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 Abstract –This paper presents a novel affect-sensitive 

human-robot interaction framework for rehabilitation of 

children with autism spectrum disorder (ASD). The overall aim 

is to enable the robot to detect and respond to the affective cues 

of the children in order to help them explore social interaction 

dynamics in a gradual and adaptive manner. The first part of 

the proposed framework, namely the ‘affect recognition’ 

module is developed in detail in this paper. Two tasks are 

designed to elicit the affective states of liking, anxiety, and 

engagement that are considered important in autism 

rehabilitation. Affective cues are inferred from 

psychophysiological analysis that uses subjective reports of the 

affective states from a therapist, a parent, and the child 

himself/herself. Comprehensive physiological indices are 

investigated that may correlate with the affective states of 

children with ASD. A support vector machines based affect 

recognizer is designed that yielded reliable prediction with 

approximately 83% success when using the therapist’s reports. 

This is the first time, to our knowledge, such a human-robot 

interaction framework for autism rehabilitation is proposed. 

This is also the first time that the affective states of children 

with ASD have been experimentally detected via physiology-

based affect recognition technique. 
  

Index Terms – Human-robot Interaction, Autism Therapy, 

Rehabilitation, Physiological Sensing, Affective Computing 

 

I.  INTRODUCTION 

Autism spectrum disorder (ASD) encompasses a wide 

variety of symptoms but generally is characterized by 

impairments in social interaction, social communication, and 

imagination, along with repetitive behavior patterns [1]. In 

recent years, there has been a significant increase in the 

number of children diagnosed with ASD. It is estimated that 

there are up to two cases of ASD per thousand children. 

Current resources for children with autism and their families 

are rare and costly, often involving a trained therapist in 

one-on-one sessions for a staggering 40 hours-per-week 

therapy [2].  

Therefore one of the challenges is to find appropriate 

remedial tools and efficient rehabilitation methods for 

autism therapy. In response to this need, a growing number 

of studies have been investigating the application of the 

advanced interactive technologies to autism therapy, namely 

virtual environments [3], computer technology [4], and 

robotic systems [5][6].  

The work in the area of autism rehabilitation with robots 

has gained ground only in the last 10 years. Dautenhahn and 

colleagues have explored how a robot can become a 

playmate that might serve a therapeutic role for children 

with autism in the Aurora project [5]. It has been shown that 

children with ASD are engaged more with an autonomous 

robot in the ‘reactive’ mode than with an inanimate toy or a 

robot showing rigid, repetitive, non-interactive behavior 

[5][7]. A hierarchy of human-robot interaction dynamics 

with increasing complexity has been proposed in [8]. The 

robots in autism rehabilitation need to grow and develop 

along with the children and help them explore the different 

levels of social interaction dynamics. Michaud and 

Theberge-Turme investigated the impact of robot design on 

the interactions with children and emphasized that systems 

need to be versatile enough to adapt to the varying needs of 

different children [6]. While like all other therapeutic 

approaches the robotic rehabilitation has the same unsolved 

generalization problem of how the skills learnt in therapy 

can be efficiently transferred to the real world, the initial 

results indicate that robots may hold promise for 

interventions of children with ASD. Robots can allow 

simplified but embodied social interaction that is less 

intimidating or confusing for these children. Robots have 

been used to teach basic social interaction skills using turn-

taking and imitation games, and the use of robots as social 

mediators and as objects of shared attention can encourage 

interaction with peers and adults [5][7].  

