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Abstract— This paper presents an approach that enables
heterogeneous robots to automatically form groups as needed
to generate both strongly-cooperative and weakly-cooperative
multi-robot task solutions in the same application. The funda-
mental contribution of this work is the layering of our low-
level coalition formation algorithm for generating strongly-
cooperative task solutions, with high-level, traditional task
allocation methods for weakly-cooperative task solutions. At
the low level, coalitions that generate strongly-cooperative
multi-robot task solutions are formed using our ASyMTRe-
D approach that maps environmental sensors and perceptual
and motor schemas to the required flow of information in
the robot team, automatically reconfiguring the connections of
schemas within and across robots to form efficient solutions.
At the high level, a traditional task allocation approach is used
to enable individual robots and/or coalitions to compete for
weakly-cooperative task assignments through task allocation.
We introduce the site clearing task to motivate the work, and
then formalize the problem. We then present the approach of
layering ASyMTRe-D with task allocation. We validate the
approach on a team of robots with the site clearing task.
We believe the resulting approach is a flexible system that
can handle a broad range of realistic multi-robot applications
beyond what is possible using other existing approaches.

I. INTRODUCTION

This paper addresses the problem of synthesizing both

strongly-cooperative and weakly-cooperative solutions in the

same multi-robot application. In past work, most task al-

location approaches in multi-robot teams have dealt with

the assignment of single-robot tasks, which are tasks (or

collections of tasks or subtasks) that can be accomplished

independently by a single robot. We call these task solutions

weakly-cooperative. Another important type of task in multi-

robot teams is the multi-robot task, which typically requires

a strongly cooperative solution [3], meaning that the task

is not trivially serializable, and cannot be decomposed into

subtasks that can be completed by individual robots operating

independently. Instead, it requires robots to act in concert to

achieve the task. This type of task is also called tightly-

coupled or tightly-coordinated. While much prior work has

addressed the allocation of weakly-cooperative tasks, and

some recent work is beginning to address the allocation of

strongly-cooperative tasks, almost no work has been done

on combining approaches that can handle both types of task

solutions in the same application. The objective of this paper

is to present an approach that integrates the two mechanisms

into a single framework. More specifically, our approach

layers our ASyMTRe-D coalition-formation algorithm for

strongly-cooperative task solutions [16] with an auction-

based mechanism for achieving the allocation of multiple

weakly-cooperative tasks. Robots first form coalitions at the

low level to solve a single multi-robot task with a strongly co-

operative solution. Coalitions, and possibly individual robots,

then compete for tasks (or collections of tasks) at the high

level, using the more traditional task allocator for weakly-

cooperative tasks. By combining the benefits of coalition

formation and task allocation mechanisms, we believe the

resulting approach is a flexible mechanism for a broad

range of realistic multi-robot applications, with the ability to

generate both strongly cooperative and weakly cooperative

solution strategies, as appropriate.

The remainder of the paper is organized as follows.

Section II provides additional background on our approach.

Section III describes an application example to motivate this

work. The problem is formalized in Section IV. Section V

describes our approach in detail. Experimental validation of

the approach is discussed in Section VI. We provide brief

concluding remarks in Section VII.

II. BACKGROUND AND RELATED WORK

The task allocation problem is the problem of determining

a suitable mapping between robots and tasks. The majority of

the work in task allocation for multi-robot systems [14], [23],

[2], [8], [4], [24] focuses on allocating single-robot tasks

to single-task robots with either instantaneous assignment

or time-extended assignment (using the taxonometric terms

of [7]). Typically, a task is decomposed into independent

subtasks [14], hierarchical task trees [24], or roles [19] either

by a general autonomous planner or by the human designer.

Independent subtasks or roles can be achieved concurrently,

while subtasks in task trees are achieved in order accord-

ing to their precedence constraints. The work of [24] also

addresses “tightly-coupled” multi-robot tasks; however, their

tasks can be decomposed into multiple single-robot tasks and

thus falls into the category of weakly-cooperative tasks. A

formal analysis comparing the computation, communication

requirements and solution qualities of several well-known

approaches is presented in [7].
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Multi-robot coalition formation deals with the issue of

how to organize single-task robots into subgroups to ac-

complish multi-robot tasks using a strongly cooperative

solution approach (again, using the taxonometric terms of

[7]). These multi-robot tasks requiring strongly cooperative

solutions are sometimes referred to as tightly-coupled tasks.

