
Neural Reinforcement Learning Controllers for a
Real Robot Application

Roland Hafner
Neuroinformatics

University of Osnabrueck
Email: roland.hafner@uos.de

Martin Riedmiller
Neuroinformatics

University of Osnabrueck
Email: martin.riedmiller@uos.de

Abstract— Accurate and fast control of wheel speeds in the
presence of noise and nonlinearities is one of the crucial require-
ments for building fast mobile robots, as they are required in
the MiddleSize League of RoboCup. We will describe, how highly
effective speed controllers can be learned from scratch on the real
robot directly. The use of our recently developped Neural Fitted
Q Iteration scheme allows Reinforcement Learning of neural
controllers with only a limited amount of training data seen. In
the described application, less than 5 minutes of interaction with
the real robot were sufficient, to learn fast and accurate control
to arbitrary target speeds.

I. INTRODUCTION

A. Overall control architecture

The RoboCup initiative (www.robocup.org) provides a
highly competitive benchmark environment for the develop-
ment of novel approaches of intelligent autonomous robot
control. In the MiddleSize League, where up to 6 versus 6
mobile autonomous robots play soccer on a 8 times 12 m
field, the game has become increasingly fast in the last couple
of years. This requires the use of more and more elaborated
controllers on every level of the control architecture. Speed and
accuracy are crucial requirements for building a competitive
team. Our ’Tribot’ robot is based on an omnidirectional drive,
where three DC-motor driven wheels are mounted on each
corner of a triangular plattform (see figure 1). Control of
this omnidirectional robot is possible in any direction with
potential rotation at the same time. Every movement therefore
means the appropriate control of the individual speeds of the
DC motors driving the wheels.

The control architecture consists of several layers. Higher
layers give commands for the movement of the whole robot,
in terms of translational speed in x and y direction and in
terms of rotational speed. By the use of an inverse kinematics
model, this command is then transformed into individual wheel
speeds. For each wheel, an individual controller controls the
target speed. Only if these speed controllers work fast and
accurately, the global movement of the robot can be achieved.
However, since these motors are mechanically coupled to each
others via the plattform, their emitted forces influence and
disturb each other’s control task. Usually, PID controllers are
used for the task of low level speed control; however due
to considerable nonlinearities in the motor behaviour, they

M
otor 1

Motor 3

M
ot

or
 2

Fig. 1. The drive of the omnidirectional autonomous robot Tribot uses three
omnidirectional wheels arranged in triangular shape. Each wheel is driven by
a powerful DC motor.

are difficult to tune and typically not optimal over the whole
working range.

Therefore the idea is to replace the motor speed controllers
by learning controllers. Reinforcement learning controllers
based on neural Dynamic Programming methods in principle
allow to cope with the above mentiond requirements. They
can at least approximately learn an optimal control law (e.g. a
time optimal behavior) and are able to cope with nonlinearities
and noise. However, when it comes to the application in real
world with continuous state spaces, RL methods often suffer
problems of a long learning time or of not converging at all.

The recently proposesd Neural Fitted Q Iteration framework
(NFQ) [9], [10] overcomes the problem of needing irrealistic
many training samples by storing and reusing previously seen
transition tuples of the system in every learning iteration.
We will show that using the NFQ method, we are able to
learn highly effective control behaviour from scratch by direct
application on the real robot.

In contrast to other work that applies RL to real world
systems, we do not make use of a model or simulator to
train our controllers (like e.g. in [1]). Also, no prior policy is
required here (which is the case for policy gradient methods,
used e.g. in [5] [6] [4]). Instead, a neural network based RL
controller is learned from scratch only by the use of real
transition data collected by interaction with the real system.

The paper is organized as follows: First, we show the
application of an RL controller to a real, single DC motor. In
particular we will focus on the fact, that using our recently
developed NFQ algorithm , we are able to learn a highly
effective control policy from only a very short period of

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB3.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2098

interaction (less than 5 minutes) with the real motor. We will
further show, how by the use of an integrating output of the RL
controller, we can achieve satisfying accuracy while avoiding
to provide the controller with a large set of candidate actions.
Finally, we show that the concept is powerful enough to be di-
rectly realized on a real omnidirectional robot. The additional
difficulty there comes from the fact, that speed control has to
be done in a kinematically and dynamically coupled system.
Therefore, a large variety of different loads and forces disturbs
the individual motor behavior. Additionally, the collected data
is noisy. We both describe the data collection and the learning
process.

