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Abstract— This paper presents a new definition of stable
walking—that is not necessarily periodic—for a class of biped
robots. The inspiration for the definition is the commonly-held
notion of stable walking: the biped does not fall. To make
the definition useful, an algorithm is given to verify if a given
controller induces stable walking. Also given is a framework to
synthesize controllers that induce stable walking. The results
are illustrated on a model of a 5-link biped.

I. INTRODUCTION

The most intuitive definition of stable biped walking is
likely that “the biped does not fall.” Although this definition
is commonly held and intuitively pleasing, it is difficult to
rigorously verify that a given controller induces walking that
is stable in this sense. To help remedy this problem, this
paper gives a rigorous definition for stable aperiodic walking
in bipeds that have limited or no torque available at its ankles.

Other definitions of gait stability are the following:
For bipeds that walk flat-footed the most popular methods

to ensure gait stability are to require that the projection of
center of mass on the ground, the zero-moment point (ZMP),
or the foot-rotation indicator (FRI) [1] lie within the support
polygon. (These three concepts are closely related; for more
details see [1]–[5].)

Recently, Pratt and Tedrake [6] proposed a velocity-based
gait stability definition, which provides a sufficient condition
for gait stability.

For periodic gaits, the Poincaré map is the most popular
tool to assess gait stability. Use of a Poincaré map enables
the stability of the orbit corresponding to a periodic gait to
be determined by examination of an associated discrete-time
system. Cheng and Lin [7] derived the linearization of the
Poincaré map for the gait of a 5-link planar biped at the fixed
point. The eigenvalues of the linearized return map were then
used to design controllers that induced periodic gaits. In [8]–
[12], the eigenvalues of the Poincaré maps for the gaits of
several different bipeds were obtained numerically. In the
work that provides the foundations for the developments of
this paper, Grizzle et al. [13] and Westervelt et al. [14], [15],
the controller design was used to reduce the dimension of the
Poincaré map to one. In [14], the Poincaré map was shown
to be linear thus allowing gait stability to be derived using
simple stability metrics.

The proposed definition subsumes the common notion of
gait stability: the robot does not fall. The new definition of
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gait stability makes it possible to prove rigorously that a gait
is stable. The definition is independent of the controller used.

Using the proposed definition, a framework for the design
of walking controllers is given. This framework extends the
work of Westervelt et al. [14]. Unlike [14], which enabled
the design of controllers that only induce stable periodic
walking, the proposed framework allows the induced gaits to
be aperiodic. Moreover, the gait associated with an individual
controller of the framework is not necessarily asymptotically
stable.

This paper is organized as follows. Section II describes the
class of the biped model treated. Section III presents a series
of definitions leading to the novel definition of stable biped
walking. Section IV begins with a summary of results on the
hybrid zero dynamics-based approach to the control of biped
walking and then gives a control design approach to generate
controllers that induce stable walking in the sense developed
in Section III. In Section V the controller design approach
is illustrated via simulation on a 5-link model. Conclusions
are given in Section VI.

II. HYBRID MODEL OF BIPED WALKING

The biped is assumed to be planar and consists of N rigid
links connected by revolute joints. It is further assumed that
the leg ends have point contact with the ground, and that
there is no actuation between the stance leg tibia and the
ground (see Figure 1). A step is composed of two phases: a
swing phase, when only one leg end is in stationary contact
with the ground; and an instantaneous double support phase,
when both legs are in contact with the ground. The two
phases result in a model for walking that is hybrid.

During the swing phase the robot is modeled as an N -link
rigid-body system. The equations of motion are

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (1)

where q := (q1; . . . ; qN ) ∈ Q are the joint angles, Q is a
simply-connected, open subset of [0, 2π)N , q̇ ∈ R

N , and
u ∈ R

N−1. Since the dimension of u is smaller than the
dimension of q, the robot is underactuated. It is assumed
that the coordinates are chosen to be all relative angles with
only one absolute angle. The matrix D(q) is the mass-inertia
matrix, C(q, q̇) is the matrix of centripetal and Coriolis
terms, G(q) is the gravity vector, and B is the input matrix.