While concepts from human-robot interaction (HRI) 

have been applied to autism rehabilitation in recent years, no 

work has been done to enable the robot to detect and 

respond to the affective states of children with ASD during 

the interaction. On the other hand, affective computing has 

become the focus of a great deal of attention in the HRI 

community and it is generally accepted that endowing robots 

with a degree of emotional intelligence should permit more 

meaningful and natural human-robot interaction [9][10]. For 

a robot to be emotionally intelligent it should clearly have a 

two-fold capability – the ability to display its own emotions 

[11] and the ability to understand human emotions and 
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motivations (also referred to as affective states). The 

primary objective of this research is to address the latter 

capability for a target population, namely, children with 

ASD. Specifically we investigate how to augment human-

robot interaction to be used in autism rehabilitation by 

endowing the robot with the ability to recognize and respond 

to the affective states of a child with ASD. In order to 

achieve this objective, we divide the research in two phases: 

i) to obtain the affect models in Phase I; and ii) to design a 

robot control architecture that can permit affect sensitiveness 

in the robot behavior based on the developed affect models 

in Phase II.  

The paper is organized as follows: The proposed 

human-robot interaction framework for the rehabilitation of 

children with ASD is presented in Section 2. Section 3 

describes the physiological indices used for affect 

recognition. The learning algorithm employed in this study 

is briefly described in Section 4. In Section 5, we present 

cognitive tasks designed for affect elicitation and the 

experimental setup. This is followed by a detailed results 

and discussion section (Section 6). Finally, Section 7 

summarizes the contributions of the paper and outlines the 

future directions of this research. 

II. AFFECT SENSITIVE HUMAN-ROBOT INTERACTION 

FRAMEWORK FOR REHABILITATION OF CHILDREN WITH ASD 

The framework has six primary components as 

illustrated in Fig. 1. The physiological signals from the 

children with ASD are recorded when they are interacting 

with the robots. These signals are processed in real time to 

extract features and determine the affective cues by using the 

models developed in Phase I. The affect information along 

with other environmental inputs is used by a controller to 

decide the next course of action. The database component 

stores inferred affect and robot behavior for each child with 

ASD. The child who engages with the robot is then 

influenced by the robot’s action, and the closed-loop 

interaction cycle begins anew. 

The potential impacts brought by the robots that can 

detect the affective states of a child with ASD and interact 

with him/her based on such perception could be various. The 

inferred affective states could be used to determine when to 

switch among a set of controllers and permissive behavior 

repertoires that correspond to the different levels of 

interaction dynamics. For example, when a child has shown 

pleasure (liking) and little or no anxiety in a game, the 

introduction of a higher-level task would be appropriate. 

Within each level of interaction dynamics the affective 

information of the child with ASD could be used to select 

the appropriate behavior in order to accommodate the 

individual preferences. For instance, the behavior that is 

more interesting for a particular child and more likely to 

engage him/her could be chosen as his/her ‘social feedback’. 

Playful interaction will be more likely to emerge by 

addressing a child’s affective needs. 

In order to achieve affect-sensitive human robot 

interaction for autism rehabilitation, affective feedbacks are 

required. In this paper, we focus on the ‘affect recognition’ 

module of the framework. There are several modalities such 

as facial expression, vocal intonation, gestures and postures, 

and physiology [9][12] that can be utilized to determine the 

underlying emotion of a person interacting with a robot. We 

chose physiology to infer affect for children with ASD due 

to several reasons. Children with ASD generally appear 

aloof and avoid verbal or non-verbal communications, which 

poses a limitation on vision and speech based methods. On 

the other hand, physiological signals are continuously 

available and are not dependent on overt emotional 

expression. They offer an avenue for recognizing affect that 

may be less obvious for humans but more suitable for 

computers, which can quickly implement signal processing 

and pattern recognition tools to infer underlying affective 

states. Even though physiology has been employed to build 

affect recognizers for typical individuals successfully in 

several research groups [9][13], the studies of the correlation 

of the physiological signals and the affective states of people 

with ASD are relatively few. To our knowledge affect 

recognition for children with ASD by using comprehensive 

physiological indices has not been known.  