II. SETTING UP THE RL LEARNING FRAMEWORK

A. Task specification

Our goal is to learn a controller for regulating the speed
of each single DC motor. As a major demand, the controller
should be able to regulate the motor fast and accurately to
arbitrary target speeds.

To fit the controller directly to the real motor, learning will
be based on interactions with the real motor only. Neither an
analytical nor a simulated model will be used for learning.

In the following, we will describe the learning system set
up in more detail.

B. Markovian Decision Processes

The control problems considered can be described as
Markovian Decision Processes (MDPs). An MDP is described
by a set S of states, a set A of actions, a stochastic transition
function p(s, a, s′) describing the (stochastic) system behavior
and an immediate reward or cost function c : S×A → R. The
goal is to find an optimal policy π∗ : S → A, that minimizes
the expected cumulated costs

Jπ(s) = E
∞∑

t=0

c(st, π(st)), s0 = s (1)

for each state. In particular, we allow S to be continuous and
assume A to be finite for our learning system. The transition
model p is assumed to be unknown to our learning system
(model-free approach). Decisions are taken in regular time
steps with a constant cycle time.

C. Choosing the actions

The accurate regulation of the motor speed at arbitrary target
values would in principle require the output of continuous
voltages by the controller. Therefore, even if we accept a
certain tolerance in accuracy, a very large action set of control
voltages is needed. However, dealing with large action sets
means to have a large number of potential candidates for
each decision, and this drastically increases the complexity
of learning an appropriate control policy.

Therefore, we use an integrating output for our RL con-
troller [7]. The idea is, that the controller does not output the
voltage directly, but instead just decides about the decrease or
increase of the voltage by a certain amount �U . By this trick,

a wide range of resulting voltages can be produced whereas the
set of actions available to the RL controller remains relatively
small. The price we have to pay for this, is that the state of the
MDP that the controller sees, is increased by the current state
of the integrating output. This adds one additional component
to the input vector of the RL controller. The final action set
for the controller is

∆U ∈ {−0.3,−0.1,−0.01, 0.0, 0.01, 0.1, 0.3}
in order to have both fast and accurate increase and decrease

of the integrated ouput. The final output U of the controller
(that is eventually applied to the plant) is given by Ut = Ũt,
where Ũt = Ũt−1 +∆U realizes the integration of the actions
selected by the RL controller.

D. Determining the input representation

The input to the RL controller must represent the current
state of the DC motor, such that the Markovian property of
the task is captured.

For an ideal DC motor, the state can be sufficiently de-
scribed by two variables, namely the current motor speed ω̇
and the armature current I .

Using an integrating output as described above requires
the extension of the state representation by the actual voltage
signal U . This additional input here also helps to cope with
the discrepancies between the real and the ideal DC motor
behavior.

Since our final controller has to deal with arbitrary target
speeds, the information about the desired speed must also be
incorporated into the input. In principle, we can do this by
directly using the value of the target speed. However, here
we are using the the error between the actual speed and the
target speed, E := ω̇d − ω̇. As a result, the final input to the
controller consists of the four dimensional continuous vector
(I, U,E, ω̇). Finally figure 2 shows the over all structure of
the RL controller.

Controler
RL Microcontroler

Power Amplifyer
Motorˆ̇ω

˜̇ω
Ĩ
Ũ
Ẽ

∆U U∫ ¯̇ω

Fig. 2. Scheme of the Reinforcement Learning controller for the speed
control of a single motor.

E. Choosing the immediate cost function

The immediate cost function c : S × U → R defines the
eventually desired control behavior. Here, we are facing a
non-episodic task, since no real final states exist, but instead
regulation is an ongoing, active control task. The control
objective here is to first bring the motor speed close to the
target value as fast as possible and then to actively keep it at
the desired level.

In terms of the immediate cost function, this can be ex-
pressed by the following choice of c:

ThB3.1

2099

c(s, a) = c(s) =
{

0 if |ω̇d − ω̇| < δ
c else

(2)

The first line denotes the desire to keep the motor velocity
ω̇ close to its target value ω̇d, where the allowed tolerance is
denoted by δ > 0.

