motivates the use of a Finite
Impulse Response (FIR) filter. The attitude is propagated at
100Hz, however, due to the nature of the motion of the cane
the high frequency component of the yaw does not fall below
0.5Hz. In order to reduce the number of taps needed by the
filter, the yaw signal is down-sampled by a factor of 40.
The signal is then filtered using a 7th order FIR filter with
Kaiser window β = 0.5 and normalized cut-off frequency
0.02. Fig. 2 depicts the yaw component of the cane’s attitude
estimate along with the filtered version. A byproduct of
filtering the yaw signal is that a delay is introduced. Although
the filter has only 7 coefficient-delay pairs, there is a delay of
1.2sec because the down-sampled yaw signal has a sampling
frequency of 2.5Hz. As a result, an equivalent time-lag exists
in the position estimate. However, due to the relatively slow
walking rate of a person carrying a white cane, this delay is
not prohibitive for real-time operation.

C. Position Estimation of the Person

Estimating the position of a person within a building
can be treated as a 2-D position estimation problem in
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which each floor of the building is a separate environment
containing landmarks, in this case corner features, whose
position is known. While a person is traversing a single floor,
their motion will be constrained on the plane of that floor.
This allows for the use of a 2-D odometry propagation model.

1) Position Propagation: The non-holonomic formulation
of the odometry state equations requires that linear and
rotational velocity measurements be available during the
propagation stage. These constraints are relaxed for the case
of a person. Linear velocity measurements are provided
by a foot-mounted wireless pedometer. Note that rotational
velocity measurements need not be accessible as the person’s
heading direction is available from the FIR filter. This odo-
metric model is also known as direct heading odometry [22].
The state propagation equations are:

xk+1 =xk + V δtcψ , yk+1 = yk + V δtsψ

x̂k+1 =x̂k + Vmδtcψm , ŷk+1 = ŷk + Vmδtsψm

where (x, y) and ψ are the position and heading of the
person, and V is the average velocity during the time interval
δt. In the above equations “ ̂ ” denotes estimates while the
subscript m refers to measured quantities, i.e.,

Vm = V + wv , ψm = ψ + wψ

where the velocity, wv , and heading, wψ , errors are zero-
mean white Gaussian processes with variances σ2

v and σ2
ψ,

respectively. The error model based on these relations is:[
x̃k+1

ỹk+1

]
=

[
x̃k
ỹk

]
+

[−δtcψm Vmδtsψm
−δtsψm −Vmδtcψm

] [
wv
wψ

]
x̃k+1 = x̃k + Γw (23)

and the covariance propagation is computed as

Pk+1|k =Pk|k + ΓQΓT, where Q =
[
σ2
v 0
0 σ2

ψ

]
(24)

2) Position Update: The person’s position estimate is
updated by incorporating relative position measurements to
known landmarks in the environment. Although the selection
of features is arbitrary, using corners at hallway intersections
is a good choice for an indoor environment because they
are prevalent and can be extracted reliably from the laser-
scan data. By extracting lines from the odd-indexed laser
scan data points, corners are identified with the following
characteristics: (i) two lines must be nearly perpendicular,
(ii) the endpoints of the lines must be within 5cm of each
other, and (iii) the line orientations must match the possible
wall orientations in the environment.

The relative position measurement is written as a 3-D
vector from the sensor to the landmark which is aligned to
the sensor frame and projected down to 2-D:

z = ΠC (q)
(
GpLi − GpS

)
+ np, Π =

[
1 0 0
0 1 0

]
(25)

where GpLi is the position of the landmark Li, GpS is the
position of the sensor (i.e., the estimated state x), and np is
the noise in this measurement.

Applying the expectation operator on both sides of (25),

we compute the estimated measurement as:

ẑ = ΠC (q̂)
(
GpLi − Gp̂S

)
(26)

Finally, differentiation of (25), provides the measurement
error equation

z̃ �− ΠC (q̂)Gp̃S + Π�C (q̂)
(
GpLi

− Gp̂S
)×�δθ + np

=Hk+1x̃ + n (27)

where n ∼ N (0,R) encompasses both the measurement
noise np and the error δθ in the attitude estimate of the
cane.

The measurement update requires to compute the mea-
surement residual rk+1 = zk+1− ẑk+1 and the Kalman gain

Kk+1 =Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 + R
)−1

The state estimate is updated as

x̂k+1|k+1 = x̂k+1|k + Kk+1 (zk+1 − ẑk+1) . (28)

Lastly, the updated covariance is computed as

Pk+1|k+1 = (I2×2 − Kk+1Hk+1)Pk+1|k (I2×2 − Kk+1Hk+1)
T

+ Kk+1RKT
k+1 (29)

IV. EXPERIMENTAL RESULTS

A. Hardware Description

When designing the sensor platform used in this work,
the main criterion for the sensor selection and placement
was that the electronics should be unobtrusive to the user.
For this reason two of the three primary sensors are mounted
on the white cane (cf. Fig. 3), and the third sensor is foot
mounted. These sensors were interfaced to a laptop via USB,
RS-232, and bluetooth, respectively. The real-time software
components are written in C++, whereas the software for
simulation and data plotting is written in Matlab. The sensor
bay is mounted beneath a white cane which measures 1.27m
when extended and 0.33m when retracted. We have used
a light-weight carbon fiber cane so that the total weight,
including sensors, is approximately the same as a standard
white cane.

