
Plan-Based Configuration of an Ecology of Robots

Robert Lundh, Lars Karlsson, Alessandro Saffiotti
AASS Mobile Robotics Lab

Örebro University, 70182 Örebro, Sweden
{robert.lundh,lars.karlsson,alessandro.saffiotti}@aass.oru.se

Abstract— We consider an ecology of robots in which robots
can help each other by offering information-producing func-
tionalities. A functional configuration of this ecology is a way
to allocate and connect functionalities among the participating
robots. In general, different configurations can be used to
solve the same task, depending on the current situation, and
some tasks require sequences of different configurations to be
solved. In this paper, we propose a plan-based approach to
automatically generate a preferred configuration for a given
task, environment, and set of resources. We also describe
how our configuration planner can be integrated with an
action planner to deal with tasks that require sequences of
configurations. We illustrate these ideas on a specific instance
of an ecology of robots, called a PEIS Ecology. We also show
an experiment run on our PEIS Ecology testbed, in which a
sequence of configurations for an olfactory task is automatically
generated and executed.

I. INTRODUCTION

The field of cooperative robotics is maturing, and there is
now a tendency to consider more complex systems, including
systems which are fully distributed and highly heteroge-
neous. A particularly interesting case of this tendency is
the recent emergence of a paradigm in which many robotic
devices, pervasively embedded in everyday environments,
cooperate in the performance of possibly complex tasks.
Instances of this paradigm include the so called ubiquitous
robotic systems [5], [8], network robot systems [13], and
PEIS-Ecologies [17]. Common to these systems is the fact
that the term “robotic device” is taken in a wide sense,
including both mobile robots, static sensors or actuators, and
automated home appliances. The devices rely on a distributed
middleware to communicate and cooperate. In this paper, we
generically refer to a system of this type as an “ecology of
robots”.

To exploit the power of this paradigm, robots in an ecology
need to dynamically connect in a given configuration in
order to pull their functionalities together. For instance,
an autonomous vacuum cleaner can get information from
tracking cameras in the ceiling to navigate through a home,
and ask doors to open when moving from one room to
the next. Note that the configuration to use depends on the
specific task, and often the same task can be performed using
different configurations.

In this paper, we deal with the problem of how the
robots in an ecology can autonomously decide and realize a
sequence of configurations needed to cooperatively perform
a given task. To make our investigation concrete, we consider
a specific approach, the PEIS-Ecology approach [17]. In this

approach, each robotic device (called PEIS) contains a num-
ber of functional modules, and robots can help each-other
by borrowing functionalities from one another. In the above
example, the cleaner PEIS would borrow a functionality to
self-localize from the cameras, and a actuation functionality
from the doors. A configuration of a PEIS-Ecology is,
roughly speaking, a way to connect the functionalities in
the PEIS-Ecology.

In most existing work on ecologies of robots and on coop-
erative robotics, the way to connect robots functionalities was
hand-coded [3], [9]. Similarly, in our previous work on PEIS-
Ecology we had hand-coded the configuration of the PEIS-
Ecology [1], [2]. In contrast to this, in this paper we propose
to use techniques derived from the field of AI planning to:
(1) automatically generate a configuration that allows a set
of PEIS to perform a given task in a (tightly) cooperative
way; and (2) automatically generate a sequence of such
configurations that will make the PEIS-Ecology perform a
sequence of tasks that achieves a given goal. To do so, we
start from our previous work on plan-based configuration of
a group of robots, originally proposed in [11]. We extend
that work in two important ways. First, by applying that
approach to the more complex case of an ecology of robots;
second, by considering the on-line generation of sequences
of configurations as opposed to single configurations.

The rest of the paper is organized as follows. In section
2 we give reminder of the notion of a configuration in
the PEIS-Ecology framework. In section 3 we present the
configuration planner, and in section 4 we discuss how se-
quences of configurations can be planned. Section 5 presents
our experiments. Section 6 discusses some related work and
section 7 concludes.