Some researchers refer to teams of robots performing these

strongly-cooperative multi-robot tasks as coalitions [7].

Some recent work [9], [10], [11], [6], [22], [16] has begun

to address this problem of the allocation of tightly-coupled

tasks, or the forming of coalitions. The Hoplites approach

[10] focuses on the selection of an appropriate joint plan

for the team to execute by incorporating joint revenue and

cost in the bid. The work in [9] achieves multi-robot task

allocation through matching roles with robot capabilities.

The work in [11] also matches task required capabilities with

robot capabilities and accomplishes multi-robot tasks through

combinatorial bids. The approach by Vig and Adams [22]

forms robot coalitions by adapting the coalition formation

techniques developed by Shehory and Kraus [18] for multi-

agent systems to the domain of multi-robot systems.

None of the above approaches, however, are able to

autonomously generate joint plans for how robots should

work together to solve a multi-robot task. In the general case,

robots will have different sensor, effector and computational

capabilities. Thus, a team of resource-bounded robots may

not individually possess all of the required capabilities to

accomplish a task. However, they could work with other

robots as a coalition to effectively accomplish the task ob-

jectives, if they were able to autonomously form a joint plan

(although the solution approach to achieving a joint plan does

not necessarily have to use traditional planning approaches).

Challenges exist in how coalitions can be automatically

formed that efficiently use the sensory and computational

resources distributed across different robots.

Our recent work on ASyMTRe-D [16] generates flexi-

ble techniques for automating the formation of coalitions

(i.e., generating joint plans) to generate strongly-cooperative

multi-robot task solutions, which may involve the sharing

of sensory, perceptual, and computational capabilities across

heterogeneous team members. These solutions are generated

on a more fine-grained schema level instead of on the

traditional sensor/task level. Although ASyMTRe-D provides

a way of generating flexible robot coalitions, it is only

designed to handle a single strongly-cooperative multi-robot

task at a time. For missions of multiple tasks, we would

like to also achieve task allocation amongst coalitions and/or

individual robots for weakly cooperative tasks, thus combin-

ing the benefits of low-level coalition formation with those

of high-level, more traditional, task allocation. The purpose

of this paper is to describe a complete methodology for

generating both strongly-cooperative and weakly-cooperative

task solutions in the same multi-robot team application.

III. MOTIVATING EXAMPLE: THE SITE CLEARING

APPLICATION

To motivate the need for the combination of strongly-

cooperative coalitions with task allocation for weakly-

cooperative tasks, we introduce a site clearing application.

This site clearing application is a simplified version of the

site preparation task [15], which has been identified by

NASA as an important prerequisite for human missions to

Mars. The site clearing application requires a specific area to

be cleared of obstacles, which we simplify to be boxes with

different weights or sizes. The objective of the application

is to clear the site in as little time as possible while

minimizing the cost to the robots (e.g., energy consumption

or computational requirements). For the purposes of this

discussion, we assume that a map is available to enable the

robot team to determine the positions of the obstacles in the

area. We assume that the obstacles to be removed from the

site can either be pushed outside the area, or can be pushed

to a common collection point, as indicated by a beacon. We

further assume that a partial-order planner exists to determine

the ordering constraints of removing the obstacles, in case

certain obstacles need to be removed before other obstacles

can be cleared. For example, one obstacle may block the

path to another obstacle.

The site clearing application can be decomposed into

a series of tasks with ordering constraints. Each task is

aimed at removing one obstacle from the site, which we call

“Remove Obstacle”. Since only some tasks have ordering

constraints, the system can allocate a subset of the tasks to

the robots for concurrent execution. Thus, when making a

task allocation decision, robots are considering more than

one task at a time. Since obstacles (boxes) have different

weights or sizes, a “Remove Obstacle” task may require a

varying number of robots to form coalitions to accomplish

the task in a strongly cooperative manner that efficiently uses

the available robot capabilities. Additionally, when multiple

coalitions are available, the system must determine which

coalition is the best fit to the current task.

Note that from our perspective, an individual task cannot

technically be categorized in advance as a multi-robot task or

a single-robot task. Instead, whether or not the task requires

single or multiple robots depends upon the capabilities of the

robot team members. Some robots may be able to perform a

given task on their own (thus making the task a single-robot

task), while other robots may require help from teammates

to accomplish that same task (thus making that same task a

multi-robot task). Our ASyMTRe-D approach for generating

strongly-coupled task solutions is able to find combinations

of robot capabilities that can accomplish the task in either the

single-robot case or the multi-robot case, depending upon the

team capabilities. It is challenging to predefine solutions for

the team when the team capabilities are unknown at design

time or they change during the task execution.