The second line expresses the desire for the minimization of
the time of the system being not close to its target value. Here
c > 0 is a small constant value. The above framework specifies
our demmand for a time-optimal controller to a region close
to the target value, which reflects our desire for a fast and
accurate control behaviour.

F. Neural Fitted Q Iteration (NFQ)

Neural Fitted Q Iteration [9], [10] belongs to the family of
Fitted Q Iteration [2] schemes, which itself is derived from
the idea of fitted value iteration [3].

The idea of classical Q-learning is to allow model-free
Reinforcement Learning by iteratively learning an optimal
value function over state-action pairs [13]. Typically, it is
applied on-line, which means, that after each observation of
a transition of the system, the corresponding value of the Q-
function is updated by the following rule:

Qk+1(s, a) := (1 − α)Q(s, a) + α(c(s, a) + γ min
b

Qk(s′, b))

where s denotes the state where the transition starts, a is
the action that is applied, and s′ is the resulting state. α is a
learning rate that has to be decreased in the course of learning
in order to fulfill the conditions of stochastic approximation
and γ is a discounting factor (see e.g. [12]). It can be shown,
that under mild assumptions Q-learning converges for finite
state and action spaces, as long as every state action pair is
updated infinitely often. In the limit, the optimal Q-function
is reached. The greedy exploitation of this optimal Q-function
finally yields the optimal policy.

To deal with continuous state spaces, the above Q-learning
rule can be adapted to be realized in a function approximator
like a multi-layer perceptron (MLP). However, the problem
with this approach is, that each update for one state-action pair
might induce unforeseeable changes at the Q-values for other
state-action pairs - disturbing or even destroying the effort
done so far. Typically, this leads to long convergence times,
requiring several ten thousands of trials [8].

The crucial idea underlying NFQ is the following: Instead
of updating the neural value function on-line after each sample
(which leads to the above problems), the update is performed
off-line considering the entire set of transition experiences
done so far. Experiences therefore are collected in triples of
the form (s, a, s′) by interacting with the (real) system. Here,
s is the original state, a is the chosen action and s′ is the
resulting state. The set of experiences is called the sample set
D.

The consideration of the entire training information instead
of updating on-line after each sample, has an important further
consequence: It allows the application of advanced supervised

NFQ main() {
input: a set of transition samples D;
output: neural Q-value function QN

k=0
init MLP() → Q0;
DO {

generate pattern set
P = {(inputl, targetl), l = 1, . . . , #D} where:

inputl = sl, al,
targetl = c(sl, al, s′l) + γ minbQk(s′l, b)

Rprop training(P) → Qk+1

k:= k+1
} WHILE (k < N)

Fig. 3. Main loop of NFQ .

learning methods, that converge faster and more reliably than
online gradient descent methods.

The NFQ algorithm is displayed in figure 3. It consists of
two major steps: The generation of the training set P and
the training of these patterns within a multi-layer perceptron.
The input part of each training pattern consists of the state
sl and action al of training experience l. The target value
is computed by the sum of the transition costs c(sl, al, sl+1)
and the expected minimal path costs for the successor state
s′l, computed on the basis of the current estimate of the
Q−function, Qk.

Since at this point, training the Q-function can be done as
batch learning of a fixed pattern set, we can use more advanced
supervised learning techniques, that converge more quickly
and more reliably than ordinary gradient descent techniques.
In our implementation, we use the Rprop algorithm for fast
supervised learning [11]. The training of the pattern set is
repeated for several epochs (=complete sweeps through the
pattern set), until the pattern set is learned successfully.

The neural networks used through all the experiments were
multi-layer perceptrons (MLPs), with an input layer of 5
neurons (4 as a state description, one for the action), 2 hidden
layers with 10 neurons each, and a single output neuron
(denoting the Q-value of the respective state-action pair).

III. REINFORCMENT LEARNING ON A REAL DC MOTOR

As a first experiment, we study the application of the RL
controller to the speed control of a single MAXON DC motor.
This motor is used in our mobile robot platform Tribot. One
main reason for wanting a learning controller is the nonlinear
behavior of the DC motor. The behavior is shown as the black
line in figure 4. The diagram shows the non-linear relationship
of the resulting (steady-state) speed depending on the applied
motor voltage.

The cycle time between to control decisions is 33ms. The
control signal to the motor is given in terms of motor voltage,
given as a PWM signal.