II. CONFIGURATIONS

A. The PEIS-Ecology Approach

The concept of PEIS-Ecology, originally proposed by Saf-
fiotti and Broxvall [17], puts together insights from the fields
of autonomous robotics and ambient intelligence to generate
a radically new approach to building assistive, personal, and
service robots. The main constituent of a PEIS-Ecology is
a physically embedded intelligent system, or PEIS. This is
any computerized system interacting with the environment
through sensors and/or actuators and including some degree
of “intelligence”. A PEIS can be as simple as a smart toaster
and as complex as a humanoid robot.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA3.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 64

Fig. 1. A simple PEIS-Ecology. The ceiling cameras provide global
positioning to the robot. The robot performs the door opening action by
asking the refrigerator to do it.

Individual PEIS in a PEIS-Ecology can co-operate based
on the notion of linking functional components: each PEIS

can use functionalities from other PEIS in the ecology in
order to compensate or to complement its own. The power of
the PEIS-Ecology does not come from the individual power
of its constituent PEIS, but it emerges from their ability to
interact and cooperate. For example, a robot which needs
to grasp a bottle would not use its sensors to detect its
position, shape, and weight and thus compute the parameters
of the grasp — a task which proved to be surprisingly
difficult in years of robotic research. Instead, the bottle itself,
enriched with a micro-PEIS, would hold this information and
communicate it to the robot.

Figure 1 shows an example of a simple PEIS-Ecology. A
mobile robot is equipped with an artificial nose. This robot
can be seen as a PEIS, which includes functionalities for
reactive navigation, obstacle detection, and odor classifica-
tion. It may not have enough perceptual abilities to reliably
estimate its own position in the home. Suppose, however, that
the home is equipped with an ambient monitoring system
using a set of cameras, which is able to track the position of
the robot. Then, we can combine the monitoring system and
the robot into a simple PEIS-Ecology, in which the former
provides the latter with a global localization functionality,
thus enabling the robot to perform more complex tasks.
Suppose next that the robot needs to approach the refrigerator
to inspect the quality of its content using its artificial nose. If
the refrigerator is a PEIS and it is able, among other things,
to open its door, then the robot can open the fridge door by
simply asking the fridge to do so.

The PEIS-Ecology approach has been implemented in an
experimental platform that includes a distributed middleware,
called the PEIS-middleware, a number of PEIS, and a phys-
ical testbed. The PEIS-middleware implements a distributed
tuple-space on a P2P network: PEIS exchange information
by publishing tuples and subscribing to tuples, which are
transparently distributed by the middleware. (See [2] for
more details.)

B. Configurations of a PEIS-Ecology

Central to a PEIS-Ecology is the notion of a functional
configuration, or simply configuration. To define this notion,
we first define the following ingredients.

Fig. 2. Functional configuration of the above PEIS-Ecology.

A PEIS-component is a software module that implements
a functionality. A functionality is an operator that uses infor-
mation to produce additional information. It is characterized
by the following elements:

• A specification of inputs to be provided by other func-
tionalities, including information about domain (e.g.,
video images), timing (e.g., 25 fps), etc.

• A specification of outputs provided to other functional-
ities, also containing domain and timing information.

• A set of causal preconditions: conditions in the envi-
ronment that have to hold in order for the functionality
to be operational.

• A set of causal postconditions: conditions in the envi-
ronment which the functionality is expected to achieve.

• A specification of costs, e.g., computation and energy.
• A body, containing the code to be executed.
A channel transfers data from an output of a functionality

to an input of another functionality. In the PEIS-Ecology-
context, this is realized by letting the later functionality
subscribe to the output of the former functionality.

A PEIS is a set of PEIS-components, located in the same
physical device.

A PEIS-Ecology is a collection of inter-connected PEIS,
all embedded in the same physical environment.

Generally, a configuration is set of functionalities and a set
of channels that connect functionalities to each other. More
specifically, a configuration of a PEIS-Ecology is a subset
of PEIS-components within the ecology, together with the set
of connections between them within and across the PEIS in
the ecology. It is important to note that the same ecology can
usually be configured in many different ways depending on
the current context, where relevant contextual aspects include
the current task, situation, and resources. Moreover, different
configurations can often be used to perform the same task.
This redundancy can be exploited to improve the flexibility,
reliability, and adaptivity of a PEIS-Ecology.