IV. FORMALISM OF THE PROBLEM

The problem we address can be formally defined as

follows:
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• R = {R1, R2, · · · , Rn} is a collection of n robots,

where each robot Ri is represented by its available

environmental sensors (ES), and its corresponding per-

ceptual schemas (PS), motor schemas (MS), and com-

munication schemas (CS).

• T is the team-level task to be accomplished, which is

denoted as T = {t1, t2, t3, · · · }.

– A set of ordering constraints defines a proper

partial order of tasks. ti ≺ tj means that task ti
must be executed sometime before task tj .

– A set of open preconditions. A precondition is open

if it is not achieved by some task in the plan.

– A subset T i of T can be allocated to robots

concurrently if the tasks in T i do not have ordering

constraints and their preconditions are not open.

– Each task ti is further defined as a set of motor

schemas that need to be activated in certain ways

in order to accomplish this task.

• To accomplish a subset of tasks T i, a collection of m

coalitions, denoted Ci = {Ci
1
, Ci

2
, · · · , Ci

m}, needs to

be generated based on the task requirements of T i and

the robot capabilities [16].

• With multiple solutions available, we define a cost

function for each robot, specifying the cost of the robot

performing a given task, and then estimate the cost of

a coalition performing the given task. We consider two

types of cost:

– A robot-inherent cost measures the inherent cost

(e.g., in terms of energy consumption or compu-

tational requirements) of using particular capabil-

ities on the robot (such as a laser or a mapping

algorithm). We denote robot Ri’s inherent cost by

robot cost(Ri).
– A task-specific cost measures cost according to

task-related metrics, such as time, distance, success

probability, etc. We denote the cost of Ri perform-

ing task tj by task cost(Ri, tj).
– The cost function of Ri performing tj is rep-

resented by cost (Ri, tj), which is a weighted

combination of both the robot-inherent cost and

task-specific cost, normally in the form of a linear

function. Other type of costs can also be incorpo-

rated when necessary.

– The cost of a coalition Ci performing a task tj is

the sum of individual cost of robots that are in the

coalition, which is denoted as:

cost(Ci, tj) =
∑

Rk∈Ci

cost(Rk, tj) (1)

The problem we address here is: Given (T , R), assign a

set of tasks T i to coalitions of R such that the sum of the

coalition costs
∑

tk∈T i,Cj∈Ci cost(Cj , tk) are minimized.

V. THE APPROACH: LAYERING COALITION FORMATION

WITH TASK ALLOCATION

To allocate multi-robot tasks to a team of robots, we

propose an approach encompassing four main steps as shown

TABLE I

ALLOCATING MULTI-ROBOT TASKS TO A TEAM OF ROBOTS

Input: (T, R)

1) Find the set of tasks T i up to a constant numbera, such
that both the ordering constraints and the preconditions
of tasks are satisfied.

2) Configure solutions for each task tj in T i by forming
a set of coalitions Ci, based on tj’s objective and the
current team capabilities.

3) Allocate tasks in T i to coalitions in Ci, such that:

• The task-specific cost and the robot-inherent cost
are minimized for the set of tasks.

• A coalition can win at most one task at a time.
Assuming C′

⊆ Ci is the set of coalitions selected
to perform the tasks in T i, then the following
condition must be satisfied: ∀C′

j
,C′

k
∈C′,j 6=k, C′

j ∩

C′
k = Ø.

4) Monitor the execution of tasks. If the entire task is not
complete, start the allocation process (go to step 1) when
robots are within ∆t time of completing their current
tasks (i.e., begin planning the next task as the current
task is nearing completion). Otherwise, exit.

aNote that the maximum number of tasks allowed for allocation
is limited to a constant number b to decrease the computational
complexity of the allocation of multiple tasks at once.

Fig. 1. The relationships between tasks, coalitions and robots.

in Table I. Figure 1 describes a general procedure that first

decomposes a team-level task to a set of tasks with ordering

constraints. At the low level, coalitions from the team of

robots are formed to address the given tasks. These coalitions

are not distinct, but may share same team members. The

coalitions then compete for the assignment of tasks using a

traditional task allocation approach.

