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Abstract— The paper proposes a systematic, data-driven 

method for kinematics modeling of high mobility wheeled 
rovers traversing uneven terrain.  The method is based on the 
propagation of position and orientation velocities starting from 
the rover reference frame and going through various joints and 
linkages to the wheels. Equations of the motion are set up in a 
compact form, which only require the D-H parameters of the 
rover joints and links.  To illustrate the proposed kinematics 
modeling, the method is applied to a rover similar to the 
NASA’s Sample Return Rover. 
 

I. INTRODUCTION  
Rovers with high mobility mechanisms are capable of 
traversing rough terrain and adapting their configurations to 
the changing terrain topology.  They are being used 
increasingly in diverse applications such as terrestrial and 
planetary explorations [1]-[2], forestry [3], agriculture [4], 
mining industries [5], defense and hazardous material 
handling and de-mining [6].  Rovers with active suspension 
systems are capable of modifying and adjusting their 
suspension linkages and joints so as to change their center of 
mass thus avoiding tipover while traversing rough and 
inclined terrain [7]-[8].  

Research efforts on kinematics modeling have been 
mainly limited to simple mobile robots moving on flat 
terrain [9]-[11].  Recently some attention has been directed 
towards high mobility rovers.  A of study the kinematics of a 
particular rover is reported in [12].  A Kalman-filter 
approach is proposed in [13] to estimate the wheel contact 
angle for traction control, and [14] employs simple 
kinematics model and a state observer to estimate rover 
position/orientation velocities.  In a recent paper [15], we 
developed a full kinematics model of an articulated rover 
and provided analysis of such rovers.   

  It is well known that a systematic and universal 
approach exists for kinematics modeling of robot 
manipulators.  In this approach, a so called Denavit-
Hartenberg (D-H) table is set up which specifies four 
parameters for forming a transformation matrix for each 
frame in the kinematic chain. The transformation matrices 
are cascaded (multiplied) to find the transformation between 
a base frame and a desired frame in the kinematics chain.  

 
 
Using the aggregate transformation matrix, the position and  
orientation of the desired frame are extracted. However, 
such a methodology does not exist for articulated rovers.  
The goal of this paper is to propose a systematic method, 
similar to those used for manipulators, for developing full 
kinematics models for motions over uneven terrain of 
general articulated high mobility wheeled rovers.  The 
proposed approach is superior to our earlier work [15], in 
the sense that it is applicable to a more general class of 
rovers and does not require symbolic manipulation. 

 

II. KINEMATICS MODEL DEVELOPMENT 
A high mobility wheeled rover is defined as a mobile rover 
that consists of a main body connected to a set of wheels via 
a set of linkages and joints that are adjusted so as to enable it 
traverse uneven terrain. The joints and linkages change 
either passively or actively.  The active linkages and joints 
have actuators through which their values can be controlled, 
whereas passive ones change their values to comply with the 
terrain topology.    
  The goal of kinematics modeling is to relate the motion 
of the rover body to the motions of the wheels. In order to 
achieve this we attach a sequence frames starting at the 
rover reference frame then the suspension joints, steering 
and finally the wheel-terrain contact frame. Let  

 and  

denote the position of the current and next frames, 
respectively.  Similarly, let  and 

 be the orientation of the current and 

next frames, respectively, where 

T
iiii ]zyx[u = T

1i1i1i1i ]zyx[u ++++ =

T
iiii ][ γβαϕ =

T
iiii ][ γβαϕ =

βα , and γ  are the rotation 
around x, y and z axes, or roll, pitch and yaw, respectively.   
In the case of rovers, we are generally more interested in the 
translational and rotational velocities than 
position/orientation.  The 13×  translation velocity vector of 
the next frame i+1 is dependent on the translational and 
rotational velocities of the current frame i plus any 
translational velocity added to the frame i+1 itself.    This 
can be written as [16] 
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( ) 1i1i,iiii,1i1i u~puRu ++++ +×+= &&&& ϕ

 

1n,,2,1i −= L

 (1) 

where  is the rotation matrix of the frame i+1 relative 

to the frame i,  is the position vector of the origin of 
the coordinate frame i+1 expressed in coordinate frame i, 
and 

i,1iR +

1i,ip +

1iu~ +&  is the translational velocity added to the frame i+1 
due to the velocity of the frame i+1 itself.  The latter is zero 
if the joint associated with the frame i+1 is not prismatic.   
The rotational velocity of the next frame i+1 is [16]  
 

