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Abstract— This paper presents a technique to improve the
data association in the Iterative Closest Point [1] based scan
matching. The method is based on a distance-filter constructed
on the basis of an analysis of the set of solutions produced by
the associations in the sensor configuration space. This leads
to a robust strategy to filter all the associations that do not
explain the principal motion of the scan (due to noise in the
sensor, large odometry errors, spurious, occlusions or dynamic
features for example). The experimental results suggest that the
improvement of the data association leads to more robust and
faster methods in the presence of wrong correspondences.

I. INTRODUCTION

A key issue in autonomous mobile robots is to keep track

of the vehicle position. When the robot is equipped with

range sensors, one common framework is scan matching.

The objective is to compute the relative motion of a vehicle

between two consecutive configurations using the sensor

measurements. Although these techniques are local in nature,

many applications in robotics such as mapping, localization

or tracking incorporate them to estimate the relative robot

displacement [2], [3], [4], [5], [6].

Scan matching is currently an active research area.

Roughly, the existing techniques can be divided in two

groups. The first one deals with structured scenarios [7],

[8], [9] and the other with raw data [10], [11], [1]. The

latter do not assume structure and estimates the sensor

displacement by maximizing the overlap between the range

measurements or scans. The most popular of these methods

is the Iterative Closest Point (ICP) algorithm [1] (see [12] for

variants of the original method). This method is based on an

iterative process with two steps: First, a set of correspondent

points between the scans is computed and then, the sensor

displacement is estimated by minimizing the error of the

correspondences. This process is repeated until convergence.

Since no high level features are used, the computation of

the joint matching of the points of both scans is compu-

tationally very expensive (exponential with the number of

points of the scans). To reduce the complexity, the ICP-type

algorithms use the nearest-neighbor rule to establish pairs of

correspondences between the points of each scan.

More precisely, let a point p ∈ R2 be defined by

its two dimensional cartesian coordinates (px, py) and a

sensor configuration q ∈ R2 × [−π, π] by its position and
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orientation (x, y, θ). Let d(p1,p2) be a generic measurement

of distance between two points. Most ICP algorithms use

the Euclidean distance, but in [13] the authors show how

other metrics can greatly improve the algorithm performance.

Let be {p1 . . .pNref
} the points of reference scan Zref and

{t1 . . . tNnew
} the points of the other scan Znew (already

expressed in the reference frame of Zref ). For each iteration

k, let qk be the relative estimated transformation between

both scans, with an initial value q0 (typically from odome-

try). Repeat:

1) For each pi in Zref compute ri as the closest point

in Znew (transformed to the system of reference Zref

using the estimation qk):

ri = arg min
tj

{d(pi, tj)} (1)

The result is a set of N associations

A = {(pi, ri) | i = 1 . . . N}.

2) Compute the displacement estimation qmin that min-

imizes the mean square error between pairs of A:

qmin = arg min
q

N
∑

i=1

d(pi,q(ri))
2 (2)

Let be qsol = qmin ⊕ qk, with ⊕ representing the

composition of relative transformations [14]. If there

is convergence the estimation is qsol, otherwise iterate

again with qk+1 = qsol.

Although existing ICP-based techniques work well in

static environments [15], [16], [13], [17], their performance

degrades in situations where the correspondence process

becomes more difficult: (i) noise in the sensor, (ii) large

errors in the sensor odometry, (iii) spurious, (iv) new

discovered areas, (v) occlusions and (vi) dynamic obstacles,

among others. This is because these working conditions

affect the most critical point of the ICP: the establishment of

the correspondences. This step is crucial for these techniques

since the remaining steps of the strategy depend on their

quality. The contribution of this paper is an improved data

association to ameliorate the scan matching performance

under the previous conditions.

Some works have addressed this difficulty by evaluating

the correspondence error as a measure of its goodness.

For instance, a trimmed version of the ICP [18] simply

discards the worst correspondences in terms of distance.

Other strategy is to split the scans in sectors and dis-

card those with a high mean correspondence error [19].