A. Low-Level Coalition Formation

To better understand the integrated system, we now de-

scribe our previous work on coalition formation, called

ASyMTRe-D [16]. The ASyMTRe-D approach has been

developed for addressing the formation of heterogeneous

robot coalitions that solve a single multi-robot task using

a strongly-cooperative task solution. Even though we are

not using the traditional definition of coalition by calculating

payoffs as in game theory [12], we share the same motivation

behind coalition formation as mentioned in [18]; that is,
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robots in a coalition should work together to share resources

and cooperate on task execution due to their decision that

they would benefit more from working together as a coalition

than they would working individually. More generally, this

approach deals with the issue of organizing robots into sub-

groups into a strongly cooperative solution that accomplishes

a task collaboratively based upon their individual capabilities.

The fundamental idea of ASyMTRe-D is to change the ab-

straction that is used to represent robot competences from the

typical “task” abstraction to a biologically-inspired “schema”

abstraction and provide a mechanism for the automatic

reconfiguration of these schemas to address the multi-robot

task at hand. To achieve this, we view robot capabilities as a

set of environmental sensors that are available for the robot to

use, as well as a set of perceptual schemas, motor schemas,

and communication schemas that are pre-programmed into

the robot at design time.

The ASyMTRe-D approach extends prior work on schema

theory [1], [13] by autonomously connecting schemas at run

time instead of using pre-defined connections. According to

information invariants theory [5], the information needed to

activate a certain schema or to accomplish a task remains

the same regardless of the way that the robot may obtain

or generate it. We can therefore label inputs and outputs of

all schemas with a set of information types, such as laser

range data, self global position, etc. Two schemas can be

connected if their input and output information labels match.

Thus, schemas can be autonomously connected within or

across robots based upon the flow of information required to

accomplish a task. With the run time connection capabilities,

task solutions can be configured in many ways to solve the

same task or can be reconfigured to solve a new task.

We have implemented the ASyMTRe-D approach us-

ing a distributed negotiation protocol [16] inspired by the

Contract Net Protocol [20]. We validated this approach

through simulation and physical experiments and analyzed

its performance in terms of robustness, scalability, and

solution quality. These experimental results allowed us to

conclude that the ASyMTRe-D approach provides beneficial

mechanisms for multiple robots to: (1) synthesize strongly-

cooperative task solutions using different combinations of

robot sensors and effectors, (2) share information across

distributed robots and form coalitions as needed to assist

each other in accomplishing the task, and (3) reconfigure new

task solutions to accommodate changes in team composition

and task specification, or to compensate for faults during

task execution. Thus, the ASyMTRe-D approach can serve

as the low-level solution generator for strongly-cooperative

task solutions in our approach.

B. High-Level Task Allocation through Auctions

Although ASyMTRe-D provides the mechanism for a

heterogeneous robot team to generate a strongly-cooperative

task solution by forming coalitions, it can only handle one

multi-robot task at a time. We therefore propose the use of an

auction mechanism to provide a high-level task allocation ap-

proach on top of ASyMTRe-D for handling multiple weakly-

cooperative tasks. Note that the intent of this approach is not

to develop a new auction mechanism, but instead to layer

existing auction mechanisms with the ASyMTRe-D approach

to achieve the allocation of both strongly- and weakly-

cooperative tasks in the same application. The following

high-level auction process is similar to [9], although, as we

have stated, the techniques for strongly-cooperative coalition

formation are different. Additionally, in the general case, we

allow the simultaneous allocation of multiple tasks at a time

instead of only one.

The auction process is described as follows:

1) Task announcement: Initially, the human operator in-

troduces the site clearing task T to the system. Each

task ti in T is embedded with task-specific information,

such as the size and the position of the obstacle to

be removed. The human operator has an interface

“Auctioneer” that interacts with the other robots in the

system (similar to OpTrader in [4]). This auctioneer

holds the partial-order plan for T, selects a subset of

tasks T i that satisfies the ordering constraints and the

preconditions, and makes an auction call of all tasks

in T i to the robots.

