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Abstract— In this paper, we present a physical implementation
of Random Peer-to-Peer (RP2P) communication for use in a
multiple-robot system and analyze its performance. Traditionally,
multiple-robot systems have either broadcast all of their inter-
robot communication or have avoided explicit communication al-
together. RP2P communication, on the other hand, allows efficient
system-level communication while retaining the error-correction
capabilities of peer-to-peer connections. We demonstrate that
RP2P communication can be implemented with off-the-shelf
components. MRS as large as ten robots are investigated and it is
demonstrated that message rates as high as 50 messages/second
are easily achievable using TCP connections and 802.11B wireless
network interfaces.

I. INTRODUCTION

The robots that compose a multiple-robot system (MRS)
must explicitly communicate with each other if they are to
demonstrate truly cooperative behavior [1]. Without explicit
communication, individual robots are limited to inferring the
internal states of their teammates through passive observation.
This latter form of communication is known as implicit
communication. Traditionally, inter-robot communication has
been implemented explicitly using broadcast communications
or implicitly via stigmergic [2] interaction.

A message that is broadcast is received by all robots within
range of the sender, regardless of its relevance to them. Thus
the application layer of every robot within a system must
process every message that is received in order to determine
whether the message was intended for it or not, as it is the
actual content of a message that would determine its relevance.
Further, error correction is not practical when messages are
broadcast, as the multiple recipients have no means of coor-
dinating their acknowledgments back to the sender. Because
of this, broadcast communication at best is limited to short
messages that are not mission-critical, as their delivery intact
- or at all - can not be assured. In centralized MRS, a central
control robot conceivably could control the access to the
broadcast channel, but what about decentralized MRS? In a
decentralized MRS [3], no robot is in charge. With multiple
robots competing for access to the channel, data collision
is inevitable without some scheme for sharing the wireless
spectrum. Further, because messages could originate from any
member of the system, the number of messages transmitted

per unit of time would increase with system population size,
placing an ever increasing demand on the robots’ application
layers.

We are interested primarily in explicit communication
within a decentralized MRS. Explicit inter-robot communica-
tion in decentralized MRS is difficult to implement since the
behavior of these systems emerges from the local interactions
of the individual robots (bottom-up) rather than from a single
leader’s commands (top-down). Our previous work introduced
a communication scheme to implement communication in
a decentralized MRS along with a characterization of its
behavior based upon a mathematical and simulation-based
analysis [4]. We call this scheme Random Peer-to-Peer, or
RP2P. In this paper, we present a study of RP2P’s performance
based on physical experiments that were carried out using
multiple physical robots and commonly available 802.11B
wireless network interfaces. We are not concerned with what
is communicated between robots. Rather, our goal is to verify
that, under some realistic assumptions, RP2P with negligible
delay is realizable in a real-world environment with easily
obtainable, off-the-shelf components. We further derive the
characteristics of RP2P as network contention (e.g., MRS
population size and message transmission rate) increases.

The remainder of this paper is laid out as follows. In the
next section, we present an overview of RP2P and summarize
the aspects of its behavior that we experimentally verify in this
work. In Sections III and IV, we describe the hardware and
software that were used to conduct our experiments as well
as describe how the data from our experiments is analyzed
to produce our results. Section V presents our immediate
experimental results and Section VI provides a discussion of
these results along with some of the broader issues to which
they are relevant. We close this work with a summary of our
conclusions in Section VII.

II. AN OVERVIEW OF RANDOM PEER-TO-PEER

COMMUNICATION

In MRS research, what is communicated by a robot and how
that communicated information affects the performance of a
system usually is what is of interest. How that information
is communicated often is somewhat of an afterthought; as
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long as the information from A to B in a timely fashion
and uncorrupted without degrading system performance, the
medium of choice is of little concern.

Conversely, our research into RP2P communication is aimed
at identifying efficient and robust means of moving informa-
tion about a decentralized MRS. We are concerned not with
what actually is transmitted but with how it gets from A to B.
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Fig. 1. This figure illustrates the behavior of the program that was used to
control the individual robots that were used in this paper. The area enclosed
in the dotted line is the core loop that carries out RP2P communication.
It listens for messages from teammates for a period of time known as the
communication round. At the end of every communication round, the program
sends a message to a randomly chosen teammate. All sent/received calls are
logged along with the time that they were sent/received.