Defining x := (q; q̇), the model written in state space is

ẋ =
[

q̇
D−1[−Cq̇ − G]

]
+

[
0

D−1B

]
u (2a)

=: f(x) + g(x)u (2b)
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Fig. 1. A 5-link underactuated biped with the hip pH , stance leg tip p1,
swing leg tip p2, and joint angles indicated.

with state space TQ :=
{
(q; q̇)

∣∣ q ∈ Q, q̇ ∈ R
N

}
.

The double support phase is assumed to be instantaneous
and modeled by a rigid impact (see [14, IH1–IH6] for a
complete list of hypotheses concerning the impact.) The
development of the impact model requires an N + 2 DOF
model of the biped. The state variables just after and just
before impact are related by an algebraic map

x+ = Δ(x−) (3)

where x+ is the state just after the impact, and x− is the state
just before the impact. The impact map is applied whenever
the state enters the switching set S (at double support), where

S :=
{
(q, q̇) ∈ TQ ∣∣ pv

1(q) = 0, pv
2(q) = 0, ph

2 (q) > 0
}

.
(4)

The complete hybrid system may be written as

Σ :

{
ẋ = f(x) + g(x)u x− /∈ S

x+ = Δ(x−) x− ∈ S.
(5)

III. A NEW DEFINITION OF STABLE BIPEDAL WALKING

This section gives a sequence of preliminary definitions
leading to a precise definition of stable walking.

Let ϕ(t, t0, x0, u[t0,t)) be the solution of the swing phase
dynamics at time t ∈ R with initial condition x0 ∈ TQ at
t0 ∈ R and control u[t0,t) ∈ U , where U is the set of possible
controllers. Then, the time of next impact may be defined as
follows:

Definition 1 (Time of next impact). The time of next impact,
TI : R × TQ× U → R is defined by

TI(t0, x0, u[t0,t)) :=
inf

{
t > t0

∣∣ ϕ(t, t0, x0, u[t0,t)) ∈ S}
. (6)

When the robot does not complete a step, the time of next
impact is infinite. In addition, implicit in the definition of the
time of next impact is that TI(t0, x0, u[t0,t)) < ∞ implies
that ϕ(·) exists on t ∈ [t0, TI(t0, x0, u[t0,t))).

Definition 2 (Feasible trajectory/feasible trajectory set).
Given (t0, x−

0 ) ∈ R × S a feasible trajectory is a tra-
jectory for which there exists u[t0,t) ∈ U such that
TI(t0, Δ(x−

0 ), u[t0,t)) < ∞ and such that for all t ∈
[t0, TI(t0, Δ(x−

0 ), u[t0,t))) all constraints are satisfied. Such
constraints include ground reaction force constraints, joint
angles constraints, actuation limits, etc. All feasible trajec-
tories associated with (t0, x−

0 ) ∈ R × S form the feasible
trajectory set Φ(t0, x−

0 ), i.e.,

Φ(t0, x−
0 ) =

⋃
u[t0,t)∈U

ϕ( · , t0, Δ(x−
0 ), u[t0,t)), (7)

such that TI(t0, Δ(x−
0 ), u[t0,t)) < ∞.

Definition 3 (Proper switching set). The proper switching
set SP is a subset of the switching set S, such that for all
x−

0 ∈ SP there exists t0 ∈ R and u[t0,t) ∈ U such that
ϕ( · , t0, Δ(x−

0 ), u[t0,t)) ∈ Φ(t0, x−
0 ).

Definition 4 (Strictly proper switching set/strictly proper
feasible trajectories/strictly proper feasible trajectory set).
The strictly proper switching set SSP is a subset of
the proper switching set SP , with the property that for
all x−

0 ∈ SSP there exists t0 ∈ R and u[t0,t) ∈
U such that ϕ( · , t0, Δ(x−

0 ), u[t0,t)) ∈ Φ(t0, x−
0 ) and

ϕ(TI(t0, Δ(x−
0 ), u[t0,t)), t0, Δ(x−

0 ), u[t0,t)) ∈ SSP . Such
feasible trajectories are called strictly proper feasible trajec-
tories, and all strictly proper feasible trajectories associated
with (t0, x−

0 ) ∈ R × SSP form the strictly proper feasible
trajectory set ΦSP (t0, x−

0 ) ⊂ Φ(t0, x−
0 ).