 1iii,1i1i
~

R +++ += ϕϕϕ &&&  1n,,2,1i −= L  (2) 

 
Equation (2) shows that the rotational velocity of the frame 
i+1 is the sum of the effects of the rotational velocity of the 
frame i plus any rotational velocity 1i

~
+ϕ&  added to the frame 

i+1.  The latter is caused by the rotational joints associated 
with frame i+1.  Equations (1)-(2) are not in a form that can 
be used in a straightforward manner.  Our goal is to develop 
a universal method for using the Denavit-Hartenburg (D-H) 
parameters to model the frame to frame motion.  

Using D-H notation, four parameters describe the 
transformation from frame i to frame i+1 given by rotation 

iγ about z-axis, translation along z-axis, translation 
along x-axis, and rotation  about x-axis.  Cascading 

these four transformations in the order just described, we 
obtain the transformation from frame i to frame i+1 as  

id

ia iα
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(3) 

 
where c and s denote cosine and sine functions respectively. 
Using (3), we can extract the position vector  needed 
in (1) as 

1i,ip +
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 The transformation from frame i+1 to i  is the inverse of the 
homogeneous transformation matrix (3) , i.e.  
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We extract the rotation  from (5) as i,1iR +
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In order to find the translational and rotational velocities 

1iu~ +&  and 1i
~
+ϕ&  added to the frame i+1 due to the motions of 

these frames, we consider the instantaneous transformation 
)t,tt(T 1i,1i Δ−++  that describes the transformation from the 

frame i+1 at time )tt( Δ−  to this the same frame at time t.  

This matrix can be written as  
 

)t,tt(T)tt,tt(T)t,tt(T 1i,ii,1i1i,1i ΔΔΔΔ −−−=− ++++  (7) 
 
Taking the derivative of (7), and considering that 

)tt,tt(T i,1i ΔΔ −−+  is constant, we obtain 

 
)t,tt(T)tt,tt(T)t,tt(T 1i,ii,1i1i,1i ΔΔΔΔ −−−=− ++++

&&  (8) 
 
In order to express the above in terms of the D-H 
parameters, we take the derivative of (3) with respect to 
time, pre-multiply the result by (5) and substitute in (8) to 
obtain 
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where the argument )t,tt( Δ− has been dropped to simplify 

the notation.  It is noted that   can also be found for 

a general body in motion, which is given by [16 ] 
1i,1iT ++

&
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where x~& , y~& , z~& are the components of 1iu~ +& , and x

~
ϕ& , y

~
ϕ& and 

z
~
ϕ&  are the components of 1i

~
+ϕ& .  Equating the like terms in 

(9) and (10), we have  
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where iη  is the D-H parameter vector, and and are 
sparse coefficient matrices. It is seen from (11) and 
(12) that 

iA iB
43×

1iu~ +& and 1i
~
+ϕ& are linear in the derivative of the D-

H parameter vector iη& .  There is one more substitution 
needed before we express the final results.  We note that the 
cross product term in (1) can be expressed as  
 

 

ii

ii

ii

i

i1ii S
cd
sd

a
p ϕ

α
αϕϕ &&& −=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

×=× +
 

 

(13) 

where 
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and  is a skew symmetric matrix.  Finally, the equations 
of velocity propagation (1)-(2) can now be expressed as  

iS
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where , ,  and are given by, respectively by (6), 

(14), (11) and (12).   Equation (15) expresses the position 
and orientation rates (configuration rate) of the next frame 
i+1 in terms of the rates of the current frame i. The 
coefficient matrices , ,  and  are dependent only 

on the D-H parameters.  The D-H parameter table can 
readily be set up from the rover link-joint arrangements, as 
demonstrated in the following section.  It is also interesting 
to note that the D-H parameter derivatives 

iR iS iA iB

iR iS iA iB

η&  affect linearly 
the velocities of the next frame.  The above equation can be 
used to relate the position and orientation velocities of two 
frames in the chain  where 1 refers to the 

rover reference frame,  is a wheel axel frame,  

}n,,2,1{ 1j−L

1jn −

w,,2,1j L=  and w is the number of wheels.    
 We must define one more frame, i.e. the contact frame 
 where the motion over the terrain takes place. This 

frame is numbered  in the chain.  Since the 

transformation from the axel frame to the contact frame is 

the same for any wheeled rover, we derive this 
transformation explicitly.  The contact frame is shown in 

