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Abstract— Many robotic applications work with visual
reference maps, which usually consist of sets of more or less
organized images. In these applications, there is a compromise
between the density of reference data stored and the capacity to
identify later the robot localization, when it is not exactly in the
same position as one of the reference views. Here we propose
the use of a recently developed feature, SURF, to improve
the performance of appearance-based localization methods that
perform image retrieval in large data sets. This feature is
integrated with a vision-based algorithm that allows both topo-
logical and metric localization using omnidirectional images
in a hierarchical approach. It uses Pyramidal kernels for the
topological localization and three-view geometric constraints
for the metric one. Experiments with several omnidirectional
images sets are shown, including comparisons with other
typically used features (radial lines and SIFT). The advantages
of this approach are proved, showing the use of SURF as the
best compromise between efficiency and accuracy in the results.

I. INTRODUCTION

Often mobile robots have reference maps at their dis-

posal or are at least able to construct their own. Working

with vision sensors, these maps usually are a more or

less organized set of images, frequently grouped in clusters

corresponding to different locations or nodes, e.g rooms.

The robot localization needs to be more or less accurate

depending on the task to perform afterwards. For instance,

topological localization is less accurate but faster and more

useful to communicate with humans. However, for navigation

or interaction with objects (e.g. to avoid them or to pick

them) metric information is needed. In earlier work [1], we

have presented an appearance-based localization method that

uses a hierarchical approach to obtain topological and metric

localization information from omnidirectional images.

Omnidirectional vision and hierarchical localization are

two topics of interest nowadays. Omnidirectional vision has

become widespread in the last years, and has many well-

known advantages as well as extra difficulties compared

to conventional images. There are many works using all

kind of omnidirectional images, e.g. a map-based navigation

with images from conic mirrors [2] or localization based

on panoramic cylindric images composed of mosaics of

conventional ones [3]. Hierarchical localization processes

have been also a field of study in the previous years, e.g.,

[4], [5], [6]. Usually their goal is to localize the robot as

fast as possible with a lot of reference information, then they
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perform different steps pruning the reference data in each one

to save time. Other option to improve the efficiency with big

amounts of data consists of using efficient data structures that

allow us to speed up the computations, as in [7], using trees

to increase the efficiency with a lot of data in simultaneous

localization and mapping, or in [8], using clusters of features

and trees to efficiently search in a very big image database.

This work explains how to obtain an efficient global

localization combining SURF features with a hierarchical

method, which provides topological and metric information

with regard to a big set of reference images or visual

memory. Here the automatic construction of this reference

set, or topological map, is not studied, but there are many

recent works dealing with this problem, such as [9] or

[10]. The subjects of our work are open issues of hierar-

chical localization methods: improving the accuracy in the

final localization and increasing the speed to deal with big

reference data sets. Here, we improve the efficiency and

robustness of the work done in [1]. There, thanks to the use of

three-view geometric constraints, accurate metric localization

information can be obtained from a minimal set of reference

views. Its localization accuracy depends only on the wide

baseline it is able to deal with the image feature used, while

in other methods for image based metric localization, e.g. the

one proposed in [5], the accuracy depends on the separation

between reference images in the image grid stored. The

improvements here with regard to [1] are mostly due to the

integration with a recently developed local feature named

Speeded-Up Robust Features (SURF) [11]. This feature

allows us to better cope with wide baseline situations in a

efficient way.

This paper introduces in the field of vision based local-

ization the usage of SURF. It has been previously used,

e.g, for object recognition in a museum guide application

[12]. However, it had not yet been applied in the robotics

field nor in omnidirectional images and seems convenient

in these tasks. It states to have more discriminative power

than other state-of-the-art features such as SIFT [13], yet

can be computed more efficiently and yields a lower di-

mensional feature descriptor resulting in faster matching.

The construction of the SURF features is quite convenient

also for hierarchical approaches. Initially, for the first rough

steps of the hierarchy, a faster and smaller feature descriptor

vector can be extracted. Later, for the more accurate steps

of the process, a more accurate descriptor vector can be ob-

tained. The experimental section compares the performance

of SURF against the popular SIFT (version provided by D.

Lowe in [13]), the most popular wide-baseline feature in the
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last years, and against radial lines, a simple, fast and easy

feature to extract in omnidirectional images [1]. The results

of our experiments, with two different data sets, show that

the best compromise between performance and efficiency is

obtained with SURF.