In this work we chose anxiety, engagement, and liking 

to be the target affective states. Anxiety was selected for two 

primary reasons. First, anxiety plays an important role in 

various human-machine interaction tasks that can be related 

to task performance [13]. Second, anxiety is not simply a 

frequently co-occurring disorder; in some ways it is also a 

hallmark of autism [14]. Engagement, defined as “sustained 

attention to an activity or person,” has been regarded as one 

of the key factors for children with ASD to make substantial 

gains in academic, communication, and social domains [15]. 

With ‘playful’ activities in the learning environments, the 

liking of the children, i.e., the enjoyment they experience 

when interacting with the robots, could serve as a ‘bonding’ 

between robots and the children with ASD, who are usually 

withdrawn. 
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Fig. 1. Framework Overview 

The physiological signals we examined were: various 

features of cardiovascular activity (including inter-beat 

interval, relative pulse volume, pulse transit time, heart 

sound, and pre-ejection period), electrodermal activity (tonic 

and phasic response from skin conductance) and 

electromyogram (EMG) activity (from corrugator supercilii, 

zygomaticus, and upper trapezius muscles). We adopt an 

individual-specific approach where we develop a model for 

each individual (i.e., we determine the physiological pattern 
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of anxiety for each participant) because of the well-known 

phenomena of person stereotypy, i.e., within a given context, 

different individuals express the same emotion with different 

characteristic response patterns. The physiological signals 

were recorded when children with ASD participated in the 

tasks designed for eliciting the target affective states. The 

input feature set was derived from physiological signals by 

applying a series of pre-processing and signal analysis 

techniques. The output set was derived from the subjective 

reports. Each vector of input features had a corresponding 

output vector consisting of subjective reports for all the 

target affective states. This data set was utilized for affect 

modeling for the children with ASD by using support vector 

machines (SVM). 

III. PHYSIOLOGICAL INDICES 

There is good evidence that the physiological activity 

associated with the affective state can be differentiated and 

systematically organized. The transition from one affective 

state to another, for instance, from relaxed to anxious state, 

is accompanied by dynamic shifts in indicators of 

Autonomic Nervous System (ANS) activity.  

Various signal processing techniques such as Fourier 

transform, wavelet transform, thresholding, and peak 

detection were used to derive the relevant features from the 

physiological signals. The signals are listed in Section 2, and 

the features are described as follows. Inter beat interval (IBI) 

is the time interval in milliseconds between two "R" waves 

in the electrocardiogram (ECG) waveform in millisecond. 

Power spectral analysis is performed on the IBI data to 

localize the sympathetic and parasympathetic nervous 

system activities associated with two frequency bands. The 

high frequency (HF) component (0.15-0.4 Hz; which 

corresponds to the rate of normal respiration) measures the 

influence of the vagus nerve in modulating the sinoatrial 

node and is associated with parasympathetic nervous system 

activity. The low frequency (LF) component (0.04-0.15 Hz) 

provides an index of sympathetic effects on the heart. 

Photoplethysmograph (PPG) signal measures changes in the 

volume of blood in the finger tip associated with the pulse 

cycle, and it provides an index of the relative constriction 

versus dilation of the blood vessels in the periphery. Pulse 

transit time (PTT) is the time it takes for the pulse pressure 

wave to travel from the heart to the periphery, and it is 

estimated by computing the time between systole at the heart 

(as indicated by the R-wave of the ECG) and the peak of the 

pulse wave reaching the peripheral site where PPG is being 

measured. Heart sound signal measures sounds generated 

during each heartbeat. These sounds are produced by blood 

turbulence primarily due to the closing of the valves within 

the heart. The features extracted from the heart sound signal 

consisted of the mean and standard deviation of the 3rd, 4th, 

and 5th level coefficients of the Daubechies wavelet 

transform. Bioelectrical impedance analysis (BIA) measures 

the impedance or opposition to the flow of an electric 

current through the body fluids contained mainly in the lean 

and fat tissue. A common variable in recent 

psychophysiology research, pre-ejection period (PEP) 