In [20] and [6], the scan matching is formulated as a

an Expectation-Maximization and the effect of dynamic
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measurements is minimized through a weighting process.

Unfortunately, wrong correspondences do not always have

a large correspondence error, which affects the robustness

and the convergence of previous approaches.

In this paper we analyze the set of solutions produced by

the ICP correspondences in the configuration space of the

sensor to build a novel robust filtering strategy. The idea is to

filter those associations that do not explain the main motion

of the scan and thus are likely to be wrong associations.

For this purpose, a coarse estimation of the transformation

between the scans is first obtained, and then, it is used to

check the correctness of each single association. In this way,

associations that do not belong to a consensus set (the main

motion of the scan) are culled, irrespective of their corre-

spondence error. The experimental results suggest that the

improvement of the data association leads to more robust and

faster methods in the presence of wrong correspondences.

The paper is organized as follows: Sections II and III

present the framework. In section IV, we discuss the ex-

perimental results and we compare our method with existing

techniques. Finally we draw our conclusions in Section V.

II. ASSOCIATIONS IN THE SENSOR CONFIGURATION

SPACE

Recall that we have a set A = {a1 . . . aN} of N asso-

ciations. One association is ai = {pi, ri} such that pi =
(pix, piy) and ri = (rix, riy). In the set A, p associations

come from the static structure, m associations from the

dynamic obstacles and d associations are spurious or wrong.

In general p > m + d (the static structure is predominant).

The proposed filtering strategy is based on the idea that if

we had a coarse estimation of the correct solution, it could

be used to test each single association and robustly discard

wrong ones. This section introduces the properties of the

associations in the sensor configuration space, as well as the

tools required to perform this task.

A. Basic problem: 1 association

All possible sensor configurations q = (x, y, θ) that solve

one association a = {p, r} (subindex i is omitted) hold:

p = T + R(θ)r (3)

where T = (x,y) is the sensor translation and R(θ) is the

rotation matrix. Equation (3) can be written as:

f(x, y, θ) = p − (T + R(θ)r) (4)

Function f(x, y, θ) = (0, 0) defines a one-dimensional man-

ifold h(θ) in the sensor configuration space R2 × [−π, π].

h(θ) = (px + ||r|| cos(θ + β), py + ||r|| sin(θ + β), θ) (5)

where β = arctan
−ry

rx

. This manifold has the shape of a

circular helix with center p and radius ||r||. Notice that the

set of solutions q for each association is an helix (C∞) in

the sensor configuration space.

B. Distance from 1 association to a sensor configuration

Another tool that will be used later is the distance from

a given sensor configuration q0 = (x0, y0, θ0) to an helix

h(θ) defined by an association. In the configuration space,

we define the norm of q as in [13]:

‖q‖ =
√

x2 + y2 + L2θ2 (6)

where L is a positive real number homogeneous to a length.

We define the distance from a configuration to an helix:

dqh(q0,h) = ||qc−q0||, such that qc = arg min
q∈h

||q−q0||
2

(7)

Since h(θ) is a one dimensional manifold in θ (Equation

(5)), the minimum of ||q − q0||
2 is given by:

∂||h(θ) − q0||
2

∂θ
= 0 (8)

Developing we have an expression of the form:

aθ + b sin θ + c cos θ + d = 0 (9)

where: a = L2, b = prT − x0p2x − y0p2y , c = p1xr2y −
p1yr2x−x0p2y +y0p2x and d = −θ0L

2. Unfortunately there

is no closed form solution for Equation (9) thus we linearize

in θ ≃ θl:

θmin =
(bθl − c) cos θl − (cθl + b) sin θl − d

a + b cos θl − c sin θl

(10)

The linearization point is:

θl = arctan
q0y − py

q0x − px

− arctan
ry

rx

(11)

computed as the projection of q0 to the cylinder that embeds

the helix (Equation (5)). Substituting θmin in Equation (5)

we get qc. Finally:

dqh(q0,h)) = ||qc − q0|| (12)

C. Proximity of Manifolds to a Region of Reference

Let say that we have a region of configurations of ref-

erence defined like a compact set embedded in the con-

figuration space Ω ∈ R2 × [−π, π]. One evaluation of the

goodness of an association a is to compute the distance from

its manifold h of solutions to this set:

dΩh(Ω,h) = dqh(qc,h) such that qc = arg min
q∈Ω

dqh(q,h)

(13)

where dqh is the distance from a configuration to an helix.

