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Abstract— The task of visual surveillance involves pervasively
observing multiple targets as they move through a field of sensor
nodes. Mutational analysis and shape based control have been
proposed to overcome the limitations of current feature (point)
based visual servoing and tracking techniques generally employed
to provide an optimal solution for the surveillance task. Haus-
dorff tracking paradigm for visual tracking of multiple targets
using a single sensor has been proposed for accomplishing the
surveillance task. However, Hausdorff tracking incorporates some
redundancy in the actuation mechanism. This paper exploits
this redundancy in the camera motion in order to accomplish
various sub-tasks which can be assigned to the system, such
as minimization of consumed energy maintaining manipulability
etc. The complete task can then be expressed in a multi-objective
constrained optimization framework and can be solved, i.e., the
input to the camera can be derived, using various methods such
as physical programming, nonlinear programming, weighted sum
method, etc. In this paper, we use the physical programming
method based on the various advantages such as ease of ex-
pressing multiple objectives in a physically significant manner.
Experimental results are provided which show the advantages
of using the physical programming approach over the weighted
sum method for constructing the task criterion for multi-objective
optimization problems.

I. INTRODUCTION

The task of a surveillance camera is to continuously keep a
single or multiple moving targets in its active Field Of View
(FOV). The surveillance task can be expressed, using shape
functions [1], as the minimization of a Hausdorff distance-
based metric or the size of the target, etc. The shape function
represents the error between the desired and actual shapes
and reducing it to zero will accomplish the task. In our
earlier research [2], the method of Hausdorff tracking using
mutational equations for performing the surveillance task was
presented.

Due to the redundancy in choice of input when using the
Hausdorff tracking method, there are numerous choices of
the input applied to the camera which can accomplish the
task. Hence we need to select an appropriate motion input to
the camera for task accomplishment. We can select various
sub-tasks that the sensor can perform in order to utilize the
redundancy offered by the camera motion. For example, the
energy consumed due to the motion of the sensor should
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also be minimized while maintaining a safe distance from
sensed obstacles (in the case of sensors mounted on mobile
robots). These combined tasks can be expressed as a multi-
objective optimization problem which can then be solved using
various multi-objective constrained optimizations techniques
such as weighted sum method, physical programming, non-
linear programming, search space methods, etc.

Surveillance systems are designed to perform tracking
tasks with different requirements under varying environmental
conditions. Furthermore, a dynamically varying environment
implies the task criterion used for optimization should be
generated on-line.

This paper investigates the setup of an optimal control
framework, using dynamic multiple objective optimization,
for the Hausdorff tracking problem. Further, this paper uses
physical programming to solve the optimization problem. The
advantage of using physical programming over the weighted
sum method is that physical programming attaches a physical
meaning to the various criteria functions which makes the
problem more intuitive to the designer.

II. HAUSDORFF TRACKING

Multiple target coverage can be readily expressed in a
set based topological framework using shape analysis and
shape functions [1], [3]. Thus, the variables to be taken into
account are no longer vectors of parameters but the geometric
shapes (domains) themselves. However, due to the lack of a
vectorial structure of the space, classical differential calculus
cannot be used to describe the dynamics and evolution of
such domains. Mutational analysis endows a general metric
space with a net of “directions” in order to extend the concept
of differential equations to such geometric domains. Using
mutational equations, we can describe the dynamics (change
in shape) of the sensor FOV and target domains and further
derive feedback control mechanisms to complete the specified
task.

Shape or a geometric domain can be defined as the set
K ∈ K(E), E ⊂ R

n where K(E) represents the space of all
non-empty, compact subsets of E. The target and the camera
coverage can be readily expressed as shapes. Mutational equa-
tions can then be used to express the change (deformation) in
the coverage and target sets based on the motion of the sensor.
Shape analysis [1] can be used to address problems involving
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(a) Target set K̂ and coverage set K
for image-based Hausdorff tracking.

Camera

Target

Robot

(b) Target tracking using a Sony
EVI-D30 camera mounted on Ro-
bot Nomad XR-4000 mobile robot

Fig. 1. Tracking scenario

geometric domains or shapes. Shape functions, which are set-
defined-maps from J(K) : K(E) �→ R, can be used to
provide a “measure” of acceptability and optimality of the
shape K. For example, we can use a shape function to see
if a reference set K̂ is contained within a current set K. In
order to accomplish the task defined using shape functions,
we need to derive a feedback map U : K(E) �→ U , where
u = U(K(t)) is the input to the sensor, which will reduce the
shape function to zero. The convergence of the shape function
can be analyzed using the shape Lyapunov theorem [4]. The
convergence to zero of the shape function for a particular task
would imply task accomplishment.