derived from impedance cardiogram (ICG) and ECG, 

measures the latency between the onset of electromechanical 

systole, also measures the onset of left-ventricular ejection, 

and is most heavily influenced by sympathetic innervation of 

the heart. Electrodermal activity consists of two main 

components - Tonic response and Phasic response. Tonic 

skin conductance refers to the ongoing or the baseline level 

of skin conductance in the absence of any particular discrete 

environmental events. Phasic skin conductance refers to the 

event-related changes that occur, caused by a momentary 

increase in skin conductance (resembling a peak). The EMG 

signal from Corrugator Supercilii muscle (eyebrow) captures 

a person's frown and detects the tension in that region. It is 

also a valuable source of blink information and helps us 

determine the blink rate. The EMG signal from the 

Zygomaticus Major muscle captures the muscle movements 

while smiling. Upper Trapezius muscle activity measures the 

tension in the shoulders, one of the most common sites in the 

body for developing stress. All these features are used to 

build the affect recognizer to infer the underlying affective 

state of a child showing this response. 

IV. MACHINE LEARNING METHOD APPLIED 

Determining the intensity of a particular affective state 

from the physiological response resembles a classification 

problem where the attributes are the physiological features 

and the target function is the degree of arousal (high/low).  

SVM, pioneered by Vapnik [16], is an excellent tool for 

classification. Its appeal lies in its strong association with 

statistical learning theory as it approximates structural risk 

minimization principle. Good generalization performance 

can be achieved by maximizing the margin, where margin is 

defined as the sum of the distances of the hyperplane from 

the nearest data points of each of the two classes. The SVM 

approach is able to deal with noisy data and overfitting by 

allowing for some misclassifications on the training set. This 

makes it particularly suitable for affect recognition because 

the physiology data is noisy and the training set size is often 

small. It has been used to build affect recognizers for typical 

individuals in our previous work [17]. Another important 

advantage of SVM is the transformation of the learning task 

to the quadratic programming problem. For this type of 

optimization there exist many effective learning algorithms, 

leading in all cases to the global minimum of the cost 

function. With the kernel representation, SVM provides an 

efficient technique that can tackle the difficult, high 

dimensional affect recognition problem. In this work, kernel 

function RBF (Radial Basis Function) often delivered better 

performance and was applied. Ten-fold cross-validation was 

used to determine the final parameters of the classifier.  

V. EXPERIMENT 

In this section we describe in detail the tasks designed 

for affect elicitation, the participants, and the experimental 

setup. 

 

A. Tasks for Affect Elicitation 
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Two PC based tasks were designed to invoke varying 

intensities of the following three affective states: anxiety, 

engagement, and liking, in the participants.  Physiological 

data from participants were collected during the experiment. 

The tasks chosen were solving anagrams and playing 

“Pong”. In our previous work [10], we have shown that the 

affect models built using these two human-computer 

interaction tasks could be successfully used to determine 

affect prediction in a human-robot interaction task for 

typical individuals. Various parameters of the tasks were 

manipulated to elicit the required affective responses. For 

example, a series of extremely difficult anagrams will 

usually cause dislike, and an optimal mix of solvable and 

difficult anagrams tends to result in engagement. Likewise, a 

Pong game with very high ball speed will cause anxiety at 

times. In the Pong game the adjusted parameters for eliciting 

affective states include: ball speed and size, paddle speed 

and size, sluggish or over-responsive keyboard, random 

keyboard response, and the level of the computer opponent 

player. The relative difficulties of various trial 

configurations were established through pilot work.  