2) Coalition formation: Robots that receive T i start ne-

gotiating with others to generate solutions for ac-

complishing tasks in T i. These solutions may be ei-

ther strongly-cooperative solutions involving multiple

robots, or solutions that require only a single robot,

in the case that such a capable robot is available. For

each task tj in T i:

a) Each robot tries to find a list of coalitions (up to a

constant number c) that it can join to accomplish

tj . The revised ASyMTRe-D negotiation protocol

returns the top c coalitions given a task. The size

of a coalition is limited to a max coalition size

d assuming robots work in a non-super-additive

environment [18]1.

b) Coalitions are not arbitrarily formed, but are

selected based on the combination of the robot-

inherent cost and the task-specific cost (please

refer to Formalism of the Problem Section for

details of cost estimation.).

3) Bid submission: Once coalitions are formed for each

task tj , a randomly selected coalition leader submits

a bid to the auctioneer, including information such as

the list of coalition members, the cost of this coalition

performing tj , the leader of the coalition, etc.

4) Winner determination: Once bids for all tasks in T i

are collected or a timeout has expired, the auctioneer

then determines the winner coalition for each task. The

goal for the auctioneer is to find a coalition Cj for

each task tj , such that the total cost of performing the

tasks in T i is minimized and there is no overlapping

1Due to the similarity between our configuration algorithm and the
coalition formation algorithm presented in [18], we plan to analyze the
bounds on our solution quality in future work. It has been proved in [18]
that similar algorithms are of low logarithmic ratio bounds to the optimal
solution.
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of coalition members assigned to the tasks. If no such

coalition Cj exists for task tj and Ck for tk such that

Cj ∩ Ck 6= Ø, then one of the tasks (either tj or tk)

is auctioned again in the next round. If there is no

coalition to accomplish task ti, ti is set aside and will

not be auctioned off again. The problem of determining

the winner is equivalent to the combinatorial auction

where multiple tasks are offered and each coalition can

bid a subset of tasks. Existing combinatorial auction

clearing algorithms (such as [17]) can be applied here

with a constraint that the assigned coalitions do not

overlap for different tasks.

5) Award acceptance: Once winner coalitions are deter-

mined, the auctioneer awards each task to the leader of

the selected coalition. The leader robot then contacts

the other coalition members for the acceptance of the

task. Once responses from other coalition members are

received, the leader robot accepts the award by sending

a task acceptance message to the auctioneer and the

coalition members commit themselves to the task until

the task is complete. If there is no acceptance message

received after certain timeout, the auctioneer awards

the next available coalition in the list. If no coalition

responses within certain time, the award is rejected and

the task will be auctioned again.

VI. EXPERIMENTS

To date, we have implemented a basic auction-based sys-

tem that performs task allocation with instantaneous assign-

ment2, and integrated it with our ASyMTRe-D algorithm.

This integrated system is validated through the site clearing

task as described in Section III with the difference that

tasks are auctioned off on a first-come-first-served basis. To

minimize the time spent to clear the site, a greedy algorithm

is applied, meaning that the current task under consideration

is allocated to the coalition that could accomplish this task

with the least cost. The cost is a weighted combination of the

task- and coalition-related cost and the inherent cost of the

coalition performing the task. The inherent cost is determined

by the sensing and computational costs that are required to

accomplish the task (see [16] for details). The task- and

coalition-related cost is decided by the task completion time

tcomplete, as follows:

tcomplete = tnav + tpush (2)

tnav = max
Rj∈coalitioni

dist(Rj , box)/speed(Rj) (3)

tpush = max
Rj∈coalitioni

dist(box, goal)/speed(Rj) (4)

Given the above functions, a robot can incorporate its

speed and position information into the bid and share this

information among other coalition members to calculate the

overall coalition cost. The time for a coalition to accomplish

a “Remove Obstacle” task depends on the slowest robot

2In instantaneous assignment, only one task is considered at a time, which
is a special case of considering b tasks at a time, where (b = 1). The time-
extended assignment (b ≥ 1) remains as a future work.

Fig. 2. The site setup in simulation. For the trajectory of a sample run in
the above simulation, please see Figure 7.12 in [21].

TABLE II

ROBOT CAPABILITIES IN THE SITE CLEARING TASK.

Robot Available Sensor(s)

R1 and R4 sonar, laser, camera, comm

R2 laser, camera, comm

R3 sonar, camera, comm

in the coalition. In the following sections, we describe the

simulation results and physical experimental results.