For learning a controller from scratch, the NFQ framework
as described in section II was used.

ThB3.1

2100

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

Zero Load

Robot driving forward

Robot rotating

Output Signal [%PWM]

W
he

el
 V

el
oc

ity
 [

ra
d/

se
c]

Fig. 4. Power amplifier input signal versus motor steady state velocity for
motor 1 in 3 load conditions. For an ideal DC motor the correlation is linear
for each load condition.

A. Data collection and learning

The NFQ learning procedure of the RL controller is based
on samples of transitions, collected through the interaction
with the real system. In principle, these transition experiences
can be collected in arbitrary fashion. Even a random sampling
procedure is possible (this will be shown later in section IV).
For the following, we will do a special kind of sampling, based
on an interplay of learning and data collection.

We start with a randomly initialized neural Q-function. The
DC motor is then controlled by exploiting the current Q-
function in an ε-greedy manner. As can be expected, at the
beginning, the controller does not do anything reasonable -
besides collecting transition samples. In figure 5 the system
behavior in the initial learning phase is shown. The policy
produces a highly varying output voltage Û which causes a
highly fluctuating motor speed.

After each 100 control cycles (corresponding to 3.3 sec-
onds), the episode is terminated. A new target speed is
randomly set and again the controller starts interacting with
the real motor. The data collected is added to the transition
data set. After each 2 episodes, the NFQ -procedure is called
with the set of all transition samples collected so far. The
resulting new Q-function is then greedily exploited within the
RL controller for the following 2 episodes. After that, again
the NFQ -procedure is called and so forth.

The parameters for NFQ are the following: We used an
MLP with 5 input, 2 layers of hidden units with 10 neurons
each and one output neuron. Each neuron used a sigmoidal
activation function. Learning was repeated for 300 epochs
using the fast supervised learning algorithm Rprop (the time
for the 300 epochs depends on the number of transitions in the
data set; the maximum time used here was less than 5 minutes
on a Pentium PC). Exploration was done in 20 percent of the
decisions while collecting data. The tolerated deviation from
the target speed was set to δ = 5rad/s.

Using NFQ , learning was achieved very effectively: after
only 60 episodes of interaction with the real system, a well
performing RL controller was learned from scratch. This
corresponds to only 198 s interaction time with the real motor,
only little more than 3 minutes. Alltogether, 6000 transition
samples were used for training. The resulting performance of

−150

−100

−50

 0

 50

 100

 150

 0 1 2 3 4 5 6 7

Motor Voltage [%pwm]
Motor Voltage Action [%pwm]

 1

 0.8

 0.6

 0.4

 0.2

 0

−0.2

−0.4

−0.6 0 1 2 3 4 5 6 7

Wheel velocity [rad/s]

Time [s]

Fig. 5. Behavior of the RL controller in the early stages of learning. The
behavior of the motor speed is rather arbitrary, since the controller has not
learned a useful policy yet. All the transition data is collected, stored and
used for training. The small figure show the working of the integration of
the RL actions: the green lines denote the actions, that are selected by the
RL controller which are integrated to result in the final voltage applied to the
motor (black signal).

−120

−100

−80

−60

−40

−20

 0

 20

 40

 60

 80

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

Wheel velocity [rad/s]

Fig. 6. RL control of the real DC motor on a wide range of target speeds.
The controller works both fast and accurately.

the learned RL controller is highly satisfying, both with respect
to speed and accuracy.

B. RL Controller performance

As required by the specification, the RL controller should
work for a wide range of target speeds. As figure 6 shows
on a set of example settings for the target speed, the RL
controller has perfectly learned to solve this task. The target
speeds are reached quickly and reliably (the zones marked
with grey denote the tolerated region around the target speed,
where the immediate reinforcement signal is zero).

As already pointed out, to reach a wide range of target
speeds, the controller must also be able to produce a large
range of voltages that are applied to the DC motor. In order
to circumvent a large set of potential candidate actions, we
provided the RL controller with an integrating output (see
section II-C). Obviously, the controller has learned to use this

ThB3.1

2101

−100

−50

 0

 50

 0 0.5 1 1.5 2 2.5 3
Time [s]

 3.5

Wheel velocity [rad/s]

Fig. 7. Wheel speed characteristics of the learned controller for a sequence
of two different set points.