Note that SSP ⊂ SP ⊂ S. In Definitions 3
and 4, for any given (t0, x−

0 ) ∈ R × SP (resp. R ×
SSP ), there may exist more than one feasible trajectory
such that ϕ(TI(t0, Δ(x−

0 ), u[t0,t)), t0, Δ(x−
0 ), u[t0,t)) ∈ S

(resp. SSP ). The non-uniqueness of the mapping is a result
of the use of different controllers. Finally, note that the
terminology “strictly proper switching set” is used instead of
“basin of attraction” since the notion of a basin of attraction
is usually associated with a periodic orbit or a fixed point,
and not aperiodic orbits.

The previous definitions are concerned with only single
steps. Building upon these definitions, walking and stable
walking are defined next. Loosely speaking, a step consists of
a swing phase and an impact event whereas walking consists
of successive steps. This is made precise in the following.

Definition 5 (Step and walking). A step of the robot
is the solution of (5) defined on the half-open interval
[t0, TI(t0, Δ(x−

0 ), u[t0,t))) with (t0, x−
0 ) ∈ R × S and

u[t0,t) ∈ U and TI(t0, Δ(x−
0 ), u[t0,t))) < ∞. Walking is

defined as successive steps.

Definition 6 (Stable walking). The biped walking is stable
if x−

0 := x0(t−0 ) ∈ SSP , and for any k = 0, 1, 2, . . . ,
ϕk( · , tk, Δk(x−

k ), uk) ∈ ΦSP (tk, x−
k ) for all t ∈ [tk, tk+1),

where x−
k := x(t−k ), tk+1 := TI(tk, Δ(x−

k ), uk) and uk :=
u[tk,tk+1).
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IV. CONTROLLER DESIGN

In this section, results from [14] on the use of hybrid
zero dynamics for the design of controllers that induce
asymptotically stable gaits are reviewed. Then, a discussion
of two conditions leading to gait instability follows. The
development continues with the presentation of a hierarchical
walking controller that acts by switching among a set of
individual controllers. The conditions required for the exis-
tence of a switching policy that induces stable walking and
sufficient conditions to find a policy are given. An approach
is given for determining a set of individual controllers such
that the conditions required for the existence of a switching
policy that induces stable walking are satisfied.

A. Basic Facts and Gait Stability

Some results from [14] are now summarized. For the
model (1), suppose that there exists a function θ : Q →
R that is monotonically increasing over the duration of a
step. Define a parameterized set of holonomic constraints,
hd,α(θ) : R → R

N−1 on the actuated coordinates. The N−1
constraint functions are chosen to be Bézier polynomials,

hdi,αi :=
M∑

k=0

αi
k

M !
k!(M − k)!

sk(1 − s)M−k, (8)

where s := (θ − θ+)/(θ− − θ+), i = 1, . . . , N − 1, αi :=
(αi

0; . . . ; α
i
M ) ∈ R

M+1, and θ+ and θ− are the values of θ
at the beginning and end of the swing phase.

Let α :=
[
α1, . . . , αN−1

] ∈ R
(M+1)×(N−1) and define

the output
y = h(q) := h0(q) − hd,α(q) (9)

where h0(q) := (q1; . . . ; qN−1). The set of parameters α
is said to be regular if it satisfies output Hypothesis HH1–
HH5 given in [14]. The regular parameter set implies that the
associated decoupling matrix is invertible, there exists a two-
dimensional zero dynamics during the swing phase, the as-
sociated zero dynamics manifold Zα := {x ∈ TQ | h(x) =
0, Lfh(x) = 0} is rendered invariant by the feedback control
u∗(x) := −(LgLfh(x))−1L2

fh(x), and, with appropriate
initialization, the robot is able to complete at least one
step. Let the feedback control Γα be any feedback control
satisfying Hypothesis CH2–CH5 given in [14]. Then, Zα is
invariant under Γα and is locally finite-time attractive. The
controller Γα is termed an individual controller associated
with Zα. Furthermore, the hybrid zero dynamics exists if

Δ(S ∩ Zα) ⊂ Zα. (10)