Robots communicating via RP2P periodically send mes-
sages to randomly chosen teammates. These messages are
sent directly from originator to recipient in a single hop. The
periodicity of RP2P is captured in the notion of “commu-
nication rounds”: a period of time over which a robot can

be expected to transmit a message. We denote the length of
a communication round by τcom. Every τcom seconds, each
robot randomly selects a teammate and sends it a message.
This all is carried out asynchronously; Robot-A’s current
communication round might end right now, while Robot-B
might not send a message until some time in the future.
All robots use the same value of τcom. Thus, in a properly
functioning RP2P system, messages will be sent continuously
and yet all robots will have equal access to the wireless
medium without any explicit centralized coordination. Unlike
broadcast communication, RP2P messages are addressed to
specific individuals at the IP-layer, so message filtering can
be carried out by network interfaces without burdoning the
robots’ application layers.

Our earlier analysis of RP2P presented two interesting
results [4]. First, information can be shared across a de-
centralized MRS in logarithmic time with respect to system
population. Second, except for MRS where the population size
is trivially small, the individual members of a MRS carrying
out RP2P will experience the same volume of message traffic
regardless of their system’s population size. Specifically, the
probability of a particular robot receiving k messages per com-
munication round is relatively constant and rapidly converges
to 1

k!e as the population size increases.
In our earlier analysis, it was assumed that an infinite

bandwidth communication channel was available to the robots.
Of course, in the real-world, this would not be the case and it is
obvious that the value of τcom, the system population-size and
the bandwidth of the communication channel are related and
likely governed by a relationship similar to Equation 1, where
smsg is the maximum message size, swifi is the wireless
protocol’s overhead that gets transmitted along with a message,
nr is the number of robots in a system, and B the bandwidth
of the wireless channel.

(smsg + swifi) · nr/τcom ≤ B (1)

Whether or not a physical MRS can be made to com-
municate via RP2P (that is, can the robots share a wireless
channel simply by asynchronously exchanging messages with
each other periodically as set by τcom), and whether or not
individual robots will be overloaded with messages are what
we will be verifying in this work. The sharing of information
in logarithmic time will implicitly be verified through the
verification of these other two performance metrics.

III. EXPERIMENTAL SETUP

In this section, we describe the hardware and software that
were used to implement a physical system to analyze the
behavior of real-world RP2P communication.

Our robots’ controllers were based around the gumstix [sic.]
embedded computer [5]. More specifically, we combined a
“gumstix connex 200” embedded computer along with a “CF-
stix” CompactFlash adapter and a Belkin F5D6060 Compact-
Flash 802.11B wireless card for each robot’s controller. The
connex 200 features a 200MHz Intel XScale processor, 4MB
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of filespace and the Linux operating system. Our experiments
were conducted on a private ad-hoc (peer-to-peer) wireless
LAN. All of the robots remained stationary within a few
meters of each other for the duration of a trial.

The robots were programmed in C using gcc. All commu-
nication was implemented with system calls to the standard
socket.h library. The layout of the program is illustrated
by the flowchart in Figure 1. The robots first carry out an
initialization, which sets up sockets to listen on, etc., and then
wait until they receive a “start” command broadcast over a
UDP port from a central controller. Once the “start” command
is received, the robots record their local time and treat this
recorded time as to for the remainder of the trial. All peer-to-
peer communication is carried out via TCP, which guarantees
that all messages will arrive at their destination without error.

The robots are provided with a time to use as τcom for
the trial at run-time. Every τcom ± 15% seconds, a robot will
randomly select a teammate and send it a message. The ±15%
variation in the periodicity of transmissions keeps the individ-
ual robots’ transmissions asynchronous with respect to their
teammates’ transmissions. In between their transmissions, the
robots receive any messages sent to them by their teammates.
For every message that a robot sends or receives, it logs the
time at which it was sent/received along with the IP of the
sender/recipient and a rolling 8-bit tag. The tag is used to
identify individual messages in both their originator’s sent-log
and their recipient’s received-log. The time logged for a sent
message is the time that the system call to send() returns.
The time logged for received messages is the time at which the
system call to recv() is made, which is made immediately
following the return from the call to accept(). A trial ends
when a “stop” command is received over the UDP port after
the initial “start” has been received. Aside from the “start”
and “stop” commands, there is no UDP traffic during a trial
and the central controller remains silent; its sole purpose is to
begin and end experimental trials.