A. Simulation setup and results

In the simulation setup, four heterogeneous robots are

required to clean a 10×10m2 area with five boxes scattered

in the area, as shown in Figure 2, in which three large boxes

need to be pushed on both ends (i.e., require a strongly-

cooperative solution) and two small boxes require only a

weakly-cooperative solution (i.e., can be pushed by a single

robot). The arrows on the boxes represent the desired pushing

directions. The types of robots we use are shown in Table II.

We reuse the schemas of our multi-robot navigation and

multi-robot box pushing tasks [21] for the robots to navigate

in the environment, identify boxes, and push boxes. Different

robot capabilities result in different solutions (i.e., different

coalitions between robots). For example, a robot with sonars

can use schemas that enable it to move along the side of

a box, and thus push on both ends in a sequential manner.

On the other hand, a robot with a laser scanner is not pro-

grammed with this schema, and therefore needs to strongly-

cooperate with another robot to push a long box. When

correctly configured (which is done automatically using the

ASyMTRe-D approach), the schemas enable either a single

robot or a robot coalition to independently or cooperatively

push a box towards the goal.

We ran over 10 logged trials of the site clearing experiment

with the above environmental setup, and with random task

sequences. The robot team is able to accomplish the site

clearing task in an average of 151.2 seconds with a standard

deviation of 9.1 seconds, with robot speed varying from

.5m/s to 1m/s. To demonstrate the entire task allocation and

coalition formation process, we kept a record for the major
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Fig. 3. The timeline of major events from the auctioneer’s point of view.

Fig. 4. The timeline showing the state of each robot during the task execution.

events of the auctioneer and each robot. Each event record

consists of the time and a description of the event, such as in

the example illustrated in Figure 3. For example, at time 2,

task 1 is added for auction (T1) and the auctioneer announces

task 1 (A1). This begins the process in which robots reason

to determine their bids. The process is completed at time 13,

at which time task 1 is accepted by the winning coalition

(ACC1). In the meantime, tasks 2 and 3 are added to the

queue for auction (T2, T3), at times 5 and 11, respectively.

Once the winning coalition is determined, the auctioneer

announces the next task in the queue at time 13 (A2), and

the process repeats.

During execution, robots are always in one of the follow-

ing states: reasoning, auctioning, navigating, pushing, and

idle. A robot starts reasoning with ASyMTRe-D when it

receives a task announcement. A robot is in the auctioning

state when it is communicating with the auctioneer to bid

for a task, or to accept the task award. A robot is idle

when it is waiting for incoming tasks. Figure 4 illustrates

a typical example, showing each robot’s current state during

execution. In this example, at time 2, all robots receive the

task announcement of removing box 1 and start reasoning

to form coalitions. At time 10, coalitions are formed and

robots start to bid for the task and wait for the award. At

time 13, the task is assigned to R4, and the rest of the

team starts reasoning on the next available task. Note that

at times 24 and 35, R2 continues to reason on task T3, but

fails to generate any solution because of its limited sensing

and/or computational capability. At time 53, R2 finally forms

a coalition with R4 to accomplish T3. In the end, we can see

that boxes 2 and 3 are both pushed by two robots; however

box 5 is pushed only by R3 since it is the only robot available

at that time that is capable of pushing the box on both sides.

In the above simulation, the reasoning and auctioning

times are decided by the various timeouts in the distributed

ASyMTRe-D negotiation protocol and in the auction algo-

rithm. The following timeout parameters are used in the

auction algorithm: (1) the time to wait for incoming bids for

a specific task announcement (10 seconds), (2) the time for

assigning the task to the winning robot coalition (6 seconds),
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TABLE III

AVERAGE COMPLETION TIME IN THE BOX PUSHING TASK

Team size Obstacles T/R ratio Avg. Time Std. Dev.

3 6 2 244.2s 16.6s

3 10 3.3 341.2s 37.9s

6 6 1 143.2s 17.1s

6 10 1.67 202s 20.6s

and (3) the time to wait for confirmations from all coalition

members before giving up and assigning the task to the next

available coalition (4 seconds). We can see that each robot

spends a reasonable amount of time bidding and reasoning

on the task compared with the execution time. Fine tuning

of the timeout parameters may also result in a shorter task

completion time. We have also tested the system with more

complex setups. We have varied the number of robots from

3 to 6 and the number of boxes from 6 to 10. Results from

20 runs with random task sequences (reported in Table III)

have shown that the robots can successfully form strongly-

or weakly-cooperative solutions to accomplish each task.