We provide more details about SURF in section II, while

the localization process used is detailed in section III. Finally

in section IV, exhaustive experiments with different omnidi-

rectional image sets are shown to validate the proposal.

II. SPEEDED UP ROBUST FEATURES (SURF)

SURF is a local feature recently presented in [11]. This

section shows a brief summary of its construction process,

first the interesting point localization and after the feature

descriptors computation.

A. Interest Point Localization.

The SURF detector is based on the Hessian matrix. Given

a point x = [x, y] in an image I, the Hessian matrix H(x, σ)
in x at scale σ is defined as follows

H(x, σ) =

[

Lxx Lxy

Lxy Lyy

]

, (1)

where Lxx(x, σ) is the convolution of the Gaussian second

order derivative ∂
∂2

x
g(σ) with the image I in point x, and

similarly for Lxy(x, σ) and Lyy(x, σ). In contrast to SIFT,

which approximates Laplacian of Gaussian (LoG) with Dif-

ference of Gaussians (DoG), SURF approximates second

order Gaussian derivatives with box filters. See an example

of one of this filters for the lowest scale analyzed in Fig. 1

Image convolutions with these box filters can be computed

rapidly by using integral images [14].

Fig. 1. Left: gaussian second order derivative in xy-direction. Right:
corresponding box filter approximation.

The location and scale of interest points are selected by

relying on the determinant of the Hessian. Interest points

are localized in scale and image space by applying a non-

maximum suppression in a 3 x 3 x 3 neighbourhood. Finally,

the local maxima found of the approximated Hessian matrix

determinant are interpolated in scale and image space. For

more details, see [11].

B. Interest Point Descriptor.

In a first step, SURF constructs a circular region around

the detected interest points in order to assign a unique

orientation to the former and thus gain invariance to image

rotations. The orientation is computed using Haar wavelet

responses in both x and y directions. The Haar wavelets

can be quickly computed via integral images, similar to

the Gaussian second order approximated box filters. The

dominant orientation is estimated and included in the interest

point information.

In a next step, SURF descriptors are constructed by ex-

tracting square regions around the interest points. These are

oriented in the directions assigned in the previous step. The

windows are split up in 4 x 4 sub-regions in order to retain

some spatial information. In each sub-region, Haar wavelets

are extracted at regularly spaced sample points. The wavelet

responses in horizontal and vertical directions (dx and dy)

are summed up over each sub-region. Furthermore, the

absolute values |dx| and |dy| are summed in order to obtain

information about the polarity of the image intensity changes.

Hence, the underlying intensity pattern of each sub-region

is described by a vector V = [
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|].
The resulting descriptor vector for all 4 x 4 sub-regions is of

length 64, giving the standard SURF descriptor, SURF-64. It

is possible to use 3 x 3 sub-regions instead, then we obtain

a shorter version of the descriptor, SURF-36, that will be

also used in our applications. Notice that the Haar wavelets

are invariant to illumination bias and additional invariance

to contrast is achieved by normalizing the descriptor vector

to unit length.

An important characteristic of SURF is the fast extraction

process, that takes profit of integral images and a fast non-

maximum suppression algorithm. Also is very convenient

the fast matching speed it permits, mainly achieved by a

single step added to the indexing based on the sign of the

Laplacian (trace of the Hessian matrix) of the interest point.

The sign of the Laplacian distinguishes bright blobs on a

dark background from the inverse situation. Bright interest

points are only matched against other bright interest points

and similarly for the dark ones. This minimal information

permits to almost double the matching speed and it comes

at no computational costs, as it has already been computed

in the interest point detection step.

III. EFFICIENT VISION BASED LOCALIZATION

This section explains a hierarchical method to efficiently

localize the actual position of the robot with regard to a big

set of reference images or visual memory (VM).

A. Similarity evaluation for topological localization

This part details the process for the topological local-

ization, i.e., to recognize the room, which evaluates the

similarity between the current view and the images from the

VM.

First, a color global image descriptor is applied as a pre-

filtering for the reference views, as described in [1], rejecting

those images with very low similarity in this descriptor. This

filter can not be very strict, as the global descriptors are very

sensitive to occlusions and noise, but it is very useful to

reduce the set of candidate locations for the next steps.