A configuration also has a cost. This can be based on
functionality costs, communication cost, etc, but also on
performance accuracy and reliability of the configuration.
Currently, we compute this cost as a weighted sum of the
costs of the individual components.

An important property of a configuration is that all the
components in it are connected “in the right way”. We call
this property admissibility, and we distinguish two brands: a
configuration is information admissible if each input of each

WeA3.1

65

functionality is connected to a compatible output of another
functionality; it is causally admissible if all preconditions of
all functionalities hold in the current world state. A formal
definition of these properties can be found below.

Information admissibility:

∀f ∈ F ∀i ∈ If∃ch ∈ Ch = (fsend, o, frec, i) such that
description(o) = description(i),
domain(o) = domain(i), and
Freq(fsend(ch)) ≥ Freq(frec(ch))

where F is the set of all functionalities, and Ch is the set of
all channels. The channel ch is represented as a tuple with
a sending functionality fsend with output o, and a receiving
functionality frec with input i.

Causal admissibility:

∀f ∈ F : Prf (s) = True

where Prf (s) is a truth value of the preconditions of
functionality f in state s.

Figure 2 shows a functional view of the PEIS-Ecology con-
figuration shown in Figure 1 above. The robot’s navigation
component receives position information from the tracking
component of the localization system, and the robot’s de-
liberation component sends the door-opening action to the
refrigerator. As an alternative configuration, the robot could
use its own odometric estimator to provide (less reliable)
position information to its navigation component.

In the rest of this paper, we show our approach to au-
tomatically generate sequences of admissible configurations
which are causally related.

III. CONFIGURATION GENERATION

A. Domain Description

In order to generate configurations for a particular PEIS-
Ecology, the configuration planner requires a declarative
description of:

• the functionalities and methods for connecting them,
• the current world state,
• the goal for what the configuration should produce.

The world state, declares the available PEIS and their
physical capabilities, as well as the state of the sur-
rounding environment. It is encoded as a set of
clauses, such as robot(r1), door(d1), robot-
-at(r1,kitchen). In a PEIS ecology, the world state
is compiled from information received from the different
components via the PEIS-middleware [2]. The goal for the
configuration generation process is to produce a desired
information output. For example, in the smell-fridge scenario
in Figure 1, the information goal is to produce the food
status.

The description of available functionalities is realized us-
ing operator schemas similar to those of AI action planners.
One functionality operator schema that we have used in our
experiments, localization-system, is shown in the
upper half of Figure 3.

The name field specifies the name and parameters of
the functionality. The fields input and output specify

(functionality
name: localization-system(p, o)
input: images(p)
output: global-pos(o)
precond: o visible in at least 1 of images(p)
postcond: -

)

(config-method
name: get-location-info(r)
precond: robot(r), peis(r), peis(p),
localization-system(p), 4-cameras(p)

output: f2: global-pos(r)
channels: local(p, f1, f2, image(p))
body:

f1: cameras(p)
f2: localization-system(p, r)

)
Fig. 3. A functionality operator schema, and a method schema for
combining functionalities. (Syntax simplified for readability reasons.)

the inputs (images) and the outputs (global-pos) of the
functionality. The precond and postcond fields encode
the causal preconditions — in this case, the object o must
be visible in at least one of the input images.

B. The Configuration Planner

Our configuration planner allows us to define methods
that describe alternative ways to combine functionalities (or
other methods) for specific purposes, e.g. combining the
ceiling cameras functionalities with a localization system
functionality.

The lower half of Figure 3 shows an example of a
method schema that does exactly that. There is a channel
inside the method connecting two functionalities (labeled f1
and f2). The descriptor of the channel (image(p)) tells
which specific input and output of the functionalities should
be connected. In PEIS terms, the channel indicates that
the receiving PEIS component should read from a specific
tuple (in this case for images) owned by the sending PEIS

component. In addition, the outputs (global-pos(r)) of
f2 is declared in the output field to be the output of
the entire method. Thereby, any channel that in a method
higher up in the hierarchy is connected to the output of
get-location-info will be connected to the output of
localization-system.