Fig. 1 where its x-axis is tangent to the terrain at the point of 
contact and its z-axis is normal to the terrain.  The contact 
angle, denoted by 

jC

jn

jA

jC

jδ , is the angle between the z-axes of the 

j-th wheel axel and the contact coordinate frames, as shown 
in Fig. 1. The contact frame is obtained from the axel frame 
by rotating  jδ  about the axel , then translating by the 

wheel radius r in the negative z direction. Thus the rotation 
matrix to be used in (15) is 
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The position vector for the this last frame, and its 

corresponding skew symmetric matrix to be used in (15) are  
1n jp +
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Fig. 1  Definition of contact angle 

 
The vector iη&  for the contact frame to be used in (15) 

consists of the wheel angle rolling rate , which causes the 

linear motion along x-axis of the terrain, as well as 

various wheel slips rates.  In the most general case, there 
will be six slips rates - three affecting velocities along 

,

jθ&

jrθ&

y,x && z&  and three affecting the orientation angles ,βα && , γ& .  
The first three slip rates are roll, side and bounce (up and 
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down off the terrain movement) denoted by , 

and .  The second three are slip rates are tilt, 

sway and turn denoted by , , .  

However, including all six slips at each wheel provides too 
many degrees of freedom making the motion erratic and 
unpredictable. In addition the roll slip rate cannot be 

distinguished from wheel roll rate , bounce 

cannot be considered without including dynamic 

effects, and sway is usually prevented because of the 
mechanical design.  For these reasons we consider only 
three of the slip rates in the kinematics model here and thus 
the second term on the right side of (15) for the contact 
frame is 
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The transformations (15) can be cascaded from the frame 

1 to the frame  to obtain the equation of the motion of the 

rover reference frame in terms of the motion of a wheel 
contact frame, which will be of the form 
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where and are coefficient matrices obtained by the 

cascading of the matrices in (15), and 

is the combined parameters 

rates.  Equation (20) describes the contribution of individual 
wheel motion and the connecting joints and linkages to the 
rover body motion.  The net body motion is the composite 
effect of all wheels and can be obtained by combining (19) 
into a single matrix equation as 
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where the matrices E and F are the aggregate matrices 
obtained from and ,   and 

 respectively, and  is the vector 

of aggregate parameter rates.  It is to be noted that (15), (19)  
and (20) can be developed for a given rover either 

analytically, e.g. using a symbolic software tool such as 
Matlab, or numerically. This kinematics model can be used 
for various applications, i.e. navigation, actuation of wheels, 
steering and active joints; slip detection, etc.  In the 
following section we apply the method to an articulated 
rover. 

jE jF [ T
wCCC uuu 1

&L&& =

[ T
wCCC 1 ϕϕϕ &L&& = Γ&

III. EXAMPLE  
The high mobility rover to be considered here is similar to 
the JPL Sample Return Rover [14], and has an active 
suspension system.  The schematic diagram of the rover to 
be modeled is shown in Fig. 2. The rover has four wheels 
with each independently actuated, and their rotation angles 
subscripted with a clockwise direction so that  1θ  , 4θ  are 
for the left side and 32 , θθ  are for the right side. At either 
side of the rover, two legs are connected via an adjustable 
hip joint.  In Fig. 2 the hip angle on the left and right sides is 
denoted by 12σ , and the hip angle on the right side is 22σ . 
These joints are actuated and used for balancing (leveling) 
the rover when traversing on an inclined surface. The two 
hips are connected to the body via a differential which has 
an angle ρ  on the left side and ρ−  on the right side.   On a 
flat surface ρ  is zero but becomes non-zero when one side 
moves up or down with respect to the other side. The 
differential joint ρ  is passive (unactuated) and provides for 
the compliance with the terrain. All four wheels are 
steerable with steering angles denoted by jψ , 4,3,2,1j = . 

The wheel terrain contact angles are jδ , 4,3,2,1j =  as 

shown in Fig. 1.  
 

wheel 1 wheel 4

differential 

adjustable 
height joint 

steering steering

ρ 

2σ 1 

θ1 θ4

ψ1 ψ4

 
Fig. 2  Schematic diagram of the rover left side. 