Let (ξ1, ξ2) be coordinates for Zα where ξ1 := θ, ξ2 :=
∂K/∂q̇N |Zα

= dN (q)q̇ and where K(q, q̇) = 1
2 q̇′Dq̇ is the

kinetic energy of the robot and dN is the row of D corre-
sponding to the absolute coordinate. In these coordinates, the
hybrid zero dynamics takes the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
ξ̇1

ξ̇2

]
=

[
k1(ξ1)ξ2

k2(ξ1)

]
(ξ1, ξ2) /∈ (S ∩ Zα)

[
ξ+
1

ξ+
2

]
=

[
θ+

δ2
zeroξ

−
2

]
(ξ1, ξ2) ∈ (S ∩ Zα)

(11)

where δ2
zero is a constant which can be computed a pri-

ori [13].
Let ζ2 = 1

2ξ2
2 . Since ξ1 is monotonic over a step, ζ2 may

be integrated against ξ1 over one step to obtain

ζ2(ξ1) = ζ+
2 − Vzero(ξ1), (12)

where Vzero(ξ1) = − ∫ ξ1

ξ+
1

k2(ξ)/k1(ξ)dξ. The quantity
Vzero(ξ1) may be computed numerically. Two values of Vzero

that are of particular interest are Vzero(ξ−1 ) and

V max
zero := max

θ+≤ξ1≤θ−
Vzero(ξ1). (13)

Concerning the ground reaction forces on the stance leg,
with the constraints perfectly imposed, the ground reaction
forces may be calculated as[

FT
1 (ξ1, ζ

−
2 )

FN
1 (ξ1, ζ

−
2 )

]
= Λ1(ξ1)ζ−2 + Λ0(ξ1), (14)

where FT
1 and FN

1 are the ground reaction forces on the
tangential and normal directions, respectively, and Λ0 and
Λ1 are smooth functions.

To ensure that the stance leg end does not leave the ground,
the normal force FN

1 must always point upwards. In addition,
the ratio of the tangential force and the normal force should
be smaller than the friction coefficient to ensure the leg end
will not slip on the ground. These two constraints result in
a limit on the value of ζ−2 . The limit, ζmax

2,|F T
1 /F N

1 |, may be
explicitly calculated as

ζmax
2,F N

1
:= sup

{
ζ−2 > 0

∣∣∣∣ min
θ+≤ξ1≤θ−

∣∣FN
1 (ξ1, ζ

−
2 )

∣∣ ≥ 0
}

(15a)

ζmax
2,|F T

1 /F N
1 | :=

sup
{

0 < ζ−2 < ζmax
2,F N

1

∣∣∣∣ max
θ+≤ξ1≤θ−

∣∣∣∣ FT
1 (ξ1, ζ

−
2 )

FN
1 (ξ1, ζ

−
2 )

∣∣∣∣ ≤ μs

}
.

(15b)

For the hybrid system, the restricted Poincaré map ρ : S ∩
Zα → S ∩ Zα has the form

ρ(ζ−2 ) = δ2
zeroζ

−
2 − Vzero(ξ−1 ) (16)

and its domain of definition is given by

SD :=
{
ζ−2 > 0

∣∣∣ δ2
zeroζ

−
2 > V max

zero , ζ−2 ≤ ζmax
2,|F T

1 /F N
1 |

}
.

(17)
On the zero dynamics manifold Zα, using [14, Eqns. (20)
and (21)], maps can be defined between (ξ1; ζ2) and (q; q̇)
as follows:

q = Π−1
α (0, ξ1) =: Υq,α(ξ1), (18)

where Πα(q) := (h; θ(q)) and

q̇ =
[

∂h
∂q

dN

]−1 [
0
ξ2

]
=

[
∂h
∂q

dN

]−1 [
0

−√
2ζ2

]
(19a)

=: Υq̇,α(ζ2). (19b)

Remark 1. Since ζ2 = ξ2
2/2, then ξ2 = ±√

ζ2. The sign may
be inferred when the walking direction is known. According
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to the coordinate system used here, and assuming that the
biped walks forward, the minus sign should be chosen.