The configuration planner takes as input a current causal
state s, a stack of (unexpanded) method instances with
initially one instance l : m(c1, c2, ...) representing the goal
of the robot (l is a label), and a set of methods M and a set
of functionality operators O. It basically works as follows (a
more technical description is found in [10]):

1) Take the unexpanded method instance l : m(c1, c2, ...)
at the top of the stack.

2) If l : m(c1, c2, ...) matches the name of a functionality
operator O, instantiate and add that operator to the
current configuration.

3) If l : m(c1, c2, ...) matches a method schema in
M which has preconditions holding in s, instantiate
and expand that method schema. Add the channels
(with new labels) to the current configuration. Add

WeA3.1

66

the method instances (with new labels) of the method
body to the top of the stack. Redirect channels in the
current configuration that are connected to the input or
output slots of the method to the corresponding method
instances in the method body.

4) If the stack is empty, return the current configuration.
Otherwise go back to 1.

In the following example, the robot called Pippi and the
home monitoring system (hms) are PEIS. More details
about different PEIS and PEIS-components can be found
in the experiments section. To illustrate how the planner
functions, let us assume we are expanding l5: get-
-location-info(pippi) (step 1). We choose to use
method in Figure 3 (step 3). First, we need to replace r
with pippi everywhere in the schema. We need to look
in s for a PEIS p with a localization-system, e.g. the hms,
and replace p with hms everywhere in the schema. New
labels, say l7 and l8, replace f1 and f2. The channel
is added to the current configuration and the two function-
alities l7: cameras(hms) and l8: localization-
-system(hms, pippi) are added to the top of the
stack. Finally, we go through the channels already in the
configuration, and any channel we find with label l5 (i.e.
get-location-info(pippi)) for its out connection is
reconnected to l8 (i.e. localization-system(hms,
pippi)). We proceed to step 4, and then return to step 1.
There we find l7: cameras(hms) at the top of the stack,
which matches a functionality operator and is added to the
current configuration (step 2). And so on.

The first output from the planner is a configuration de-
scription C, which essentially consists of a set of func-
tionality names with labels, e.g. l8: localization-
-system(hms, pippi), and set of channels, e.g.
local(p, f1, f2, image(p)).

The second output from the planner is the set of postcon-
ditions P specified in the functionalities in C, which can be
used to update the current state, which then in turn can be
used as input for generating the configuration following the
current one (if any).

It is possible to accidentally specify methods that can
result in configurations with cycles. However, these cycles
are easily detected and the faulty configurations are excluded.

Generally, there are several configurations that can solve a
problem, but obviously, only one configuration per problem
can be performed at the time. By trying different applica-
ble method versions, guided by the cost of configurations,
our planner generates the admissible configuration with the
lowest cost first.

C. Deployment of a Configuration

In order to execute a configuration, we need to instantiate
it on the ecology. We call this phase the deployment of
the configuration. The deployment phase consist of three
steps. The first step is to verify that the functionalities of
the description are up and running. This is achieved by
searching through the distributed tuple space provided by
the PEIS-middleware for tuples matching the names of the

functionalities. The second step is to setup the channels be-
tween the functionalities. Since communication in the PEIS-
Ecology is done using a tuple space, the channels are setup
by telling the different functionalities which information they
should subscribe to and from whom. That is, (a) for each
channel, the destination key tells which functionality that
should be the owner of the subscription, (b) the source key,
tells from which functionality it should be subscribed, and
(c) the information field gives the information to subscribe.
The third and last step of the deployment phase is to activate
the actuator functionality(s) of the configuration and to let
the plan executor to subscribe to the status information of
this/these actuator functionality(s), in order to tell if an action
is accomplished or not.