When the solution of reference is the motion of the sensor,

then the distance of the manifolds that explain this motion

to the solution is zero, while the other associations give a

greater distance.

However, in realistic operation the measures are corrupted

by noise. Although it is not described here in detail due

to space constraints, one can use continuity arguments in

Equation (13) to demonstrate that when the noise tends to

zero, the solution tends to the perfect solution (zero distance).

In any case, the noise degrades the solution and thus the

location of the manifolds. By computing the distance of
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Fig. 1. This Figure shows a set of associations (top) and the curves that
generate in the sensor configuration space (bottom). (Top) Two measure-
ments with a given motion between them. The circle is static and there
are two dynamic obstacles that have their motion plus the sensor motion.
(Bottom) In the sensor configuration space, each association creates a curve
of solutions. The region of reference is a set of configurations computed by
a given method that explains the motion of the sensor. The curves closed
to this set are created by associations of the static structure.

the manifold to the solution of reference one have a robust

criterion to deal with noise. Figure 1 shows an example.

This process is useful to evaluate associations if one

can have in advance a good approximation of a region of

configurations likely to explain the motion.

In summary, in this section we have described some

properties of the associations in the configuration space and

outlined one strategy to detect the static structure of the

scenario based on the distance of the manifolds to a reference

solution.

III. THE PROPOSED FRAMEWORK

In the previous section, we derived some tools to measure

the distance from a given solution of reference to the set of

solutions of each association. We show next how to use this

distance to filter those associations likely to be incorrect. The

resulting algorithm can be outlined as follows:

1) Search of correspondences. Equation (1) is used to

obtain the initial set of associations A with a nearest

neighbor approach.

2) Computation of the solution of reference. In this step

we apply the least squares of Equation (2) with the

associations

Wrong

Fig. 2. (Top) Two scans from a corridor but translated and rotated,
and the set A of nearest-neighbor associations with the distance [13].
(Bottom) Correspondence error d(pi, ri) (metric distance) and proposed
distance dqh(qref , hi). The wrong associations are detected in the set
dqh(qref , hi), while they cannot be robustly discarded based on the
correspondence errors d(pi, ri).

set A. The estimated solution is qref (solution of

reference).

3) Filtering the associations. For all associations ai ∈ A

we compute the dqh(qref ,hi) as explained in subsec-

tion II-B. Then, those with high distance are filtered.

The remaining set is A′.

4) Minimization. In this step we apply the least squares

minimization of Equation (2) with the set A′.

The idea underlying this approach is that with the first

minimization, we obtain a coarse estimation of the sensor

displacement. In this process, all the correspondences take

part. In the next step, we evaluate all the manifolds by

computing their distance to the reference solution. If this

distance is small, this means that the set of solutions of

this association is closed to the solution of reference, and

thus this association is likely to explain the same motion

that the reference one. However, when the distance is large,

the solution set is far from the reference solution. This

means that this association comes from an spurious or wrong

association and thus is rejected. At the end of this process we

have a set A′ of associations that explain a similar motion.

Notice that A′ is the set A but filtered with a criterion of
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distance in the space of solutions.

We describe next an academic but illustrative example

of this process. Figure 2(top) depicts two scans taken in

a corridor, but one of them is translated and rotated. The

nearest-neighbor strategy automatically process the associ-

ations computing the set A, with several incorrect corre-

spondences. Figure 2(bottom) shows the distance between

the correspondences (distance not processed in the Figure).

Notice how using this distance criterion is difficult to find a

validation gate.