In particular, we are interested in effects of three exper-
imental variables on the performance of RP2P. These are:
the length of a communication round (τcom), the number of
robots that compose a system and the lengths of the messages
that are exchanged by the robots. We ran all 42 combinations
of the seven values for τcom, three population sizes and two
message sizes listed in Table I. Each experimental trial was
run sufficiently long to allow each robot to send at least 100
messages; trials often were allowed to run longer.

τcom Population Size Message Length
1.0s 2 robots 4 bytes
0.5s 6 robots 256 bytes
0.2s 10 robots
0.1s
0.05s
0.02s
0.01s

TABLE I

EXPERIMENTAL VARIABLE VALUES

IV. METHOD OF ANALYSIS

The first step in analyzing the data from a given trial was
to merge the robots’ individual trial logs into a single master
log. It was assumed that any lack of synchronization between
the robots’ individual trial clocks was negligible.

From the merged logfiles, the mean time between trans-
missions by individual robots was computed, along with its
variance. We will refer to the measured time between a robot’s
transmissions as τ ′

com to differentiate it from τcom, the time
that the robots were instructed use as their inter-transmission
time.

We next compute the probabilities of a robot receiving
different numbers of messages per communication round.
In our earlier work, to simplify our theoretical models, we
assumed that all of the robots’ communication rounds were
synchronized. However, one of the advantages of RP2P is
that it is asynchronous. We define a function fτ ′

com
(t) for a

given trial as shown in Equation 2. Note that τ ′
com is used in

Equation 2 rather than τcom.

fτ ′
com

(t) =




0 t < 0
1 0 ≤ t ≤ τ ′

com

0 t > τ ′
com

(2)

Next, we define a second function, frec(t), that is the sum
of a set of Dirac delta functions; one centered about each time
in the log that a message was received by the particular robot
under analysis. The definition of frec(t) is given by Equation
3.

∀a such that a msg was recv’d at time t = a,
frec(t) =

∑
i=a δ(t − i) (3)

Recall that the integral of the Dirac delta function is unity.
We define a final function, fmsgs/τ ′

com
(t) that is the convolu-

tion of Equations 2 and 3, given in Equation 4. fmsgs/τ ′
com

(t)
represents the number of messages received by a robot during
the communication round that begins at time t. It has a stair-
step shape, the amplitude of which indicates the rate at which
messages are being received.

fmsgs/τ ′
com

(t) = frec(t) ∗ fτ ′
com

(t) (4)

An example of fmsgs/τ ′
com

(t) along with the received mes-
sages that produced its shape is given in Figure 2. We calculate
the probabilities of receiving various numbers of messages per
communication round by computing the normalized histogram
of fmsgs/τ ′

com
(t) for 0 ≤ t ≤ tf , where tf is the time of the

end of the trial.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments.
In the next section we put these results into context with the
broader issues that surround RP2P communication.

In all of our experiments, we found that there was no
difference between the systems that were exchanging 4-byte
messages and those that were exchanging 256-byte messages.
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Fig. 2. This figure plots the number of messages received per communication
round by a robot as well as the times at which the messages were received. The
stair-step function is found by treating the impulses as Dirac delta functions
and computing the convolution of these delta functions with a rectangular
function of unity height and length equal to the duration of a communication
round. The height of the convolution is equal to the number of messages
received in the communication round starting at that time.

All of the figures presented in this paper correspond to the
256-byte trials. Figure 3 compares τ ′

com for the various trials
that were conducted. Ideally τ ′

com should be equal to τcom.
For each system population, there seems to exist a minimum
τ ′
com, regardless of the value of τcom. Second, the minimum

τ ′
com appears to be a function of system population size. The

variance of τ ′
com (σ2

τ ′
com

) increases suddenly when τcom <

τ ′
commin

.
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Fig. 3. This figure plots the average time between an individual robot’s mes-
sage transmissions. The horizontal axis indicates the intended time between
message transmissions (τcom) and the vertical axis indicates the actual mean
time between transmissions. Note that, regardless of the intended value of a
communication round, there is a minimum observed communication round for
all three system populations, and that this minimum is population dependent.