1) Target, Coverage Sets and Shape Functions: The target
set K̂ is represented as the set of pixels comprising the target
and the sensor coverage set is represented as a rectangle at the
image center, K, as shown in Figure 1(a). The target set can
be disjoint, which allows for multiple modeling the multiple
target coverage task. For the multiple target coverage problem,
the shape function is chosen as:

J(K̂) =
∫

K̂

d2
K(q) dq (1)

where, q ∈ K̂ and dK(q) = {‖q − p‖ |p ∈ K, q ∈ K̂} is the
directed demi-Hausdorff distance of the target set K̂ from the
coverage set K. Note that the shape function J(K̂) is zero
only when set K̂ is completely covered by set K. Otherwise
J(K̂) is a non-zero positive value.

2) Dynamics Model Using Mutational Equations: Sets or
domains evolving with time are called tubes and can be defined
as a map K(·) : R

+ �→ K(E). The deformation (motion)
of the coverage and the target sets can be represented using
tubes. The evolution of a tube can be described using the
notion of a time derivative of the tube as the perturbation
of a set. Associate with any Lipschitz map ϕ : E �→ E, a
map called the transition �ϕ(h, q) := q(h), which denotes the
value at time h of the solution of the differential equation:
q̇ = ϕ(q), q(0) = q0. Extend this concept of a transition to
the space K(E) by introducing the reachable set from set K
at time h of ϕ as

ϑϕ(h, K) := {�ϕ(h, q0)}q0∈K (2)

For defining mutational equations, we supply the space
K(Rn) with a distance dl, for example the Hausdorff distance
between domains K1,K2 ∈ Rn defined by dl(K1,K2) =

supq∈Rn ‖dK1(q)− dK2(q)‖, where, dK(q) = infp∈K ‖q− p‖
represents the distance between the point q and set K.

Using the concept of the reachable set the time derivative
of a tube can be defined as a mutation:

Definition 1: (Mutation) Let E ⊂ R
n and ϕ : E �→ E be

a Lipschitz map (ϕ ∈ Lip(E, Rn)). If for t ∈ R
+, the tube

K : R
+ �→ K(E) satisfies:

lim
h→0+

dl(K(t + h), ϑϕ(h, K(t)))
h

= 0, (3)

then, ϕ is a mutation of K at time t and is denoted as:

K̊(t) � ϕ(t, K(t)), ∀t ≥ 0 (4)
It should be noted that ϕ is not a unique representation of
the mutational equation. This justifies the use of the notation
(�) [5].

We can further define controlled mutational equations as:

K̊(t) � ϕ(t,K(t), u(t)), ∀t ≥ 0, u(t) ∈ U (5)

A feedback law can be defined as a map U : K(E) �→ U
associating a control u with a domain K(t) as: u(t) =
U(K(t)). Using a controlled mutational equation, we can
model the motion of the target and coverage sets due to the
motion input u to the camera as:

K̊(t) � ϕ(K, u) := {q̇ = ϕ(q, u)|q ∈ K} (6)

The deformation of the target set due to the motion of
the camera can be represented using a controlled mutational
equation and can be modeled using optic flow equations as:[

q̇x

q̇y

]
= ϕ(q, u) = B(q)

[
uc

λ̇

]
= B(q)u (7)

where, a point P = [x, y, z]T , whose coordinates are expressed
with respect to the camera coordinate frame projects on to the
image plane with coordinates q = [qx, qy]T and λ is the focal
length [6].