The rest and more important part of the similarity eval-

uation assigns a more accurate similarity value to each

reference view that passed the initial pre-filter. This has

been done with two different methods, one based on a

Pyramidal matching and other based on a nearest neighbour

(NN) matching. In general, the first one is more efficient

and robust, but this is not true for long descriptor vectors.

FrC1.1

3902



Therefore, SIFT descriptor seems not suitable for this method

due to its descriptor size (128), then we tried also the second

similarity measurement to make our experimental validation

more complete.
1) Similarity based on Pyramidal matching: We use a

similarity evaluation process based on the Pyramid matching

kernels proposed in [15]. It allows local feature matching

between the reference images and the current one with linear

cost in the number of features. It takes into account the

distribution of the local features, not only their descriptors.

The features descriptors vectors are used to implement this

mentioned matching structures. The idea consists of building

for each image several multi-dimensional histograms (one

dimension per descriptor), where each feature falls in one of

the histogram bins. Each descriptor value is rounded to the

histogram resolution, which gives a set of coordinates that

indicates the bin corresponding to that feature.

Several levels of histograms are defined. In each level,

the size of the bins is increased by powers of two until all

the features fall into one bin. The histograms of each image

are stored in a vector (or pyramid) ψ with different levels of

resolution. The similarity between two images, the current (c)

and one of the VM (v), is obtained by finding the intersection

of their corresponding pyramids of histograms

S(ψ(c), ψ(v)) =

L
∑

i=0

wiNi(c, v) , (2)

with Ni the number of matches (features that fall in the

same bin of the histograms, see Fig. 2 ) between images c

and v in level i of the pyramid. wi is the weight for the

matches in that level, that is the inverse of the current bin

size (2i). This distance is divided by a factor determined

by the self-similarity score of each image, in order to avoid

giving advantage to images with bigger sets of features, so

the distance obtained is

Scv =
S(ψ(c), ψ(v))

√

S(ψ(c), ψ(c)) S(ψ(v), ψ(v))
. (3)

PYRAMIDAL MATCHING 
(with descriptor vector of 2 dimensions)
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Fig. 2. Example of Pyramidal Matching, with correspondences in level 0,
1 and 2. For graphic simplification, with a descriptor of 2 dimensions.

Note that the matching obtained does not have all matches

feature-to-feature, it happens often, specially when using

bigger bin-sizes, that more than one feature from each image

falls in a certain histogram cell (as happens in Fig. 2), so we

count two matches there but we can not distinguish them.

2) Similarity based on Nearest Neighbour matching: We

can compute a similarity score that depends on the matches

found (n) between the pair of images, weighted by the

average distance (d) between the features matched. It has

to take also into account the number of features not matched

in each image (F1 and F2 respectively) weighted by the

probability of occlusion of the features (Po). The defined

dissimilarity (DIS) measure is

DIS = n d + F1(1 − Po) + F2(1 − Po) . (4)

Once the most similar image from the VM to the current

one is determined with one of the previously explained

similarity evaluations, the annotations of this chosen image

indicate the room where the robot is currently.

B. Metric localization through the Radial Trifocal Tensor

For many applications, a localization information more

accurate than the current room is needed. The structure and

motion parameters have been typically recovered in computer

vision applications from geometric constructions such as

the fundamental matrix, with well known structure from

motion algorithms [16]. The multi-view geometry constraint

for three 1D views is the 1D trifocal tensor [17]. In case

of omnidirectional images, accurate robot and landmarks

localization can be achieved from the 1D radial trifocal

tensor [18]. This tensor is robustly estimated from trios of

correspondences, applying a robust method (ransac) in the

three-view matching process to simultaneously reject outliers

and estimate the tensor.

In our case, the three omnidirectional images used are

the current one and two from the reference database (the

most similar found and one neighbour). The image feature

dimension used is their orientation φ, relative to the direction

where the camera is pointing (see Fig. 3). It must be

expressed as 1D homogeneous coordinates r = [sinφ, cosφ].
The projections of a certain feature v in the three views

(r1, r2, r3) are constrained by the trilinear constraint imposed

by the 1D trifocal tensor
∑

2

i=1

∑

2

j=1

∑

2

k=1
Tijk r1(i)

r2(j)
r3(k)

= 0, (5)

where Tijk (i, j, k = 1, 2) are the eight elements of the 2 ×
2× 2 trifocal tensor and subindex (·) are the components of

vectors r.