In order to use the proposed strategy, we apply the

minimization to compute an estimation of the displacement

qref . The solution qref is a coarse approximation of the

motion (due to the large number of wrong associations).

Then, we construct the validation gate for each association

by computing the distance between the manifold of the asso-

ciation and qref (Equation 13). The distances are displayed

in Figure 2(bottom), distance processed in the Figure. Low

distances are right associations while wrong associations lead

to distances significantly greater. In the limit, one could

have a association ai = (pi, ri) established between two

overlapping points pi = ri, with a correspondence error

d(pi, ri) = 0. It is basically impossible to filter this point

with previous approaches, but not with our strategy since it

could have a large value of dqh(qref ,hi) > 0.

IV. EXPERIMENTS

This section describes the experimental work developed to

evaluate the filtering. As sensor, we used a SICK LMS200

mounted on a B21r robot. This sensor gathers 181 range

measurements (with a field of view of 180◦) at 5Hz with a

maximum range of 8.1m (we limited the range to 6m).

To check the influence of the filtering, we used the

standard ICP and MbICP. However, we did not implement

the refinements of the techniques described in [13] for both

methods, since we wanted to study the effect of the filtering

in the standard performance. We used the proposed filtering

only in the standard MbICP implementation (that we refer

to MbICP-IDA). Furthermore, the methodology is a little bit

different from the one proposed in [13]. This is because in

the context of the present paper the advantage might be in

noisy scenarios. Thus, we artificially contamine all the points

of the scans and inject outliers to test the methods. In fact,

these conditions are more exigent in terms of noise than those

described in [13].

In terms of inner parameters of the methods, we used

a smooth criterion of convergence [16] that requires two

consecutive iterations with a location correction lower than

0.0005 (m, rad) for each coordinate. The maximum number

of iterations is 300. Furthermore, we set the maximum

percentage of discarded associations to 20%.

We describe next the three types of experiments carried

out: (i) static scenario, (ii) dynamic scenario and a (iii) a

run in the laboratory.

A. Scan against scan experiments

In these experiment, we evaluated the scan matching

performance with two data sets: (i) an static scenario artifi-

Dynamic 

features

Fig. 3. Two range scans in a dynamic scenario.

cially corrupted with noise in the measurements and sensor

displacement, and (ii) a dynamic scenario. The first dataset

is composed by 879 laser scans acquired in a 60m trajectory

along different kinds of scenarios: regular rooms, corridors,

cluttered and open spaces, etc (Figure 4). Each scan is

compared with itself, so ground truth is available (0, 0, 0).
To simulate sensor noise and outliers (reflections, occlusions,

etc) each point is contaminated with uniformly distributed

noise in the range ±0.025m, and a random 10% of the points

are also contaminated with noise in the range ±0.50 m. For

each scan 10 different initial random locations are generated

(8790 runs for each range).

The second data set consists of 619 laser scans acquired in

a fixed location with 2 or 3 people continuously walking in

front of the robot (generating occlusions and non-static data

points). Figure 3 shows an example. Each scan is compared

with the next one, however, as the vehicle is static the ground

truth is (0, 0, 0). For each scan 10 different initial random

locations are generated (6190 runs for each range).

The next two tables summarize the results.

TABLE I

MBICP +IDA VS MBICP AND ICP: NOISY STATIC SCENARIO

Static Scenario Method ICP MbICP MbICP
Noise ±0.025m + IDA

10% outliers Conv. Rate (#) 23.73 20.9 14.51
Sensor error Precision (m) 0.011 0.007 0.007

(0.15m, 0.15m, 17◦) Robustness (%) 98.01 99.60 99.93
Conv. Rate (#) 32.09 27.46 19.24

Sensor error Precision (m) 0.011 0.007 0.007
(0.3m, 0.3m, 34◦) Robustness (%) 92.67 95.90 99.17

We discuss first the results in terms of robustness. A

run was considered a failure when the solution was larger

than 0.02m in translation and 0.02rad in rotation (notice

that the ground truth is (0, 0, 0)). These values are just a

threshold used to identify failures of the method. In Table

I we observe that all the methods are robust. However,

as the noise in the sensor increases the robustness of the

methods decreases. This effect also appears in the dynamic

scenario since there are many issues involved like dynamic
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(a) (b) (c) (d)

Fig. 4. Visual odometry. (a) Odometry, (b) ICP, (c) MbICP and (d) MbICP+IDA.