Using Equation (7) the mutational equation [2], [5] of the
target set can be written as a collection of motion equations
for the points comprising the set K̂ as:

q̇ = ϕ(q, u) = B(q)u
˚̂
K � ϕ(K̂, u) (8)

3) Feedback Map u: The problem now is to find a feedback
map u such that the shape function J is reduced to zero. For
this purpose, we need to find the shape directional derivative
J̊(K̂)(ϕ(K̂, u)) of J(K̂) in the direction of the mutation
ϕ(K̂, u) which represents the change in the shape function
due to the deformation of the target set K̂. From [5] and [3],
the directional derivative of the shape function having the form
of Equation (1) can be written as:

J̊(K̂)(ϕ(K̂, u)) =
∫

K̂


d2
K(q)ϕ(q) + d2

K(q)divϕ(q) dq (9)

The asymptotic behavior of the measure J(K(t)) of the
deformation of the set K can be studied using the shape Lya-
punov theorem [4], which provides the conditions to guarantee
the convergence of J(K(t)) to 0.
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Theorem 1: Consider E ⊂ R
n and a mutational map ϕ

defined on the set E, a shape function J : K(E) �→ R
+ and a

continuous map f : R �→ R. Let the Eulerian semi-derivative
of J in the direction ϕ exist and be defined as J̊(K)(ϕ(K, u)).
The function J is an f -Lyapunov function for ϕ if and only
if, for any K ∈ Dom(J), we have

J̊(K)(ϕ(K, u)) + f(J(K)) � 0. (10)
See [4] for proof.

Using the shape Lyapunov theorem, we can find the assump-
tions on input u such that the shape function J(K̂) tends to
zero as:

C(K̂)u � −αJ(K̂) (11)

where, α > 0 is a scalar gain value such that the scalar system
ẇ = −αw is stable in the sense of Lyapunov.

The feedback map u, which is an input to the camera
module, can be calculated from (11) using the notion of a
generalized pseudoinverse C#(K̂) of the matrix C(K̂) as:

u � −αC#(K̂)J(K̂) (12)

It is important to note that the gain distribution between the
various redundant control channels depends on the selection
of the null space vector when calculating the generalized
pseudoinverse C# of matrix C.

A. Optimal Hausdorff Tracking

Given the task specified by Equation (11), notice that
C(K, K̂) is not a square matrix, which indicates that the
system is redundant. This implies that the system has infinite
solutions for a choice of input u which will accomplish the
task. Therefore the designer can choose an algorithm in order
to achieve an optimal solution for this system.

Optimality can be quantified by defining supplementary task
functions, called objective functions, which the system needs
to minimize to achieve an optimal solution. The optimization
problem can be expressed as: Find the target and coverage sets
(K and K̂ respectively) and input u which satisfy:

min
K,K̂,u

: D(K, K̂, u) = D1(K, K̂, u) . . . DN (K, K̂, u)
T

Subject to:
J(K, K̂) =

K̂
d2

K(p) dp

J̊(K, K̂)(ϕ1, ϕ2) = C(K, K̂)u � −αJ(K, K̂)
(13)

where, Di(K, K̂, u), i = 1toN are the N objective functions
D(K, K̂, u) ∈ R

N is a vector of these objective functions.
For the case of visual surveillance, the choice of objective

functions can include (but is not restricted to):
1) Energy consumed which can be represented by ‖u‖2.
2) Resolution constraints which can be represented as

Area min �
∫

K̂
dp � Area max.

Various methods such as weighted sum approach and phys-
ical programming can be used to solve the above optimization
problem. It is proposed to use physical programming for solv-
ing the constrained multi-objective optimization problem. The
significant advantage of the physical programming approach
is it capability of placing the design into a more flexible and
natural framework.

III. METHODOLOGY OF OPTIMAL TASK DISTRIBUTION

FOR TARGET TRACKING

The dynamic optimal task distribution algorithm depicted in
Figure 2 consists of three modules: task analyzer, optimization
scheduling, and optimal solution calculation. The task analyzer
takes current condition of motion module, target state and
working environment as inputs, analyzes requirements of the
current task, and generates a collection of parameters called
as Task Indices (TI) to represent task requirements. The task
analyzer passes the TI to the optimization scheduling module
which then builds the task criterion function. The optimal
solution calculation algorithm then finds an optimal solution
for the criterion.

Task
Analyzer

Optimization
Scheduling

Task
Indices

Optimal
Solution

Calculation

Task Performance
Criterion Robot

2

Sensors
2

Environment 
Information

Optimal Task
Distribution

Sensors
1

Robot
1

Environment 
Information

Optimal Task
Distribution

Optimizer

Robot
States

Robot
States

Fig. 2. The architecture of the optimal task distribution scheme.

A. Task Analyzer

The task analyzer takes as input the various states of the task
including the location and states of the various sensors, targets
and obstacles and provides a task index vector as an output
which represents the requirements of the task in a concise
form.