−1

−0.5

 0

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5
Time [s]

Motor Voltage Action [%pwm]

Motor Voltage [%pwm]

Fig. 8. The generated output voltage of the controller (black) produced by
the actions plotted as green peaks for the control trajectory showed in figure
7.

instrument successfully. Figure 7 shows a sequence of two
target speed settings, that are successfully achieved (the blue
line denotes the motor speed). Figure 8 shows the control
signal that is generated to perform this behavior. The black
signal shows the integrated signal, that is applied to the motor,
and the green lines show the actions, that are selected by the
RL controller to generate the behavior. To achieve a quick
regulation, first a highly negative voltage is produced (by
the application of a large negative �U , and the voltage is
increased again to finally be kept at a voltage, that keeps the
motor at the desired speed (note that a direct application of
this final voltage would only lead to a slow reaching of the
target speed only).

C. Comparison to a PID controller

In figure 9 one of the problems of a linear PID controller in
this nonlinear control problem is shown: The DC motor must
be controlled first to a low backward speed of approximately
-28 rad/s followed by a target speed of approximately -82
rad/s. This covers a range from 30 percent to 80 percent of
the maximal speed of the motor. As can be seen in figure 4
the system behavior is strongly nonlinear in this range. Tuning
a linear PID controller therefore means to find a compromise
between quick regulation and avoiding overshooting behavior
- which is difficult to achieve, since the system itself behaves
nonlinear. The red line in figure 9 shows this problem: whereas
for a small negative speed we already observe an overshooting,
for a large negative speed, the PID controller is somewhat too

−90

−80

−70

−60

−50

−40

−30

−20

−10

 0

 0 0.5 1 1.5 2 2.5 3 3.5
Time [s]

RL Controller: Wheel velocity [rad/s]

PI Controller: Wheel velocity [rad/s]

Fig. 9. Comparison of a PID controller and the learned RL controller for a
sequence of two different set points.

cautious and reaches its target slowly. Of course, enhanced
classical control schemes can cover these effects in a better
manner as shown here, but they do it by the price of much
higher effort in modelling and tuning of controller parameters.

The RL controller on the other side (blue line in figure
9 learned a highly effective control policy by pursuing its
learning goal as specified in the immediate cost function
(’minimum time control’), regardless of the nonlinearities of
the plant.

IV. REINFORCEMENT LEARNING ON THE REAL ROBOT

When applying the RL motor speed controller as trained in
the previous section to our omnidirectional robot, the perfor-
mance is not satisfying. The controller manages to regulate the
motor to a steady-state - but the resulting speed is much below
the desired target speed. The reason for this can be found in
figure 4. Under varying load (red and blue line), the relation
between input voltage and resulting motor speed is drastically
changed. Since the learning controller so far has only seen the
motor behavior under no load, it is not surprising, that it is
not suited for the loads that occur in the robot environment.

One possibility now would be to artificially produce varying
loads on the DC motor and repeat the learning procedure of
the previous section. Another way, which we will pursue here,
is to directly collect data that are measured on the real robot.
This has the advantage, that the load profile is generated by
situations that actually occur on the real robot.

One problem is, that the data collected on the real robot
is much more noisy than the data collected for a single DC
motor in the load free case. Reason for this are the changing
contact points of the omnidirectional wheels and also small
misalignments in the horizontal axis. However, as shown in
the following, the RL controller is still able to cope with all
these problems and learn a highly satisfying control behavior.

A. Data collection and learning

The RL controller for the motor speeds is integrated at the
lower level within the control software for our mobile robot.

ThB3.1

2102

The complete software runs on a laptop, mounted on the robot.
Cycle time is 33 ms.

In contrast to the transition sampling procedure that in-
terleaves learning phases and data collection, we decided
to pursue another way here. Data was collected completely
randomly, that means, random control signals were emitted to
each of the three motors and the resulting transition samples
were collected. This is a valid procedure, since NFQ does not
rely for the samples to be collected in a certain fashion.

In particular, we run 50 episodes with a duration of 150
control cycles each (corresponding to a duration of 5 seconds),
applying purely random control signals. This gives an overall
of 50 * 150 = 7500 transition samples. Since the data was
collected simultaneously for all three motors, this makes an
overall of 3*7500 = 22500 transition samples that can be used
for training within the NFQ framework. The whole process of
data collection on the real robot needed only 50 ∗ 5s = 250s,
which is little more than 4 minutes.