IV. TASK PLANNING

The configuration planner is capable of generating a single
configuration for one particular task. However, often one
needs to perform several steps in order to solve a task. For
instance, to check the fridge, the robot must first move into
the kitchen, then the fridge door needs to be opened, and the
robot must move near the fridge and then smell its contents.
Different configurations are needed at each of these steps.

We employ a sensor-based probabilistic action planner,
called PTL Planner [7], in order to generate conditional plans
that specify the different steps needed to complete particular
tasks. The steps in these plans are actions of the form ”move
robot to kitchen”, ”open fridge door”, and ”smell fridge”. For
each type of action, one can specify an information goal.
For instance, for an action of the type ”move robot to X”,
one may specify an information goal to estimate the position
of the robot. When a configuration has been generated, this
information can be fed to the robot’s movement behavior.

Our present system works by first calling the action plan-
ner to find a conditional action plan for solving a particular
task. This plan is then executed step by step. At each
step, the configuration planner generates a configuration. The
configuration is then deployed as described in Section III-
C. When the step is completed, the system proceeds to
the next step and generates a new configuration, and so
on. The completion of a step is reported by the PEIS

component that is the endpoint of the configuration. For
instance, for a navigation task, the navigation module of the
robot determines when it has reached the desired position.

V. EXPERIMENTS

For the experimental part we have used a scenario first
presented by Loutfi et al[1]. In that paper, the purpose of
the experiments was to show that by using a PEIS-Ecology
approach, it is possible to by-pass some of the difficult prob-
lems of mobile olfaction (e.g. odor localization, and domain
information for odor classification). The subscriptions where
handled using a hand written script.

In this paper, we use the same experiment to show that it is
possible to automatically generate a sequence of configura-
tions that that enables the robot to smell inside the fridge. We
do this by using the configuration framework and the action

WeA3.1

67

Fig. 4. (Left) Pippi is about to smell inside the fridge. (Right) The PEIS
fridge showing the placement of the two gas sensors and the products to be
sampled.

planner presented above to setup the subscriptions and to
activate the functionalities in the configuration description.

A. Experimental Setup

For the experimental part, we have used a physical test-
bed facility, called the PEIS-Home, which looks like a
typical bachelor apartment of about 25m2. It consists of
a living room, a bedroom and a small kitchen. The PEIS-
Home is equipped with communication and computation
infrastructure, and with a number of PEIS. The picture to
the left in Fig. 4 shows a snapshot of the kitchen.

The following PEIS are of particular importance for our
experiments.

Pippi the mobile robot PEIS: An iRobot’s Magellan Pro
indoor robot (see Fig. 4) that in addition to the usual sensors,
it is equipped with a CCD color camera and with a Cyranose
320TM electronic nose used to identify and discriminate
between odors. On-board Pippi also runs an instance of the
Thinking Cap, an architecture for autonomous robot control
based on fuzzy logic [18], and an instance of the player
program [15], which provides a low-level interface between
the robot’s sensors and actuators and the PEIS-Ecology’s
tuple-space.

This is also where the action planner and the configuration
planner are located, and the reconfigurations of the PEIS-
Ecology are done from here.

The refrigerator PEIS: The refrigerator PEIS consists of an
apartment sized refrigerator with two simple gas sensors, a
motorized door, an RFID-reader, and a laptop computer with
data acquisition technology (see Fig. 4 right). The RFID-
reader can read the RFID tags of the objects in the fridge.

The Home Security Monitor PEIS: This is a PEIS which
consists of a stationery computer which is connected to a
set of web-cameras mounted in the ceiling. In addition to
other monitoring tasks, not relevant here, this PEIS reacts to
alarms published in the tuple-space by the simple gas sensing
component in the fridge. If such an alarm is signaled, it sends
a task to an available robot to go to investigate the food status
on the fridge. It contains a high-level component responsible

for detecting possible problems using the available olfactory
resources: the simple gas sensors which are present in the
refrigerator-PEIS and possibly in other devices, and the
electronic nose on Pippi.