For optimal performance, the task criterion function should
be dynamically modified according to time varying task re-
quirements. An on-line task analyzer is proposed to analyze
task requirements. Using the information from the sensors
and the working environment as inputs, a collection of task
indicators is generated online, which represent the actual
conditions of the tracking task being performed. Using a fuzzy
inference scheme, the task analyzer maps the task conditions
represented by the task indicator vector u ∈ RM , into TI,
which represents task requirements.

The Task Indices (TI) vector is used to mathematically
describe the task requirements. These indices are generated
by a fuzzy mapping which takes the task indicators as input
variables. Various task requirements have their own physical
and functional meaning according to which they can be
categorized into classes. For example various classes such as
maintaining the manipulability of the motion module, singular-
ity avoidance, conserving energy, maintaining adequate target
resolution, etc., can be used.

For each class of task requirement, we generate one Task
Index. For all task requirements, a vector of Task Indices is
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generated:

Index = {Index1, Index2, · · · , IndexK}T ,

Indexi = fi(u) =

M

j=1
ai,jgi,j(uj)

M

j=1
ai,j

.
(14)

where, Indexi is the indicator analyzer for the ith requirement
class. ai,j is the relative weight of task indicator uj in the task
requirement class i, gi,j is the mapping function of the task
indicator uj for the task requirement class i. (14) maps the
task indicator value into the extent of task requirement. The
relative weights are assigned based on the physical meaning
and importance of a particular task indicator within a particular
task requirement class.

B. Optimization Scheduling

This module generates the task criterion based on task re-
quirements represented in the TI using physical programming.
This module consists of two parts: physical programming and
PP (Physical Programming) analyzer.

Physical programming, which is a multi-objective optimiza-
tion approach, maps the collection of objective functions into
a utility function. Since the task requirements vary according
to transformation of tasks and environment conditions, the
mapping model for physical programming should change with
the task requirements. Therefore, the PP analyzer is built to
analyze the physical programming mapping model based on
the TI. A confidence vector Ξ ∈ RN ,

Ξ = {ξ1, ξ2, · · · , ξN}T (15)

is generated to represent the degree of the system designer’s
satisfaction about physical programming mapping model ac-
cording to the current task’s conditions. Finally, physical
programming mapping is modified based on Ξ.

1) Physical Programming: Optimal task distribution for
Hausdorff tracking using multiple robots is a multi-objective
optimization problem for optimizing a vector of objective
functions, D in Equation (13). Usually, the system designer
maps the collection of multiple objective functions Ci into a
utility function Z ∈ R, which we call the task criterion, using
a mapping P : RN → R as:

Z = P (D1, D2, · · · , DN ) (16)

Di is the objective function for the ith task requirement. The
optimal solution is achieved by choosing the system variables
[u, p] which endows the optimal value for the criterion Z,
where u is the input velocity of the various axes and p is the
state of the sensors and targets.

2) Weighted Sum Method: The weighted sum method is the
most popular mapping method for multi-objective optimization
problems. In this method, the task criterion is formulated as a
weighted sum of the objective functions where system designer
assigns relative importance (weight) to each objective function.
However, the task criterion obtained by this method lacks
physical meaning. Misinterpretation of the theoretical and

practical meaning of the weights can make the final solution
unsatisfactory. Although there are many methods for choosing
weights, a priori selection of weights does not necessarily
guarantee the acceptability of the solution. Furthermore, it is
impossible to obtain a solution on the non-convex regions of
the Pareto frontier [7].

Thus, physical programming [8], is used to generate the
task criterion. Using this method, the system designers only
need to specify a preference structure for each objective
instead of assigning a meaningless weight. This usually has
more physical meaning and can better guarantee a satisfactory
solution. Using physical programming, the system design can
be put into a more flexible and natural framework. Another
advantage of physical programming is that it can obtain the
solutions in the non-convex regions of the Pareto frontier [7],
[8].

3) Preferences Mapping: Using physical programming ap-
proach, objective functions are mapped into a preference
space. The preference is a parameter which represents the
extent of the designer’s satisfaction. The task criterion is setup
as the aggregation of the preferences of all the objective
functions. Thus, instead of being physically meaningless, the
criterion becomes a satisfaction factor of the solution.