The laser scanner is an URG-X002S which measures 5cm
by 5cm by 7cm. It has an angular scan range of 240 degrees,
with an accuracy of ±1% of the measurement for distances
1m to 4m. Closer than 1m, the measurement accuracy is
±10mm. The laser scanner can measure distances ranging
from 0.02m to 4m. The scanner weighs only 160g and
consumes 2.5W at 5V. The 3-axis gyroscope is an ISIS
Inertial Measurement Unit (IMU), with an angular-rate range
of ±90deg/sec. Over an RS-232 connection, the ISIS IMU
provides measurements at 100Hz. The weight of the sensor is
363g, and the power consumption is 6.72W at 12V. The IMU
measures 5.5×6.5×7cm. The pedometer is 8.5×3.5×3.5cm,
and transmits communication packets via bluetooth at a rate
of 1Hz.

B. Description of the Experiment

The method described in this paper was tested in an
indoor environment on a closed loop of path length 130m.
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Fig. 3. A view of white cane and hardware. The sensor bay is mounted on the handle portion of the cane. Note that the tip of the cane is unobstructed,
and the user maintains the ability to physically sense the world. The weight of the sensor package is approximately 550g.

Twenty-one corners along this loop were known a priori
from the building blueprints, and were used as features
for position updates as described in Section III-C.2. While
walking around, the user testing the cane swung it to-and-fro
in a natural manner searching for obstacles which might lie
in their path. Fig. 6 shows the estimated trajectory super-
imposed on the floor diagram. The striped regions in the
figure depict obstacles such as couches and garbage cans,
which are not detailed in the building blueprint. Additionally,
some of the doors along the hallways were open, while
others were closed. During testing there was a normal flow of
pedestrian traffic through the hallways. All of the corners in
the map are shown as boxes, and every measurement which
was used to update the position estimate is marked with a
line to the corresponding corner.

Surprisingly, the uncertainty in the position estimate is
very low (max σ = 0.16m), even though the number
of position update measurements is small (only 9 of the
corners were detected in approximately 110 laser scans).
The reason that the position filter is so precise despite the
relatively infrequent position update measurements is due to
the accuracy of the heading estimates provided by the attitude
filter. The attitude estimate of the cane is highly accurate due
to over 5, 000 orientation measurements obtained during this
experiment (cf. Fig. 1). Based on the analysis of [23] we
can infer that when the orientation error is bounded, i.e.,
σψ ≤ σψ0 , then the position covariance grows as:

P (t) � 0.5
(
σ2
v + σ2

ψ0
V 2δt2

)
t = α t (30)

In our experiments, δt = 0.1sec and α = 9.8204 × 10−4.
This means that for the case of direct heading odometry [22],
the position uncertainty grows approximately linearly with
time between consecutive position updates. Thus even when
detecting only a small number of corners, the position filter
maintains a good estimate. This argument is corroborated by
the time evolution of the trace of the position covariance. The
value of the trace never exceeds 0.054m2 which corresponds
to approximately 0.16m 1σ error in each direction (cf.
Fig. 4). Furthermore, the filter maintains consistency as the
x and y components of the measurement residuals fall within
the 3σ bounds of the residual covariance (cf. Fig. 5).

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a new approach to indoor local-
ization for the visually impaired. Information from a pair of
cane-mounted sensors, and a foot-mounted pedometer with
unknown and time-varying relative coordinate transformation
was fused in a two-stage pose estimator. The first stage
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Fig. 4. The trace of the position covariance verifies that the positioning
uncertainty remains bounded, but grows linearly with time between consec-
utive position updates.
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Fig. 5. The x- and y-axis position measurement residuals plotted with
their corresponding 3σ bounds computed from the residual covariance.

utilized inertial measurements from a 3-axis gyroscope and
relative orientation measurements from laser scan data to
accurately estimate the attitude of the white cane. The
second stage estimated the position of the person holding the
cane, by incorporating linear velocity measurements from the
pedometer, a filtered version of the cane’s yaw estimate, and
corner features extracted from the laser scan data.

Our estimation algorithms were experimentally validated,
and shown to be robust even in a dynamic environment. The
accuracy of these results are among the benefits of using a
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Fig. 6. Experimental results from a 130m test run, starting in the lower left corner, traveling counter-clockwise and ending back at the start location. The
striped regions on the figure depict locations of furniture and other objects not represented in the blueprint.

cane-based system for indoor human localization. These also
include: (i) a cane provides a lightweight, and unobtrusive
platform for sensors, (ii) it is a trusted tool for blind people,
and (iii) the user maintains the ability to physically touch the
environment during operation.

Future work includes the design of path planning routines
to generate routes between indoor locations, as well as a hap-
tic feedback system to give the person simple directions. A
software implementation on a small-scale computing device
such as a personal data assistant, or an embedded computer
is also within our short term goals. Finally, we intend to
expand on this work and also address the case of indoor
localization, using the white cane, for cases where a map of
the building is not available.
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