B. Participants 

Three subjects within the age range of 13 to 15 

volunteered to participate in the experiments with the 

consent of their guardians. Each of them had a diagnosis on 

the autism spectrum, either autistic disorder, Asperger's 

Syndrome, or pervasive developmental disorder not 

otherwise specified (PDD-NOS), according to their medical 

records. Due to the nature of the tasks, the following were 

considered when choosing the participants: i) having 

minimum competency level of age-appropriate language and 

cognitive skills (i.e., “high functioning”) and ii) not having 

any history of mental retardation. Each child with ASD 

underwent the Peabody Picture Vocabulary Test III (PPVT-

III) to assess cognitive function. The PPVT-III is a measure 

of single-word receptive vocabulary that is often used as a 

proxy for intelligence testing [18]. Inclusion in our study 

was characterized as obtaining a standard score of 80 or 

above on the PPVT-III measure. Monetary compensation 

was given for the children’s voluntary participation. Table 1 

shows the characteristics of three children who participated 

in the experiments. 
TABLE I 

 CHARACTERISTICS OF PARTICIPANTS 
Child ID Gender Age Diagnosis PPVT-III Score 

A Male 15 Autistic Disorder 99 

B Male 15 Asperger's Syndrome 80 

C Male 13 Autistic Disorder 81 

C. Experimental Setup  

The objective of the experiment was to elicit varying 

intensities of emotional states in participants as they 

performed computer-based tasks. On the first visit, 

participants completed the PPVT-III measurement to 

determine a standardized measure of receptive vocabulary 

and eligibility for the experiments. After initial briefing 

regarding the computer tasks, physiological sensors of a 

Biopac system [19] were attached to the participant's body. 

A three-minute baseline recording was done that was later 

used to offset day-variability. Subjects were asked to relax in 

a seated position and read age-appropriate leisure material. 

Each session lasted about an hour and consisted of a set (10-

15) of either 3-minute epochs for anagram tasks or up to 4-

minute epochs for Pong tasks. Each epoch was followed by 

subjective report questions rated on an eight-point Likert 

scale. In order to gain perspective from different sources and 

enhance the reliability of the subjective report, a therapist 

with experience in working with children with ASD and a 

parent of the participant were also involved in the study, 

who may best know the participant. We video recorded the 

sessions to cross-reference observations made during the 

experiment. The signal from the video camera was routed to 

a television, and the signal from the participant's computer 

screen where the task was presented was routed to a separate 

monitor. The therapist and a parent were seated at the back 

of the experiment room, watching the experiment from the 

view of the video camera and observing how the game 

progressed on the separate computer monitor. After each 

epoch, they also answered the questions about how they 

thought the participant was feeling during the finished epoch 

on an eight-point Likert scale. These three sets of reports, 

from the therapist, a parent, and the participant, were used as 

the possible reference points to link the objective 

physiological data to the participant's affective state. Each 

child took part in six sessions – three one-hour sessions of 

solving anagrams and three one-hour sessions of playing 

Pong – on six different days. These tasks spanned a period 

of two months. During the tasks, the participant's physiology 

was monitored with the help of wearable biofeedback 

sensors and Biopac data acquisition system. The digitally 

sampled sensor information was sent to the computer using 

an Ethernet cable. For each participant, the data that 

comprised both the objective physiological information and 

subjective reports on affective states was collected. Each 

data set consisted of 54 input features and 3 output features 

(arousal of anxiety, engagement, and liking) from the 

therapist, the parent, and the participant. Each output state 

was partitioned such that 1-4 was labelled low and 5-8 was 

labelled high. Each data set contained approximately 85 

epochs. 

VI. RESULTS AND DISCUSSION 

One of the prime challenges of this work is attaining 

reliable subjective reports. Researchers have been reluctant 

to trust the response of adolescents on self-reports [20]. In 

this study, one should be especially wary of the 

dependability of self-reports from children with ASD, who 

may be inattentive and exhibit poor self-awareness. In order 

to overcome this difficulty, a therapist and a parent were 

involved and were fully exposed to the experiment process 

in real time by using the approaches described in the 

experimental setup.  Their reports about how they thought 

the participant was feeling were collected after each epoch.  