This data is then fed into the NFQ -learning procedure. For
the neural network, the same MLP structure as before (5-10-
10-1) was used. As before, the number of epochs was set to
300. Using the same parameters for varying tasks somehow
underlines the robustness of the approach which is particular
useful when it comes to application on real systems, as we do
it here.

After only 30 iterations through the NFQ -loop, a highly
effective controller was learned.

B. RL Controller performance

In figure 10 the learned controller is shown running on the
real robot. The global drive commands used as a demonstra-
tion here are ’drive forward with 0.5 m/s’ and then ’rotate
by 2rad/s’. The inverse kinematics are used to deliver the
respective target speeds for each motor. The task of the learned
controller is then to regulate each motor to the desired motor
speed.

As shown in figure 10 the neural controller has learned to
control the motors very quickly and reliably to their desired
target speeds. A highly satisfying fact is, that the learned speed
controller works reliably under the wide range of actual loads
that occur within the real robot movement. It has even learned
to deal with the considerable noise that occurs in the measured
data.

V. CONCLUSION

We presented a succesful example of learning a highly ef-
fective control policy by the use of transistion data collected by
interaction with a real robot system only. In contrast to other
approaches that apply reinforcement learning to real systems,
no initial knowledge, especially no model, no simulator and
no initial policy, is required here. The NFQ procedure, which
is used to solve the RL part, makes highly efficient use of the
sampled data.

Using the NFQ approach we tackled the problem of a
DC motor speed control application for a three wheeled
omnidirectional mobile robot. In this application interesting

−15

−10

−5

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7

Wheel Velocity 1
Wheel Velocity 2
Wheel Velocity 3

Fig. 10. The learned controller tested on a follow up control on the real robot.
The robot was driven forward with 0.5 m

s
changing to a rotational velocity

of 2 rad
s

. The controller is able to achieve the velocities for all three motors
under the presence of noise generated from the wheels.

problems of rapidly changing loads, nonlinear system behavior
and noisy sensor data occur. Even in this scenario, the learned
controller is able to regulate each wheel fast and accurately
at the desired speed. Only a couple of minutes (less than 5
minutes) of random interaction with the real robot were needed
to finally achieve a highly effective control policy from scratch.

REFERENCES

[1] R. Coulom. Reinforcement Learning Using Neural Networks, with Ap-
plications to Motor Control. PhD thesis, Institut National Polytechnique
de Grenoble, 2002.

[2] D. Ernst and a. L. W. P. Geurts. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6:503–556, 2005.

[3] G. J. Gordon. Stable function approximation in dynamic programming.
In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth
International Conference on Machine Learning, pages 261–268, San
Francisco, CA, 1995. Morgan Kaufmann.

[4] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion, 2004.

[5] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for
humanoid robotics. In Humanoids2003, Third IEEE-RAS International
Conference on Humanoid Robots., 2003.

[6] J. Peters, S. Vijayakumar, and S. Schaal. Natural actor-critic. In
Proceedings of the 16th European Conference on Machine Learning
(ECML 2005), 2005.

[7] M. Riedmiller. Generating continuous control signals for reinforcement
controllers using dynamic output elements. In European Symposium on
Artificial Neural Networks, ESANN’97, Bruges, 1997.

[8] M. Riedmiller. Concepts and facilities of a neural reinforcement learning
control architecture for technical process control. Neural Computing &
Applications, 8:323–338, 2000.

[9] M. Riedmiller. Neural fitted q iteration - first experiences with a data
efficient neural reinforcement learning method. In Proc. of the European
Conference on Machine Learning, ECML 2005, Porto, Portugal, October
2005.

[10] M. Riedmiller. Neural reinforcement learning to swing-up and balance
a real pole. In Proc. of the Int. Conference on Systems, Man and
Cybernetics, 2005, Big Island, USA, October 2005.

[11] M. Riedmiller and H. Braun. A direct adaptive method for faster
backpropagation learning: The RPROP algorithm. In H. Ruspini, editor,
Proceedings of the IEEE International Conference on Neural Networks
(ICNN), pages 586 – 591, San Francisco, 1993.

[12] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press,
Cambridge, MA, 1998.

[13] C. J. Watkins. Learning from Delayed Rewards. Phd thesis, Cambridge
University, 1989.

ThB3.1

2103