1) Checking gait stability: There exists an exponentially
stable periodic orbit of the hybrid zero dynamics if, and only
if

δ2
zero

1 − δ2
zero

Vzero(ξ−1 ) + V max
zero < 0 (20)

and

δ2
zero < 1, (21)

with the corresponding fixed point

ζ∗−2 := −Vzero(ξ−1 )
1 − δ2

zero

∈ SD. (22)

2) Conditions corresponding to gait instability: Assuming
that the biped loses energy at every leg impact with the
ground, i.e., δ2

zero < 1, a fixed point of the return map exists.
As a result, a gait will be unstable only if the gait’s fixed
point is outside the corresponding domain of definition, SD.

Since the domain of definition is one-dimensional, the
fixed point may lie outside the domain by being on either
side of the domain. Assume the biped is initialized at a
point in the domain of definition of an individual controller
whose fixed point is such that ζ∗−2 > ζmax

2,|F T
1 /F N

1 |. In this case,
the biped’s walking rate will increase, and eventually the
stance leg end will slip due to violation of ground contact
constraints. On the other hand, assume the biped is initialized
at a point in the domain of definition of an individual
controller whose fixed point is such that ζ∗−2 < V max

zero /δ2
zero.

In this case, the biped’s walking rate will decrease, and
eventually the biped will fail to finish a step.

3) Transition Gaits: Let αi and αj be two regular param-
eter sets of the output (9). Then, it is possible to construct
a one step transition controller Γαi→j . One valid choice for
Γαi→j is given by (see [16])

αi→j,0 = αi,0

αi→j,1 = αi,0 −
θ−j − θ+

i

θ−i − θ+
i

(αi,0 − αi,1)

αi→j,M−1 = αj,M − θ−j − θ+
i

θ−j − θ+
j

(αj,0 − αj,1)

αi→j,M = αj,0

θ+
i→j = θ+

i

θ−i→j = θ−j

(23)

αi→j,m =
1
2
(αi,m + αj,m), m = 2, . . . , M − 2.

B. Switching Controller Analysis

The proposed walking controller has a hierarchical struc-
ture with two layers: The lower layer consists of individual
controllers that induce at least one step. The upper layer
consists of a switching controller that, at the end of each
step, chooses the next individual controller to be applied.

For convenience, the individual controllers of the lower
layer are collected into a matrix:

Γ̂ :=

⎡
⎢⎢⎢⎣

Γα1→1 Γα1→2 · · · Γα1→n

Γα2→1 Γα2→2 · · · Γα2→n

...
...

. . .
...

Γαn→1 Γαn→2 · · · Γαn→n

⎤
⎥⎥⎥⎦ . (24)

The parameter set associated with each individual controller
αi→j is assumed to be regular. Note that if the biped takes
one step under the controllers on the main diagonal of
Γ̂, the final configuration will be the same as the initial
configuration except with the legs swapped. These individ-
ual controllers are called self-transition controllers. Self-
transition controllers that induce asymptotically stable gaits
can be designed following the procedure summarized in Sec-
tion IV-A. The swing phase zero dynamics manifold Zαi→j

associated with the transition controller Γαi→j satisfies

Δ(S ∩ Zαi→i) ∩ Zαi→j = Δ(S ∩ Zαi→i)
Δ(S ∩ Zαi→j ) = Δ(S ∩ Zαj→j ).

(25)

That is, Zαi→j connects the zero dynamics manifolds Zαi→i

and Zαj→j associated with the self-transition controllers
Γαi→i and Γαj→j . The requirement (25) on the transition
controller zero dynamics manifold can be satisfied by choos-
ing the transition controller’s Bézier coefficients per (23), and
this requirement implies that the configuration of the robot
at the end of a step for controllers in the same column of Γ̂
are the same, whereas the configuration of the robot at the
beginning of a step are the same for controllers in the same
row of Γ̂.

Let ρi→j be defined as in (16) and SD,i→j be defined as in
(17) denote the map and the domain of definition associated
with the individual controller Γαi→j . The image of SD,i→j

under ρi→j is denoted by SI,i→j := ρi→j(SD,i→j).
Based on the domain of definition given in Section IV-

A, for each individual controller Γαi→j , the corresponding
domain of definition SD,i→j can be explicitly found as
(ζ−2,min,i→j , ζ

−
2,max,i→j) where

ζ−2,min,i→j :=
1

δ2
zero,i→j

V max
zero,i→j (26)

ζ−2,max,i→j := ζmax
2,|F T

1 /F N
1 |,i→j . (27)

Define

SD,i :=
n⋃

j=1

SD,i→j . (28)

From each point in SD,i there exists at least one individual
controller that results in the robot taking a step.