To measure the amount of agreement among the 

different reporters/coders, the kappa statistic was used. The 

kappa coefficient (K) measures pair-wise agreement among 

a set of reporters making category judgments, correcting for 
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expected chance agreement. When there is complete 

agreement, then K=1; whereas, when there is no agreement 

other than which would be expected by chance, then K = 0.  
TABLE II 

KAPPA STATISTICS FOR TARGET AFFECT STATES 
Child ID Pair Liking Anxiety Engage Mean 

T/P 0.566 0.831 0.494 0.631 

T/C -0.084 0.343 0.205 0.154 

 

A 

P/C 0.25 0.332 0.133 0.239 

T/P 0.585 0.634 0.708 0.642 

T/C 0.575 0.561 0.512 0.549 

 

B 

P/C 0.488 0.537 0.536 0.520 

T/P 0.753 0.352 0.551 0.552 

T/C 0.675 0.350 0.525 0.517 

 

C 

 P/C 0.475 0.450 0.525 0.483 

The results of the values of kappa statistic, K, for the 

target affective states are shown in Table 2.  From the 

results, we can see that the agreement between the therapist 

and the parent (T/P) shows the largest mean of the kappa 

statistic values among three possible pairs for each child. 

Note that this agreement is substantial for Child A and Child 

B and moderate for Child C. Such results might stem from 

the fact that it could be difficult for the therapist/parent to 

distinguish certain emotions for a particular child with ASD, 

such as the case for the anxiety level of Child C. In the 

experiment, Child A’s ratings for liking, anxiety, and 

engagement were almost constant which resulted in lower 

kappa statistic values for the therapist and child pair (T/C) 

and the parent and child pair (P/C) than those of Child B and 

Child C. This may be due to the fact that the spectrum 

developmental disorder for children with autism manifests 

different abilities to recognize and report their emotions. 

Although lack of agreement with adults does not necessarily 

mean that the self-report of children with ASD is not 

dependable. However, given the fact that therapists’ 

judgement based on their expertise is the state-of-the-art in 

most autism therapy approaches, and the fact that there is a 

reasonably high agreement between the therapist and the 

parents for all of the three children, the subjective report of 

the therapist was used as the reference points linking the 

objective physiological data to the children’s affective state. 

In order to make the subjective reports more consistent, the 

same therapist was involved in all of the experiments. This 

choice allows for building a therapist-like affect recognizer. 

Once the affect modelling is completed, the recognizer will 

be capable of inferring the affective state of the child with 

ASD from the physiological signals in real-time even when 

the therapist is not available. 

Fig. 2 shows a comparison of the therapist’s average 

ratings for liking, anxiety, and engagement when the 

children with ASD play easy or difficult epochs. When 

averaged across participants, liking decreased, anxiety 

increased and engagement decreased with increasing task 

difficulty. Table 3 shows the correlation analysis between 

the reported affective states and the task difficulty level. For 

each set of the variables, the probability value (p-value) was 

computed from a two side t-test. Due to the large sample 

size (approximately 85 epochs for each participant), the p-

value for all correlations was less than 0.005. There is strong 

positive correlation between anxiety and difficulty. There is 

also negative correlation between liking and difficulty, and 

engagement and difficulty. Liking is strongly positively 

correlated with engagement and negatively correlated with 

anxiety. There is also a weak correlation between the level 

of reported anxiety and engagement. The results presented in 

Fig. 2 and Table 3 average the data across all children. 