The 1D tensor can be estimated with five matches and two

additional constraints [19] defined for the calibrated situation

(internal parameters of the camera are known). From this

tensor estimated for omnidirectional images, without other

camera calibration than the center of projection, a robust

set of matches, the camera motion and the structure of the

scene can be computed in a closed form [18]. Fig. 3 shows a

feature projected in three views and the location parameters

estimated.

Using 1D bearing-only data, it is well known that three

views are needed to recover the structure of the scene.
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Fig. 3. Landmark projection in 1D views and motion parameters estimated:
translation directions [tx21, ty21], [tx31, ty31] and rotations α21, α31.

But there are more advantages in computing the metric

localization with this three view geometry based approach.

First, as it uses two reference images and we suppose an

annotated reference set, the reference information between

these two views helps to solve the ambiguity and the scale of

the localization obtained from the 1D tensor. Second, using

three views makes the matching more robust without too

much computing overload (matches between images in the

VM can be pre-computed and stored). The fact of using

only the angular coordinate also helps to the robustness,

as in omnidirectional images it is more accurate than the

other polar coordinate (the radial coordinate). Finally, it

can also help to automatically detect situations of failure.

For example, if the two reference images that obtained the

highest similarity scores are not from the same room in the

database, it can give us indications of some mistake and

allow us to act accordingly.

IV. LOCALIZATION EXPERIMENTS

This section shows the performance of the method ex-

plained in previous sections for the topological localization

(i.e. current room recognition) and for the metric localization.

The results obtained with the new feature SURF [11] were

compared to results with the most commonly used wide-

baseline feature, SIFT [13], and to results with radial lines,

as they are simple and fast features previously used for these

tasks. The feature extraction was performed with the imple-

mentation provided in the given references. The radial line

matching was performed as in [1] and the matching of SURF

and SIFT was a typical nearest neighbour algorithm that

considers a match correct if the distance between first (d1)

and second (d2) nearest neighbour fits d1 ≤threshold∗d2.

Two data sets of omnidirectional images were used,

Almere (standard data set provided in [20]) and our own

(named data set LV). We decided to use also this second

data set because ground truth data was available for its

images, which was convenient to measure the errors in the

localization. This visual memory has 70 omnidirectional

images (640x480 pixels). 37 of them are sorted, classified

in four different rooms, with between 6 and 15 images of

each one (depending on the size of the room). The rest

corresponds to unclassified ones from other rooms, buildings

or outdoors. From the Almere data set, we have extracted

the frames from the low quality videos provided from the

rounds 1 and 4 (2000 frames extracted in the first, and 2040

in the second). We kept just every 5th frame. From these, we

assigned half for the visual memory (the odd frames: 0-10-

20-30- ... ) and the other half for testing (5-15-25-...). The

images correspond to a robot-tour around a typical house

environment with several rooms (living-room, kitchen,...).

Fig. 4 shows a scheme of both databases, in case of data set

LV with details of the relative displacements between views.

All images have been acquired with an omnidirectional

vision sensor with hyperbolic mirror.

Almere 1
corridor

living room

bedroom
kitchen

ALMERE DATA SET

ROOMS

Data set LV rooms

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

30 cm

60 cm
60 cm

Room A - Hall

60 cm

Room B - Office 1

Room C - Office 2

Room D - Corridor

Fig. 4. Grids of images in rooms used in the experiments. Top: Almere

data set (typical home environment). Bottom: data set LV (typical office
environment).

A. Topological localization performance

This section shows the topological localization perfor-

mance of the methods explained in section III-A. The ex-

periments consisted of running the similarity evaluation to

localize the room where the robot is. Three different cases

were studied:

- Case 1: data set LV. This data set contains views that

were taken separately in each room (not during a robot tour),

taking annotations for the ground truth. In this case, the

localization was done using a view from data set LV as query

and the other views from the same data set as VM.

- Case 2: Almere1∝1. In this case, the query image to

be localized belongs to Almere-data set round 1, and the

VM was composed with other images from the same round.

Images in this round 1 were taken during a robot tour around

the environment shown in Fig.4.

- Case 3: Almere4∝1. This is the most complicated case,

because the VM was built from Almere round 1 images but

the query ones belonged to round 4. This tour was done in

the same environment but with many occlusions and noise.
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The results of the room recognition performed in these

cases are show in Table I. The first row, pre-filter, gives

a summary of the performance of the pre-filtering used

in the similarity evaluation, showing the average number

of images rejected (rej.) and the false negatives wrongly

rejected (f.n.).