Given the matrix Γ̂ in (24), the following theorem gives
sufficient conditions for the existence of a switching policy
such that the biped in closed loop with the corresponding
walking controller results in walking that is stable in the
sense of Definition 6.

Theorem 1 (Switching policy existence). Assume that Γ̂ in
(24) is such that for all i ∈ {1, . . . , n}, there exists a non-
empty subset S∗

D,i ⊆ SD,i with the property that for all
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SD,1 S∗
D,1

SD,2
S∗

D,2

S∗
D,nSD,n

...

Γα1→2

Γα1→n

Γα2→n

Γαn→2

Γα2→1

Fig. 2. Example transitions in the lower layer of a walking controller. The
gait starts with the state in (Υq,1(ξ−1,1); Υq̇,1(S∗

D,1)). Then, the individual
controllers Γα1→2 , Γα2→n , Γαn→2 , Γα2→1 , Γα1→n are applied.

ζ−2,i ∈ S∗
D,i, there exists j ∈ {1, . . . , n} such that

ρi→j(ζ−2,i) ∈ S∗
D,j . (29)

Then, there exists a switching policy that induces stable
walking.

Proof. The definition of S∗
D,i, i ∈ {1, . . . , n}, means that

for all (ξ−1 ; ζ−2 ) ∈ ⋃n
i=1{ξ−1,i} × S∗

D,i there exists at least
one controller Γαi→j that will result in the biped taking one
step and the state of the zero dynamics returning to the set⋃n

i=1

{
ξ−1,i

} × S∗
D,i. Hence, the set

n,n⋃
i=1,j=1

({Υq,i→j(ξ−1,i)} × Υq̇,i→j(S∗
D,i ∩ SD,i→j)

) ⊂ S
(30)

is a strictly proper switching set. A switching policy may
be constructed by always taking the first controller Γαi→j

that results in the biped’s state returning to the set given
in (30). Therefore, existence of a switching policy has been
shown.

Figure 2 illustrates transitions in the lower layer of a
walking controller. From any point ζ−2,i ∈ S∗

D,i, there is at
least one individual controller Γαi→j which can steer ζ−2,i

into S∗
D,j . The upper layer switching policy of the walking

controller is responsible for making this selection.
For a given Γ̂, once the existence of a switching policy

has been established by Theorem 1, a sufficient condition for
a switching policy to induce stable walking is given by the
following:

Theorem 2 (A sufficient condition for the switching policy).
Given Γ̂ in (24) for which there exists a switching policy that
induces stable walking (cf. Theorem 1), all switching policies
satisfying the following are valid switching policies. At the
end of step k under the individual controller Γαi→j , the next
individual controller Γαj→w , where w ∈ {1, . . . , n}, must be
such that

ζ−2 (k + 1) ∈ S∗
D,j ∩ SD,j→w . (31)

Proof. Selecting a controller Γαj→w , w ∈ {1, . . . , n}, that
satisfies (31) results in the biped taking one step and the

TABLE I

PARAMETERS OF THE BIPED MODEL.

Link Length) Mass Moment of Inertia
(m) (kg) (kg·m2)

Torso 0.2 13.56 0.0905
Femur 0.36 1.47 0.0238
Tibia 0.36 0.97 0.0184

state of the zero dynamics landing in {ξ−1,w} × S∗
D,w from

{ξ−1,j}×S∗
D,j . The images {ξ−1,j}×S∗

D,j and {ξ−1,w}×S∗
D,w

in TQ are subsets of a strictly proper switching set as in (30).
That is, the strictly proper switching set is invariant under
the switching policy. Hence, stable walking is induced.

Remark 2. As an example of a switching policy, consider
one that, at the end of each step, randomly selects among
the available controllers satisfying (31). More generally, any
freedom in the controller choice may be exploited to achieve
additional goals, such as the biped stepping over an obstacle.