However, when each child is examined individually, 

different trends could arise. For example, for Child A, the 

anxiety is positively correlated with the engagement 

(Pearson correlation =0.453, p=0.0002), while for the two 

other children anxiety negatively correlated with the 

engagement (Pearson correlation =-0.503, p=0.0001, and 

Pearson correlation =-0.394, p=0.0004 respectively), which 

revealed the diverse personal characteristics of the children 

with ASD. 
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Fig. 2. Rated Average Affect Response from Therapist’s Reports 

 

TABLE III 

RESULTS OF CORRELATION ANALYSIS FROM THERAPIST’S REPORTS 
 Liking Anxiety Engage Difficulty 

Liking 1 -0.605 0.838 -0.685 

Anxiety  1 -0.291 0.774 

Engage   1 -0.416 

Difficulty    1 

The performance of the developed affect recognizer in 

classifying unknown instances is shown in Fig. 3. The cross-

validation method, ‘leave-one-out’, was used. The affect 

recognizer produced high recognition accuracies for each 

target affective state of each participant. The average correct 

classification accuracies across all participants were - 

85.23% for liking, 80.16% for anxiety, and 83.63% for 

engagement. This was promising considering that this task 

was challenging in two respects: (i) the reports were 

collected from the therapist who was observing the children 

with ASD engaged in real-life computer tasks as opposed to 

having typical adults capable of differentiating and reporting 

their own affective states and (ii) varying levels of arousal of 

any given affective state (for instance, low and high anxiety) 

were identified instead of determining discrete emotions (for 

instance, anger, joy, sadness, etc.). Determining the 

difference in arousal level in one affective state is more 

subtle than distinguishing between two discrete affective 

states. With post-hoc analysis, we found generally the 

prediction accuracy tends to be higher when the therapist 

and the parent agree more on the subjective reports about 

how they thought the participant was feeling during the 

finished epoch. As shown in Table 4, the Kappa statistic of 

therapist and parent is positively correlated with the 

prediction accuracy of the developed affect recognizer 

(Pearson correlation = 0.7423, p= 0.022). In this experiment, 
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the Kappa statistic could indicate whether it is relatively 

easy or difficult to differentiate the affective states of a child 

by observation. The prediction accuracy is likely to improve 

if the therapist interacts with a particular child with ASD for 

a significant amount of time and attains more knowledge of 

his/her affective expression before making the reports 

regarding the presented interaction tasks. 
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Fig. 3. Classification Accuracy of the Affect Recognizer 

 

TABLE IV 

THERAPIST-PARENT KAPPA STATISTICS AND PREDICTION ACCURACY 

Child ID  Liking Anxiety Engage 

Kappa Statistics (T/P) 0.566 0.831 0.494 A 

Prediction Accuracy (%) 87.8% 85.4% 81.7% 

Kappa Statistics (T/P) 0.585 0.634 0.708 B 

Prediction Accuracy (%) 76.8% 81.7% 89.0% 

Kappa Statistics (T/P) 0.753 0.352 0.551 C 

Prediction Accuracy (%) 91.1% 73.4% 80.2% 

VII. CONCLUSIONS AND FUTURE WORK 

We have proposed a novel framework for affect-

sensitive human-robot interaction in the rehabilitation of 

children with ASD. A robot that is capable of detecting and 

responding to affective cues could help the children with 

ASD explore the social interaction dynamics in a gradual 

and adaptive manner. In this paper, the module ‘affect 

recognition’ of the framework was investigated in detail. We 

have designed and implemented two tasks – solving 

anagrams and playing Pong – to elicit the affective states of 

liking, anxiety, and engagement for children with ASD. In 

order to have reliable reference points to link the 

physiological data to the affective states, the reports from the 

child, the therapist, and the parent were collected and 

analysed. We investigated comprehensive physiological 

indices that may correlate with the affective states of 

children with ASD. We have experimentally demonstrated 

that it is viable to detect the affective states of children with 

ASD via physiology-based affect recognition. A SVM based 

affect recognizer yielded reliable prediction with 

approximately 83% success when using the therapist’s 

reports.  

Future work will involve completing the Phase I 

experiments with several more children with ASD. We 

would also like to design social interaction experiments with 

robots interacting with these children. We will investigate in 

Phase II how to augment the autism therapy by having a 

robot respond appropriately to the inferred affects based on 

the affect recognizer described here. 
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