TABLE II

MBICP +IDA VS MBICP AND ICP: DYNAMIC SCENARIO

Method ICP MbICP MbICP
Dynamic Scenario + IDA

Conv. Rate (#) 26.51 22.41 17.02
Sensor error Precision (m) 0.024 0.004 0.004

(0.15m, 0.15m, 17◦) Robustness (%) 52.73 80.64 86.00
Conv. Rate (#) 37.359 30.24 22.13

Sensor error Precision (m) 0.025 0.004 0.004
(0.3m, 0.3m, 34◦) Robustness (%) 47.15 78.25 85.01

associations and occlusions affecting the correspondence step

of the methods (see Table II). In any case, the filtered data

association improves the robustness in both cases.

The MbICP and the MbICP+IDA have the same order

of precision. This is because precision is very related with

the behavior of the method in the vicinity of the solution.

Since this analysis is performed for the runs that converged,

then the role of the new data association is not very relevant

(almost no error in the sensor location).

The MbICP+IDA converges faster than the other methods.

This was expected since the new data association improves

the correspondences and thus the subsequent minimization.

The number of required iterations to converge is lower in all

cases. Regarding the computation time, the time consumed

with the filter is not very significant (the profile of the code

shows that more than 95% of the total computation time is

used in the data association step).

In summary the MbICP with the filtering technique out-

performs the standard methods in robustness, precision and

convergence. This is because the proposed approach filters

the incorrect data associations in the presence of large error

locations, occlusions, dynamic objects, etc.

B. Visual map with scan matching

The second test corresponds to the matching of consec-

utive scans of the first data set. As the ground truth is not

available, the validation is done by plotting all the scans

using the locations estimated by the methods.

Figure 4 shows the maps obtained with the odometry and

all the methods. However there is not a large difference

between the maps. Only the map of the MbICP+IDA is

slightly straighter than the map of the MbICP and the ICP.

This is due to the filter used in the MbICP+IDA. The

convergence rates (the average number of iterations) are

6.00, 6.06 and 6.14 for the MbICP+IDC, MbICP and ICP

respectively. There is no a significant difference since the

odometry is quite good.

We repeated the experiments by corrupting the sen-

sor location with uniformly distributed noise in the range
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(a) (b)

Fig. 5. (a) Odometry, (b) MbICP+IDA.

±(0.15m, 0.15m, 17◦). Then the scan matching process is

much more difficult since the working conditions are very

noisy. Figure 5 shows the map of the odometry and the

map with the odometry corrected with the MbICP-IDA.

After many trials with the MbICP we found that the suc-

cessful rate was very dependent on the parameters and the

succesfull/failure rate result was not significant. However,

the MbICP+IDA uses the filtering and achieves to map the

scenario. The mean convergence rate was 19.86 which is

slower than the other experiments. This is usual due to

the iterations needed in the beginning to filter the spurious

associations.

V. CONCLUSIONS

This paper presents a technique to improve the data asso-

ciation in the ICP-based scan matching. The method is based

on a distance-filter constructed on the basis of an analysis

of the set of solutions produced by the associations in the

sensor configuration space. This leads to a robust strategy

to filter all the associations that do not explain the principal

motion of the scan, which greatly improves the next steps

of the methods. The experimental results suggest that the

improvement of the data association leads to a more robust

and faster method in the presence of wrong correspondences.

Future work will concentrate in improving the rejection

criterion with adaptative thresholds. Furthermore, we will

investigate the usage of clustering strategies in the sensor

configuration space of each pairing to explicitly classify scan

points as static, dynamic, non-visible structure and outliers.
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