Column 1Ok indicates the percentage of tests where the

most similar image found was correct. The time information

in column T/Tsurf is just a comparative of the relative speed

to compare a query with the reference set of images for each

of the features used. The surf execution time (Tsurf ) is taken

as reference and the others are relative to it in each case. Note

that the implementations were run in Matlab and were not

optimized for speed.

The results for radial lines were definitely better with

the Pyramidal matching classification, as the correctness

with the NN evaluation was similar, but the execution time

was smaller for the Pyramidal matching (around 25% less).

However, note that when the difficulty of the case studied

increases, the lines performance decreases more than with

the other features. The results for SIFT shown in Table I

were obtained with the NN similarity classification, because

the ones obtained with the Pyramidal matching were worse,

e.g., just 60% correct classifications (1Ok) using data set

LV while with NN it achieved a 89%. This and specially the

high execution times confirmed that the Pyramidal matching

is not suitable for SIFT (it took around 30 times more than

the Pyramidal matching with SURF-36). This was already

expected because of the big size of its descriptor vector. Yet,

the performance of SIFT using the NN similarity (in Table

I) was lower than the obtained with SURF-36 features and

the Pyramidal matching. To sum up, the best compromise

between correctness and execution time was obtained using

SURF with the Pyramidal matching classification.

The case 3, Almere4∝1, was the most difficult and indeed

the one with worse performance. However, analyzing some

of the tests that failed, the results were not completely wrong,

i.e., many of these tests used views close to an open door

to next room, therefore many features matched were from

that next room already visible in the image. This made the

algorithm give another room as localization. It could be

studied in the future a more complex matching process which

takes into account that different parts of the image can belong

to different rooms, then these situations could be handled.

TABLE I

ROOM RECOGNITION: PRE-FILTERING AND SIMILARITY

EVALUATION RESULTS.

data set LV Almere1∝1 Almere4∝1

pre-filter rej. f.n. rej. f.n. rej. f.n.
60 3 18.4 4.5 19.5 5.6

1 Ok T/Tsurf 1 Ok T/Tsurf 1 Ok T/Tsurf

lines-22 89% 0.1 73% 0.2 47% 0.2
surf-36 97% 1 95% 1 67% 1

sift*-128 89% 3 80% 10 60% 10
The number after each feature type shows the length of its descriptor set.
* Results with SIFT using NN similarity evaluation, results with the other

features using the Pyramidal one.

With regard to robustness, we can consider this topological

localization approach good, as we have tried to reduce the

size of the reference images to half and the performance

stayed similar to the shown results. Reducing the reference

image set is not a problem for the correctness in the topolog-

ical localization (to identify the current room). Next section

results show that the minimal amount required of reference

images is set by the ability of the features used to obtain

three view matches in widely separated images. Not all the

features allow us to reduce in the same amount the density

of the reference data, due to the different performance of

each feature for wide-baseline matching.

B. Metric localization performance

Metric localization tests were performed with randomly

chosen samples from the available data sets. A query image

was picked, its most similar was detected using the previ-

ously explained similarity evaluation, and with those two and

one neighbouring in the VM, we performed a robust three-

view matching and tensor estimation to recover the camera

and landmarks location. Not only the metric errors should be

taken into account, but also the performance with more or

less separated views. The discrepancy between images that

we are able to deal during the matching indicates with the

density of images needed in the VM.

First, two representative tests are detailed in Table II. They

are both using data set LV because there was ground truth

available only for that data. The errors obtained were good,

specially taking into account the accuracy of the ground

truth, that was manually obtained measuring with metric tape

and goniometer. The description of each test is as follows:

- Test 1. Typical trio of images obtained after evaluating

the similarity of a query. In this case, the three features where

robust enough to provide matches to estimate correctly the

1D radial tensor (we see acceptable errors for three of them

and good matching results in Fig.5).

- Test 2. This is a more difficult case, where we got almost

the minimum necessary matches to estimate the tensor. Note

that the method is still working properly. The worse perfor-

mance of SIFT and lines in this case is explained by the few

three-view matches obtained, while SURF obtained a little

bigger set, enough to make the geometry estimation more

accurate. Fig. 6 shows SURF matches. A more advanced

matching process could help to increase the set of matches

and get better performance with all features.