The designer’s expression of the preferences with respect to
each objective function can be categorized into four different
classes: smaller-is-better (1S), larger-is-better (2S), value-is-
better (3S), range-is-better (4S) as in [7]. Each objective
belongs to one of these classes. [7] provides a more in-depth
analysis of physical programming.

The class functions for preference mapping should have
several important properties such as nonnegativity, continuity
and convexity. Further the preference value P at range inter-
sections (e.g., Tolerable-Undesirable) is the same for all class
types and objectives.

• they are nonnegative, continuous and convex
• the preference value P at the range intersection (for

instance, Tolerable-Undesirable) is the same for all the
class types and all the objectives.

4) Physical Programming Formulation: Based on the pref-
erence mapping of the objectives, physical programming prob-
lems can be stated as:

min
x

Z =
M

i=1
Pi (gi(x)) (17)

subject to
gi(x) � vi5 (for class 1S)
gi(x) � vi5 (for class 2S)
vi5L � gi(x) � vi5R (for class 3S and 4S)

where x is the system variables, M is the number of the
objective functions, gi(x) is the ith objective function, Pi is
the preference class function of gi.

C. PP Analyzer

The preference structure for each objective function must
be specified to setup the global criterion function. However,
due to changing task requirements, the initially specified
preferences for the objectives may not represent the objec-
tive’s desirability accurately at later time instants. Therefore,
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physical programming should be modified according to the
task requirements.

A PP analyzer module is built to handle this problem. The
PP analyzer takes the Task Indices as inputs, and generates a
vector Ξ = [ξ1, · · · , ξM ]T to represent the degree of designers’
confidence about the preference structure specified for the ob-
jective function. It passes this confidence vector to the physical
programming module which modifies its result according to
the confidence parameters. The analyzer is formulated as:

ξi = (ai + ki × indexi) i = 1, · · · ,M (18)

where ai is a constant which represents the system designer’s
confidence about the original preference mapping function, ki

is a constant. The criterion generated by physical programming
will be modified as:

Z =
M∑
i=1

ξi × Pi (gi(x)) (19)

Equations (18) and (19) show that when indexi increases, the

i

iP
8.0'

iindex
' 9.0i

2.0iindex

6.0i

2vz

'2v 2v

Fig. 3. Modification of the preference mapping by confidence factor.

preference value of the ith objective function will increase.
Thus, when the task has high preference on the requirement
class i, the objective function Di should have a higher pref-
erence for further minimization. Thus, the task requirement
condition governs the path of optimization.

From another viewpoint, multiplying a factor with the
preference mapping function can be treated as modifying the
structure of the mapping. Taking the class 1S as an example
(from Figure 3), if the preference value at the range inter-
section (say zv2 Desirable-Tolerable) is kept unchanged, the
desirability ranges of the objective function change with the
task index (confidence factor). In this figure, index′ > index
will induce v2′ < v2 which makes the Tolerant range closer
to the ideal range.

Therefore, combining equations (13), (17) and (18), replace
the gi by Di, and x by u, p, the optimal Hausdorff tracking
problem is formulated as:

min
u,p

Z =
M

i=1
ξi × Pi (Di(u, p))

subject to
−αJ � Cu
Di(u, p) � vi5 (for class 1S)
Di(u, p) � vi5 (for class 2S)
vi5L � Di(u, p) � vi5R (for class 3S and 4S)

(20)

where, α is a positive definite gain and J is the vector of shape
functions described for a specific task. The system constraint
equation −αJ � Cu is derived from the Hausdorff tracking
task controller derived in [2].

D. Optimal Solution Calculation

The next step is to find the optimal solution for the optimiza-
tion problem specified by Equation (20). In this formulation
the system constraint −αJ � Cu takes the form of a linear
inequality. We can use the generalized elimination method [9]
to eliminate the system dependant variables: suppose that there
exist matrices An×m and Bn×(n−m) such that [A B] is non-
singular. Usually, for the single target Hausdorff tracking task,
n = 6 and m = 1. If matrices A and B satisfy CA = I and
CB = 0 then the system solution is formulated as:

u � −αAJ + Bε (21)

where, ε denotes the Null space of the matrix C.
The reduced optimization problem is written as:

min
ε

Z =
M

i=1
ξi × Pi (Di(u, p)) (22)

subject to

Di(u, p) � vi5 (for class 1S)
Di(u, p) � vi5 (for class 2S)
vi5L � Di(u, p) � vi5R (for class 3S and 4S)

(23)

where, u � −αAJ + Bε
p = p̄ + u/f

(24)

p̄ is the initial value of the system variables p, f is the control
frequency, ε is and arbitrary vector. Using an online pattern
search algorithm [10], the system can easily obtain the optimal
solution.