B. Experimental Execution

All the experiments reported here have been performed us-
ing the PEIS-Ecology described in the previous sections, and
placing milk cartons in the PEIS-fridge. Each experimental
run consisted of the following:

1) At start-up, Pippi started at a resting position in the
living room.

2) After some time, the gas sensors in the refrigerator
triggered an alarm, and a tuple of type fridgeAlarm
was placed in the tuple-space. This was notified to
the deliberator component inside the Home Security
Monitor PEIS, thus triggering the need for Pippi to
investigate the fridge. Pippi was notified by a tuple,
describing the a high level goal (smell-fridge), that was
published by the deliberator.

3) With this high level goal, the action planner located at
Pippi, generated a plan. The plan consisted of ”move
to kitchen”, ”open fridge door”, ”move near fridge”,
”smell fridge”.

4) This plan was executed by first generating and deploy-
ing a configuration for moving Pippi to the kitchen.
The configuration involved web cams in the ceiling,
connected to a computer which estimated Pippi’s po-
sition and posted this information as tuples. Pippi’s
navigation system read these tuples and used the in-
formation when moving into the kitchen.

5) When Pippi’s navigation system had established that
Pippi had reached the kitchen, it published a tuple that
declared that this was the case.

6) The next action was to open the fridge door, which
requires only a very simple configuration (the fridge
door opening component). This was done and comple-
tion was reported.

7) Then the robot moved near the fridge. This was done
in a similar way as moving to the kitchen.

8) Pippi then activated the electronic nose by publishing
another tuple, and waited for the classification results.
When those results were published, that step was
considered completed.

9) If the results signified no problem (i.e. “no bad smell”),
the deliberator asked Pippi to return to its starting
position and resumed its monitoring activity.

10) In all other cases, the deliberator would ask Pippi
to move to the bedroom to alert the occupants of
the PEIS-Home. (This step was not consider in the
conducted experiment)

The important steps of the experiment are the steps in-
volving the configuration planner, that is, step 4, 6, 7, and 8.
In step 4, the navigation system on Pippi needs to know
Pippi’s position in order to move to the kitchen. In this
situation, there are two different ways that Pippi can retrieve
this information: (1) She can update her initial position using

WeA3.1

68

Fig. 5. The configurations for: ”move to kitchen”, ”open fridge door”, ”go
near fridge”, ”smell fridge”. See explanation in the text.

odometry measurements, or (2) she can let the web cams
in the ceiling track her position and send it to her. When
generating the configuration, all alternatives are considered,
and the second one is selected since it has a lower cost. (See
first config. in Fig 5)

In step 6, the action is to open the door of the refrigerator.
In the current implementation, we assume that this action
does not need any information, i.e., the configuration planner
will generate a configuration only consisting of one func-
tionality, namely open-fridge-door. (See second config. in
Fig 5) However, it might be a good idea for this functionality
to have some information about its closest surroundings to
avoid hitting objects with the door. This information could
of course be obtained in different way, e.g. using the ceiling
web camera system, a camera on a robot in the kitchen, or
perhaps from a tactile sensor in front of the fridge.

Step 7 is very similar to step 4 where Pippi moved in
to the kitchen, but here the task is for Pippi to move close
to the fridge. In order to move near the fridge, Pippi needs
the information about where the fridge is with respect to
herself. This information can be retrieved either by using
the different localization methods described for step 4, or
by using a camera and vision system on-board Pippi that is

able to track the fridge. By tracking the fridge, Pippi can get
continuous information about the position of the fridge in her
local coordinate system. When generating the configuration
for moving close to the fridge, these three alternatives are
considered, and the alternative using on-board camera and
vision system (object tracker) is selected since it has a lower
cost than the other alternatives. (See third config. in Fig 5)

Step 8 considers the action of smelling inside the fridge.
When smelling the fridge, the odor classifier gets the context
information by reading the RFID tags of the objects in the
fridge. To read these tags, it is possible to either use the
RFID reader inside the fridge, or the one on Pippi. The
configuration planner generates a configuration where the
RFID reader inside the fridge is used. (See last config. in
Fig 5)