The simulations results also show that the scalability of the

integrated system is directly proportional to the task/robot

(T/R) ratio. Theoretically, the ASyMTRe-D coalition for-

mation algorithm scales linearly with the increasing team

size [16]. The auction-based task allocation algorithm scales

linearly with the increasing number of tasks, since tasks

are announced sequentially in the current experiments. Our

future work includes improving the current auction-based

algorithm such that multiple tasks can be announced to

robots concurrently, saving time for configuring solutions

sequentially.

The auction-based task allocation with instantaneous as-

signment is very similar to MURDOCH [8] or TraderBots

[4]. As has been analyzed in [7], the solution quality for such

a task allocation approach is 3-competitive, meaning that the

approach is able to find a solution whose utility is never less

than 1/3 of the optimal utility. In our simulation example

above, the best plan would be for R1 and R4 to move box 2

and R2 and R3 to move box 3 simultaneously, and then for

R1 and R4 to move box 5 cooperatively, and finally for R2

and R3 to move box 1 and box 4 separately. The estimated

time of completion for the best plan is about 100 seconds,

based on the typical auction and task execution times. When

the simulation result (151.2 seconds) is compared with the

optimal result (100 seconds), we can see the solution quality

for our task allocation approach is about 3-competitive, but

at least 2-competitive. Again, our purpose here is not to re-

invent a new auctioning capability, but to take advantage of

these existing algorithms to create a complete methodology

that can generate both strongly-cooperative and weakly-

cooperative task solutions in the same application.

The simulation results illustrate the success of layering

ASyMTRe-D for low-level coalition formation (for generat-

ing a single, strongly-cooperative multi-robot task solution),

with a higher level, auction-based task allocation approach

(for solving a set of weakly-cooperative tasks). The resulting

approach provides flexible mechanisms for a broad range

of realistic multi-robot applications, with the ability of the

robot team to generate both strongly cooperative and weakly

cooperative solution strategies without predefined solutions,

plans, or roles.

B. Physical robot experiments

The integrated system has also been tested on physical

robots. The upper left subfigure of Figure 5 shows the

environment setup for the task. The robot team includes two

Pioneer robots, each with a laser and a camera. The site is

a 4 × 5m2 area with 3 boxes scattered inside. Two of the

boxes (1 and 2) are small boxes and the other box is a long

box that needs to be pushed from both ends. The objective of

the task is to push the boxes to several predefined collection

points, which are represented by red flags. Figure 5 shows a

series of snapshots taken during one run of the site clearing

task. Tasks are introduced to the system in the sequence of

push box 1, push box 2, and push box 3. When T1 (i.e., push

box 1) is announced, both robots configure their solutions to

move box 1. Since R1 takes a shorter time to accomplish

this task, it wins the task at the end of the auction. R2 then

configures its solution to remove box 2 and wins the task

at the end. After R1 completes its current task, it starts to

generate solutions to push box 3; however, it does not possess

the capability to push the box alone. Thus it waits until R2

is completed with box 2 and then forms a coalition with R2

to push box 3 cooperatively. All three boxes are moved to

their nearest collection points at the end of the task.

VII. CONCLUSION AND FUTURE WORK

We have described our approach for layering our coalition

formation mechanism for generating strongly-cooperative

task solutions with a traditional auction mechanism for as-

signing weakly-cooperative tasks. The low-level ASyMTRe-

D approach automatically forms coalitions according to the

task objective, without using any pre-defined plans for how

that task will be achieved. The high-level auction-based task

allocation provides the mechanism for the team to allocate

sets of weakly-cooperative tasks (any of which may itself

require a strongly-cooperative solution), holding auctions to

assign tasks to the best-fitting individual robots or coalitions.

Our ongoing work includes improving the high-level

auction-based approach such that it enables a set of multi-

robot tasks to be allocated simultaneously (time-extended

assignment) instead of instantaneous assignment. We also

believe that the ASyMTRe-D approach for coalition for-

mation can be merged with other, non-auction-based ap-

proaches to task allocation, such as the motivation-based

approach of ALLIANCE [14]. We believe it would be

interesting to investigate the combination of ASyMTRe-D

and ALLIANCE, as an alternative approach for achieving

applications requiring both strongly-cooperative and weakly-

cooperative task solutions.

FrA7.4

3357



Fig. 5. A series of snapshots taken during one run of the site clearing task. The arrows represent the directions of motion of the robots.
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