TABLE II

ROBOT METRIC LOCALIZATION ERRORS ESTIMATING THE 1D TENSOR

WITH DIFFERENT FEATURES (AVERAGE FROM 20 EXECUTIONS).

TEST 1-A10-A08-A09 TEST 2-D00-D02-D05
Localization α21 α31 t21 t31 α21 α31 t21 t31

lines-22 1.4 1.2 0.9 0.6 2 3.5 7 3.4
surf-64 1.2 0.9 0.9 0.4 1.6 0.4 2.4 4.6
sift-128 1.3 0.9 1 0.3 1.8 2.7 6.6 11

Average errors (degrees) in 20 executions for rotations α and directions of
translation t = [tx, ty ] (see these parameters in Fig. 3).

The number after each feature type shows the length of its descriptor set.
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Several tests with the Almere data set were performed too,

to evaluate the matching with more challenging views. We

had no ground truth to compare the localization results ob-

tained there, so no errors are measured here. The experiments

performed with this data set can be grouped in two tests:

- Test 3. Almere1∝1. Different random queries from

Almere data set round 1 were compared against the VM

built also from that round (indeed, different test and training

views). The matching results were similar to Test 1 results.

- Test 4. Almere4∝1. This was the most challenging case.

Random query images from Almere data set round 4 (highly

occluded) were compared against the VM built from Almere

round 1. Fig. 7 is an example of SURF matching results

for this test. We can see in the same figure the location

parameters obtained, that were stable after several execution,

and we can not measure the errors, but they seem acceptable.

The results from SIFT were similar to SURF, but lines were

not able to obtain enough three view matches, showing that

they can not deal with cases where the baseline increases

significantly. In general, once the most similar from the VM

to the query was found, if the neighbouring image selected

was further than 10 or 20 frames, the lines started to behave

bad, while for SIFT and SURF 50 frames and higher distance

was still ok.

In one hand, for the simpler cases, all features performed

similarly well with regard to the matching and localization.

Here, the radial lines had the advantage of being faster in

extraction and matching. Although they got fewer matches,

the radial lines usually represent useful features in the scene,

such as walls, doors,... On the other hand, using more

separated views SURF and SIFT performance was better.

As shown in Test 4. In this more challenging cases, notice

the advantages of SURF, which is faster than SIFT getting

similar accuracy in the localization parameters. The average

time for SURF three view matching was three times less

than for SIFT (using the same matching method for both),

due to the shorter SURF descriptor vector. Moreover, in our

experiments SIFT extraction was almost three times slower

than SURF’s.

Taking into account both topological and metric local-

izations results, we can conclude the better performance of

SURF, as it is always the best performing or in case of similar

accuracy is much faster than the other options.

V. CONCLUSION

In this work we have presented an appearance based hier-

archical method to localize a robot against a visual memory

(VM) of reference omnidirectional images. The proposal

combines the use of a recently developed feature (SURF) in

two efficient steps. First using Pyramidal matching kernels

to evaluate fast the similarity with the VM and to obtain

a topological localization. Secondly, using the most similar

image found in the VM, a metric localization is computed.

That is made from a 1D trifocal tensor robustly estimated

from three view feature matches. One of the big advantages

using the proposed method is that we can get accurate metric

localization even if the reference image set has low density.

SURF features have been extensively compared against radial

lines and SIFT features, showing SURF the best compromise

between efficiency and accuracy in all the process, giving

accurate results and allowing faster computations.

VI. ACKNOWLEDGMENTS

Thanks to H. Bay for his helpful comments in this work.

REFERENCES
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QUERY MOST SIMILAR FOUND ADJACENT IN THE VM

1

2

3

4

5

6

7 8

9

10

11

12

13

14
15

16

17

18

19

20

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

5

1

2

3

7

8

9

10

11

12

13

14
15

16

17

18

19
20

4

6

Radial lines. 20 matches after robust estimation (2 wrong).

SURF-64. 55 matches after robust estimation.

SIFT-128. 79 matches after robust estimation.

Fig. 5. TEST 1. Hall (room A) - images A01 A08 A09

Fig. 6. TEST 2. Corridor (room D) - images D00 D02 D05: 8 robust SURF matches.

Localization α21 α31 t21 t31
surf 64 161 o 150o 114 o 132o

Fig. 7. TEST 4. Frames Almere4 1125 - Almere1 500 - Almere1 550. 40 robust SURF matches.
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