VI. RELATED WORK

Problems similar to the work on automatic generation
of configurations have been studied in several different
research areas, e.g. in program supervision [20], automatic
web service composition [16], coalition formation [19], and
single robot task performance [12]. However, in the field
of ecologies of robots and robots acting in intelligent en-
vironments, there are only few works that address similar
problems. Intelligent Spaces [9] deal with the problem of
how an intelligent environment can actively provide humans
and robots with information. In these, distributed intelligent
networked devices (DINDs) that are composed of a sensor,
processor, and network, act as providers of information.
DINDs can share information and cooperate with each other.
In contrast to the work in this paper, Intelligent Spaces are
homogeneous, the cooperation is hard coded, and it can
only handle cooperation that does not require simultaneous
operations. Ha et al. [5] present an approach for automated
integration of networked robots into intelligent environments.
They use a hierarchical planner to generate sequences of
services for a given task. As in traditional web service
composition, there is a data relation between services rather
than a causal relation. A part from that relation, the problem
is very much like traditional action planning. The services
are executed in a sequence like actions of a plan. In contrast,
functionalities in our approach are executed in parallel with
continuous streams, which allows us to address tasks that
require tight coordination.

In the area of ambient intelligence (not including robots)
Heider and Kirste[6] propose an approach that uses plan-
based techniques to control an intelligent environment. The
aim is to make interaction between the user and the environ-
ment more goal oriented, i.e. the user should not have to learn
how to operate all functions on all devices, but rather just
give the goal of the interaction (e.g. Find the media source
containing media event “Terminator”). Planning is used to
develop strategies on how different functions can be executed
to reach the goal given by the user. Similar to the approach
by Ha et al.[5] mentioned above, this approach has more
in common with traditional action planning than it has with
configuration planning.

WeA3.1

69

In the area of cooperative robotics, very few works address
problems similar to configuration generation. Parker and
Tang [14] present an approach called ASyMTRe. The princi-
ple of ASyMTRe is to connect different schemas (similar to
instantiated functionalities) in such a way that a robot team
is able to solve tightly-coupled tasks by information sharing.
The approach presented in this paper goes one step further,
by addressing the automatic generation of sequences of con-
figurations, using a combination of hierarchical planning for
individual configurations and probabilistic action planning
for the sequences.

VII. CONCLUSIONS

We have described a novel approach to the automatic
on-line generation of a configuration of an ecology of
robots using plan-based techniques. We have validated our
approach in our PEIS-Ecology testbed, by showing that a
scenario that was previously hand-coded can now be run
fully autonomously. It is important however to note that our
approach is not restricted to the case of a PEIS-Ecology, but
it applies to generic groups of robots. As a consequence,
the approach can also be applied beyond the PEIS-Ecology
framework considered here. Examples of applications of our
approach to other cooperative robotics tasks can be found in
[10].

An especially interesting feature of our approach is that
the configuration generation is done in two dimensions: both
a causal and an information dimension. For the causal dimen-
sion we employ a sensor-based probabilistic action planner in
order to generate conditional plans that specify the different
steps needed to complete particular tasks. For the information
dimension we employ a configuration planner that generates
descriptions of configurations that specify the functionalities
and the information flow between functionalities that are
required to execute a particular task.

While our plan-based approach has interesting properties,
like the guaranteed correctness and optimality of the gener-
ated configurations, it has the usual problems of plan-based
approaches: it requires full knowledge about the available
PEIS and about the state of the world, and the generated
configuration might not be correct any more if these data
change after it was generated. In a related paper [4], we
explore a reactive approach to the self-configuration of a
PEIS-Ecology, which might be more suitable for highly dy-
namic environments. Our next step will be to systematically
compare these approaches, and to explore their integration.

ACKNOWLEDGMENTS

This work was supported by CUGS (the Swedish National
Graduate School in Computer Science), and ETRI (Elec-
tronics and Telecommunications Research Institute, Korea)
through the project “Embedded Component Technology and
Standardization for URC (2004-2008)”.