C. An Applications of Theorem 1

The following application follows the proof of Theorem 1
to check the existence of S∗

D,i, i ∈ {1, . . . , n}:
Given n self-transition controllers Γαi→i , i = 1, . . . , n,

each with non-empty domain of definition, SD,i→i, and
whose parameter sets are regular, complete the following:

A1.1) Populate the matrix Γ̂ with transition controllers
Γαi→j , for all i, j = 1, . . . , n, i �= j following
the approach given in Section IV-A. Continue to
Step A1.2) if every parameter set associated each
transition controller is regular; otherwise, stop.

A1.2) Compute SD,i→j and SD,i, for i, j = 1, . . . , n. If
for all i ∈ {1, . . . , n}, S∗

D,i is non-empty, then, by
Theorem 1, there exists a switching policy that can
result in stable biped walking; otherwise, no switching
policy exists.

V. EXAMPLE

The following example illustrates the application of the
procedure for controller synthesis given in Section IV-C that
results in stable walking in the sense of Definition 6. The
model used is of a 5-link biped that is in our laboratory.
The model parameters are given in Table I. The friction
coefficient between the ground and the robot’s stance leg end
is assumed to be μs = 0.6. Sixth-degree Bézier polynomials
were used to define hd(q), and θ was defined as θ :=
−q5 − q1 − q3/2.

The walking controller was synthesized following Sec-
tion IV-C. Four self-transition controllers, Γαi→i , i =
1, . . . , 4, were designed by parameter optimization. Self-
transition controllers Γα1→1 and Γα2→2 induce asymptoti-
cally stable gait at the rates of 0.36 m/s and 0.54 m/s,
respectively. The gaits induced by self-transition controllers
Γα3→3 and Γα4→4 are unstable because their fixed points are,
respectively, above the upper boundary and below the lower
boundary of their domain of definitions.
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TABLE II

DOMAIN OF DEFINITION SD,i→j OF INDIVIDUAL CONTROLLER Γαi→j .

i j 1 2 3 4

1 (59, 171) (59, 162.2) (59, 84) (65, 174)
2 (57, 213) (57, 200) (57, 100) (65, 216)
3 (27, 141) (26, 130) (26, 106) (40,143)
4 (61, 174) (61, 165) (61, 87) (70, 147)

TABLE III

IMAGE SI,i→j OF THE DOMAIN OF DEFINITION SD,i→j .

i j 1 2 3 4

1 (61, 135) (66, 134) (57, 74) (63, 135)
2 (61, 162) (66, 158) (57, 85) (64, 169)
3 (60, 147) (64, 143) (55, 116) (68, 147)
4 (60, 135) (65, 134) (56, 74) (65, 115)

The matrix Γ̂ was populated with transition controllers
following Section IV-A.3. The domain of definition and its
corresponding image for each individual controller are given
in Tables II and III. In Table II, the entries in italics are
subsets of the actual domain of definitions, and are chosen
such that S∗

D,i will exist. It may be checked that S∗
D,i =⋃4

j=1 SD,i→j .
The switching policy is chosen such that the selection

of individual controllers is done randomly as suggested
in Remark 2. The resulting walking controller in closed-
loop with the biped model was simulated for 20 steps. The
individual controllers chosen are Γα,0→0, Γα,0→0, Γα,0→2,
Γα,2→0, Γα,0→1, Γα,1→1, Γα,1→0, Γα,0→2, Γα,2→3, Γα,3→0,
Γα,0→3, Γα,3→0, Γα,0→1, Γα,1→3, Γα,3→3, Γα,3→1, Γα,1→1,
Γα,1→0, Γα,0→0, Γα,0→1. From Figure 3 it is clear that the
biped’s gait is aperiodic. During the walking, the nominal
ground reaction force points upwards, and its value varies
between 78 N and 194 N, the ratio of the tangential force
and the nominal force is less than the friction coefficient,
and the ground contact assumptions are satisfied.

VI. CONCLUSIONS

This paper presented a new definition of stable biped
walking and gave a framework for the design of controllers
that induce aperiodic walking that is stable in the sense of
the given definition. The class of bipeds to which the results
apply are in planar bipeds with point feet. The definition of
stable walking given in this paper reflects the nature of the
human bipedal walking, and is independent of the control
strategy. The controller design framework was illustrated by
simulation on a 5-link biped model.
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