IV. EXPERIMENTAL IMPLEMENTATION AND RESULTS

The problem we are considering is the optimal task distrib-
ution for a pan-tilt camera mounted on a mobile robot tracking
a single target depicted in Figure 1(b). The target is a human
wearing a solid color shirt.

We will consider the redundancy in the robot and camera
motion along the X direction. When the target moves along the
X direction, either the robot can traverse linearly or the camera
can pan. Hence there is a redundancy in the task execution.
The model for the Hausdorff tracking task using the camera
and the robot combination can be written as:

[C1C2]
[

vx

wy

]
� −αJ (25)

where u = [vx wy]T is the velocity input vector to the robot
and camera combination, α is a positive task level scalar
gain and J is the shape function which indicates the error
in accomplishing the task. The vector C = [C1 C2] describes
the distribution of the task error between the two redundant
axes. Equation (25) can be derived using the formula provided
in [2].

The task indicators used are the energy consumed by the
system and the current pan angle of the camera. The current
pan angle of the camera affects how the translation in X
by the mobile robot affects the task accomplishment. Hence,
the objective functions considered for the multi-objective
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Fig. 4. Results of the tracking task with optimal task distribution using
physical programming.
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Fig. 5. Task Criteria for no optimization, and weighted sum optimization.

optimization schemes also included energy minimization and
pan angle minimization and were represented as:

D1 = q2
0 = (O − O0)2 (26)

D2 = ‖vx‖ + ‖wy‖ (27)

where, O is the current pan angle value, O0 is the desired
pan angle value considered as zero pan, ‖vx‖ and ‖wy‖ are
the horizontal X velocity and the angular Y velocity (pan
velocity) respectively. Note that confidence parameters are
built into the objective functions. For example when the pan
angle is close to zero, we would like to reduce the weight for
the objective function D1 which is exactly what happens.

Figure 4 shows the results of the experiments carried out
using physical programming optimization. The figure shows
the plots of the shape function, the velocities in the X and
pan directions and the objective function values for energy
conservation and pan angle zeroing. Notice that the values of
all the objective functions are always maintained at least in
the tolerable range by sacrificing the performance of the other
cost functions currently under consideration.

The same task was also carried out using a no-optimization
scheme with a fixed task distribution between the two redun-
dant axes and also using a weighted sum scheme. A weighted
sum method with fixed weights without apparent meaning is
also used in order to combine the various cost criteria. The
cost criterion used is:

Z = q2
0 +

(‖vx‖ + ‖wx‖)
2

(28)

The two cost functions i.e., energy and pan-angle maintenance
for the no-optimization method and the weighted sum method
are shown in Figures 5(a) and 5(a) respectively.

For the no-optimization case which involves just a random
selection of the Null space vector ε, it can be seen that in the
absence of any optimization, the linear velocity transferred
to the robot is very small and most of the velocity for task
execution is allocated to the camera pan.

Using the weighted sum method, the various components
comprising the task criterion lack physical meaning. Based
on this observation we notice that even when the multi-
objective optimization is enabled, the pan angle remains very
close to the desired value while the energy conservation
objective attains unacceptable values. It should be noted that
various tolerance ranges, which are used for the physical
programming approach, are not used in the weighted sum
approach. Hence, despite the optimization being enabled on
the various objectives, the values of the objective functions
can attain unacceptable values.

V. CONCLUSION

This paper extends the Hausdorff tracking problem to in-
corporate an optimal control framework for executing multiple
subtasks along with the target visibility task for a surveillance
network. This optimization framework will allow the surveil-
lance task designer to consider various sub-tasks in planning
phase. Various sub-tasks can include minimizing the energy
consumed by the network which will enhance the longevity
of the deployed network sensors. The use of physical pro-
gramming for finding a solution to the optimization problem is
proposed in order to lend a tangible and physical interpretation
for the subtasks being considered. Experimental results for
a tracking task are presented which show the advantages of
the physical programming approach over the regularly used
weighted sum approach.
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