For any given communication round, the actual time that a
robot would wait before transmitting a message could differ
from τcom by as much as ±15%, so in the ideal case, we

cannot expect στ ′
com

to be zero. If we treat the length of
a communication round as a random variable with uniform
distribution over [τcom − 15%, τcom + 15%], then we know
that σ2

τ ′
com

= (1.15τcom − 0.85τcom)2/12. Figure 4 plots
στ ′

com
/τ ′

com along with the expected value of the normalized
standard deviations. It clearly can be seen that the curves
corresponding to the three system populations diverge from
the expected value of στ ′

com
/τ ′

com at the largest value of τcom.
The lines corresponding to the 6- and 10-robot systems track
the predicted standard deviation well until the communication
round drops below 0.2 seconds, at which point they rise
rapidly. The same phenomenon occurs in the 2-robot system
when τcom is set below 0.02 seconds. Note that the curve
corresponding to the 10-robot trial rises slightly before that of
the 6-robot trial. Were more trials conducted with τcom varied
about the range [0.2, 0.5], we suspect that we would see the
10-robot curve begin to rise steeply slightly earlier than it does
in Figure 4. The sudden increase in standard deviation indi-
cates that messages no longer are being transmitted regularly
and thus the assumptions required by our earlier theoretical
analysis of RP2P no longer are satisfied.
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Fig. 4. This figure plots the standard deviation of the mean time between
a robot’s transmissions divided by the mean time between transmissions
(στ ′

com
/τ ′

com) versus the mean time between transmissions (στcom ). The
divergence of the curves corresponding to the experimental trials from their
expected value indicates that the periodic message passing of RP2P has broken
down. In these cases, the system is not performing as it should.

Using Equations 2-4, we compute the probabilities of in-
dividual robots receiving 0-3 messages per communication
round. The theoretical analysis of RP2P communication de-
veloped in our earlier work predicts that the probabilities of
receiving 0-3 messages per communication round should be
those plotted in Figure 5. We also include the asymptotes to
which all of the plotted message-reception probabilities should
converge in all of these plots.

Figure 6 plots the probabilities of receiving 0-3 messages
per communication round as measured from the trials in which
τcom was 1.0 seconds. The figure’s similarity to Figure 5
is clear. This resemblance, along with the knowledge that
the individual robots in the system were behaving as we
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Fig. 5. This graph plots the theoretical probabilities of receiving 0-3 messages
per communication round assuming that an infinite bandwidth channel is
available over which to send the messages. Our earlier work demonstrated
that the probability of receiving k messages per communication round quickly
approaches 1

k!e
as system population size increases. If the physical systems

described in this paper are functioning correctly, the data from their message
logs should produce graphs that are very similar in appearance to this one.

assumed confirms that RP2P communication is performing as
our theory predicted in all of these trials.
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Fig. 6. This figure plots the measured probabilities of an individual robot
receiving 0-3 messages per communication round when the duration of a
communication round was set to 1.0 second during RP2P communication. The
system is performing as it should, as indicated by this figure’s resemblance
to Figure 5.

We next present the measured probabilities of receiving 0-3
messages per communication round when the communication
round was set to 0.1 seconds. These probabilities are plotted
in Figure 7. The basic shape of the graph is similar to the
theoretical predictions given by Figure 5 except that, for the
6- and 10-robot systems, the probability of receiving zero
messages per round is elevated while the probabilities of
receiving non-zero numbers of messages are depressed. Recall
that for values of τcom less than 0.2 seconds, the robots in
the 6- and 10- robots did not regularly transmit messages as

required by RP2P, nor were they able to send their messages
as often as they were instructed to.
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Fig. 7. This figure plots the probabilities of individual robots receiving 0-3
messages per communication round when τcom was set to 0.1 seconds. The
probabilities corresponding to the 6- and 10- robot systems are distorted. In
those systems, the probability of receiving no messages is elevated while the
probabilities of receiving any messages are diminished.

Finally, we present a plot of the probabilities of receiving
0-3 messages per communication round when τcom was set
to 0.01 seconds. From Figure 4, we can see that, for all
three system populations, none of the robots were able to
send their messages as frequently or as regularly as they were
instructed to. Correspondingly, we can see that the probability
of receiving zero messages is inflated above the theoretical
prediction for all populations.
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Fig. 8. In this final graph, we plot the probabilities of receiving 0-3 messages
when τcom was set to 0.01 seconds. In all of the trials with a 0.01 second
communication round, all three system-populations behave abnormally; the
probability of receiving no messages per communication round is inflated for
all of them.