REFERENCES

[1] M. Broxvall, S. Coradeschi, A. Loutfi, and A. Saffiotti, “An ecolog-
ical approach to odour recognition in intelligent environments,” in
Proceedings of the IEEE International Conference on Robotics and
Automation ICRA, Orlando, FL, 2006.

[2] M. Broxvall, M. Gritti, A. Saffiotti, B. Seo, and Y. Cho, “PEIS ecology:
Integrating robots into smart environments,” in Proceedings of the
IEEE International Conference on Robotics and Automation ICRA,
Orlando, FL, 2006.

[3] L. Chaimowicz, A. Cowley, V. Sabella, and C. J. Taylor, “ROCI: a
distributed framework for multi-robot perception and control,” in Pro-
ceedings of the 2003 IEEE/RJS International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, USA, October 2003, pp. 266–
271.

[4] M. Gritti, M. Broxvall, and A. Saffiotti, “Reactive self-configuration of
an ecology of robots,” In: ICRA workshop on Network Robot Systems,
Rome, Italy, 2007.

[5] Y. Ha, J. Sohn, and Y. Cho, “Automated integration of service robots
into ubiquitous environments,” in Proceedings of the 3rd International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI),
2006, pp. 177 – 182.

[6] T. Heider and T. Kirste, “Smart environments and self-organizing
appliance ensembles,” in Mobile Computing and Ambient Intelligence,
2005.

[7] L. Karlsson, “Conditional progressive planning under uncertainty,”
in Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI-01), Seattle, USA, 2001, pp. 431–438.

[8] J. Kim, Y. Kim, and K. Lee, “The third generation of robotics:
Ubiquitous robot,” in Proceedings of the 2nd International Conference
on Autonomous Robots and Agents (ICARA), Palmerston North, New
Zealand, 2004.

[9] J. Lee, K. Morioka, N. Ando, and H. Hashimoto, “Cooperation of
distributed intelligent sensors in intelligent environment,” IEEE/ASME
Transactions on Mechatronics, vol. 9, no. 3, pp. 535–543, 2004.

[10] R. Lundh, “Plan-based configuration of a group of robots,” Licentiate
Thesis. University of Örebro, Sweden, September 2006.

[11] R. Lundh, L. Karlsson, and A. Saffiotti, “Plan-based configuration of a
group of robots,” in Proceedings of the 17th European Conference on
Artificial Intelligence ECAI, Riva del Garda, Italy, 2006, pp. 683–687.

[12] B. Morisset, G. Infante, M. Ghallab, and F. Ingrand, “Robel: Synthe-
sizing and controlling complex robust robot behaviors,” in Proceedings
of the Fourth International Cognitive Robotics Workshop, (CogRob
2004), August 2004, pp. 18–23.

[13] Network Robot Forum, www.scat.or.jp/nrf/English/.
[14] L. E. Parker and F. Tang, “Building multi-robot coalitions through

automated task solution synthesis,” Proceedings of the IEEE, special
issue on Multi-Robot Systems, vol. 94, no. 7, pp. 1289–1305, 2006.

[15] Player/Stage Project, playerstage.sourceforge.net/.
[16] J. Rao and X. Su, “A survey of automated web service composition

methods,” in Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC),
San Diego, California, USA, July 2004.

[17] A. Saffiotti and M. Broxvall, “PEIS ecologies: Ambient intelligence
meets autonomous robotics,” in Proceedings of the International
Conference on Smart Objects and Ambient Intelligence (sOc-EUSAI),
Grenoble, France, 2005, pp. 275–280.

[18] A. Saffiotti, K. Konolige, and E. H. Ruspini, “A multivalued-logic
approach to integrating planning and control,” Artificial Intelligence,
vol. 76, no. 1-2, pp. 481–526, 1995.

[19] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,” Artificial Intelligence, vol. 101, pp. 165–200,
1998.

[20] C. Shekhar, S. Moisan, R. Vincent, P. Burlina, and R. Chellappa,
“Knowledge-based control of vision systems,” Image and Vision
Computing, vol. 17, pp. 667–683, 1998.

WeA3.1

70