 
In order to derive the kinematics equations, we must 

assign coordinates frames.  Fig. 3 illustrates our choice of 
coordinate frames for the left side of the rover. The right 
side is assigned similar frames.  In Fig. 3, R is the rover 
reference frame whose origin is located on the center of 
gravity of the rover, its x-axis along the rover straight line 
forward motion, its y-axis across the rover body and its z-
axis represents the up and down motion.  The differential 
frame D has a vertical (along z-axis) offset denoted by  
and a horizontal distance of   from D.  The distance from 
the differential to the hip, denoted by , is half the width 
of the rover. The length of the legs from the hip to the wheel 
axle is . From the differential frame four chains branch 

1k

2k

3k

4k
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off, each consists of a hip, a steering column and a wheel 
axel.  The four frames for the hip, steering and axel are 
denoted, respectively, by ;  
and .  Each frame is obtained from the previous 
frame in the chain by rotations and translations as shown 
with the D-H parameters 

41 H,,H L 41 S,,S L

41 A,,A L

iiii ,a,d, αγ  in Table 1 and in Fig 
3.  Note that there are only two hip joints and thus 14 σσ =  
and 23 σσ = .  Fig. 4 shows the angle between the hip and 
steering frames, and between steering and axel frames for 
wheel 1.  

 
Fig. 3  Reference R, differential D, and hip H coordinate frames.  
 

 
Fig. 4  Side view (left figure) and top view of wheel 1. 

 
 

TABLE 1- D-H  Parameters for the  ARAS 
Frame iγ  id  ia  iα  iγ&  

D 0 k1 k2 -90 0 

H1 ρσ +− 190  k3 k4 0 ρσ && +− 1  

H2 ρσ −− 290  -k3 k4 0   ρσ && −− 2

H3 ρσ −+ 390  -k3 k4 0 ρσ && −3  

H4 ρσ ++ 490  k3 k4 0 ρσ && +4  

S1 901 −σ  0 0 90 1σ&  

S2 902 −σ  0 0 90 2σ&  

S3 903 −σ  0 0 90 3σ&  

S4 904 −σ  0 0 90 4σ&  

A1 1ψ  0 0 0 1ψ&  

A2 2ψ  0 0 0 2ψ&  

A3 3ψ  0 0 0 3ψ&  

A4 4ψ  0 0 0 4ψ&  

  
We now use the basic frame to frame equation (16) and 

go through the frames sequentially starting with the rover 
reference R and going to differential D, a hip , a steering  

, a wheel axel  and finally to a wheel contact 

frame. 

jH

jS jA

jC
The transformation from the rover reference R (frame 

i=1)  to the differential (frame i=2) is constant translational 
only, and thus no D-H parameter derivative is involved. 
Substituting the values of the D frame from Table 1, i.e. 

01 =γ , 11 kd = , 21 ka = , , into (16) with , , 

 and  given, respectively, by (6), (14), (11) and (12), 
we get 
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Next in the chain is a hip frames.  Using Table 1 and (15) 
we obtain the following equation which applies to all four 
hip frames indexed by    .j
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where , , and 

.  Note that (22) has a D-H parameter 

rate component which due to the motion of the differential 
and hip joint angles.  We now proceed to the steering frame, 
and use (15) and the steering row of Table 1 to obtain  
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Similarly the transformation from the steering frame to the 
axel frame is found as  
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4,3,2,1j =

Finally, the axel to the contact frame transformation 
matrices are given by (15)-(18), i.e.  
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Equations (21)-(25) can be combined to form the composite 
equations (19)-(20).  It is noted that most matrices in (21)-
(25) are sparse. 

IV. CONCLUSIONS 
A new methodology is presented for the kinematics 

modeling of high mobility rovers.  The approach is very 
general and can be applied to any wheeled rover and only 
requires setting up the D-H table for the rover links and 
joints.  The main feature of the work is its generality, e.g. 
dealing with both active (actuated) and passive joints and 
linkages, and its ease of implementation.  In particular, the 
proposed formulation makes the computer implementation 
very efficient through simple repeated function calls.  We 
have developed a computer program that reads the D-H 
table of a rover, and generates the equations of the rover 
motion symbolically, or computes various coefficient 
matrices of the rover motion numerically.  The latter can be 
used for real-time control of rovers.  
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