VI. DISCUSSION

In this section, we will discuss the significance of the
experimental results presented in the preceding section. Table

FrB7.4

3734



II summarizes the performance for each of the trials that we
conducted with respect to the success or failure of the system
to exhibit proper RP2P behavior. We will divide our discussion
into two parts. First, we will discuss trials in which RP2P
communication performed as expected. Then we will cover
those situations in which the system’s behavior was not as
intended. We labeled a trial a success if στ ′

com
/τ ′

com is close
to its predicted value (refer to Figure 4) and if τcom ≈ τ ′

com.
No differences were found between the 4- and 256-byte trials
with regards to the success or failure of a configuration.

τcom 2-Robots 6-Robots 10-Robots
1.0s success success success
0.5s success success success
0.2s success success success
0.1s success failure failure
0.05s success failure failure
0.02s success failure failure
0.01s failure failure failure

TABLE II

Our experimental results demonstrate that RP2P is a viable
communication scheme for MRS as long as the value of
τcom is made large enough to accommodate system population
size and wireless channel bandwidth. In the cases where we
labeled a trial a success, the measured probabilities of robots
receiving different numbers of messages per communication
round were precisely what our theoretical analysis of RP2P
predicted. That the data 4-byte and 256-byte trials were
virtually indistinguishable suggests that the maximum usable
message size is significantly larger than 256 bytes (at least
before the message size has any measurable effect on system
performance). The results of Anastasi et al. suggest that we
should see no degradation in performance if we increase the
sizes of the individual messages sent by the robots up to 1024
bytes or more [6]. Given their detailed analysis of 802.11B
ad hoc networks, message sizes as large as 10 kilobytes
would not be unreasonable with our current system under
ideal conditions. Note that more advanced wireless networking
protocols likely would increase this upper bound significantly.

In those trials where RP2P performance degraded, we
believe that it was the overhead of 801.11B that primarily
was responsible. It must be pointed out, though, that RP2P
does not fail catastrophically when τcom is set too low. The
wireless channel simply slows down as the robots try to
transmit messages too frequently. Since the standard system
call send() blocks (e.g., does not return until the message
has been buffered by the kernel), the system simply slows
down to accommodate the weakest link in the chain. The main
drawback of trying to run RP2P too quickly is the system will
lose the elegant, predictable behavior that otherwise would
have existed.

Since there are no performance gains to be had by setting
τcom too low (e.g. trying to communicate too frequently),
it would be desirable to identify the minimum τcom that a
system could sustain. Figure 4 illustrates that setting τcom

too low could be detected easily on-line via the variance in

inter-transmission time. The members of a decentralized MRS
communicating via RP2P should be able to adapt their working
value for τcom on-line to maximize the data transfer over the
wireless medium.

VII. CONCLUSIONS

In this paper, we have demonstrated via physical experi-
ments with real wireless networks that Random Peer-to-Peer
communication is practical with commonly available, off-the-
shelf components. We successfully implemented RP2P with 2-,
6- and 10-robot systems and our results suggest that consid-
erably larger MRS could utilize this communication scheme.
We identified two key variables that affect the performance of
RP2P: the number of robots that populate a system and the
rate at which they transmit their messages. Additionally, a third
variable, message size, should play a part in the performance
of the scheme, but the values investigated in our experiments
produced inconclusive results.

We also found that MRS of all population sizes can degrade
RP2P performance by attempting to transmit messages faster
than the chosen wireless protocol can handle. Robots within
a MRS are able to detect whether or not the rate at which
they are sending messages is violating the assumptions of
RP2P, so there is no reason why adaptive RP2P could not be
implemented that would adjust in real-time to maximize data
transfer rates while retaining the elegant, predictable behavior
of RP2P.

802.11B is by no means the ideal implementation of ad-hoc
networking for RP2P. It is, however, inexpensive, readily avail-
able and widely supported. There also is no reason why any
other wireless protocol that supports peer-to-peer networking
could not also be used to implement RP2P. The results detailed
within this paper suggest that most existing MRS could
utilize RP2P to enable robust robot-robot communication, and
therefore cooperation, without any hardware modifications.
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