
 
 

 

Abstract — In this paper we present four methods for the 
identification of the inertial parameters of the load of a 
manipulator. The knowledge of the values of these parameters 
can be used to tune the control law parameters in order to 
improve the dynamic accuracy of the robot. They can also be 
exploited to verify the load transported by the robot. The 
methods presented have been validated using Stäubli RX 90 
robot. The experimentation has been carried out using data 
collected from the industrial control system (version CS8) of 
the manufacturer. This version allows to have access to joint 
positions, velocities and torques. The methods presented are 
based on solving linear system of equations using weighted least 
squares solution. 

 
Keywords — Identification, inertial parameters, dynamic 

modeling, least squares, payload parameters. 

I. INTRODUCTION 
Several schemes have been proposed in the literature to 

identify the dynamic parameters [1]-[16]. Most of the 
methods use an identification model linear in the parameters, 
and solve the system using least squares techniques (LS). 

The experimental works have been carried out either on 
prototypes of laboratories or on industrial robots after 
replacing the industrial controller by an open loop controller 
specially developed for the application. In this paper, we 
show that new standard controllers allow now the 
identification of the dynamic parameters of the robot by 
providing the joint positions and torques for any trajectory. 
We show also that the classical trajectories of the 
manufacturer are sufficiently exciting for the identification. 
Very small number of papers were devoted for the 
identification of the payload [1], [8]. In this paper we put the 
accent on the identification of the inertial parameters of the 
payload, but the identification of dynamic parameters of the 
robot will be also presented because they are needed also in 
some methods. 

II. MODELING OF THE ROBOT RX 90 
The Stäubli RX-90 robot has a serial structure with six 

rotational joints. Its nominal payload is equal to 6 Kg. 

A. Description of the kinematics  
The robot kinematics is defined using Khalil and 

Kleinfinger notation [17]. In this notation the link j fixed 
frame is defined such that the zj axis is taken along joint j 
axis and the xj axis is along the common normal with zj and 
zj+1. The link frames are shown in Figure 1. The main 
advantage of using this notation is that the identifiable 
inertial parameters can be determined symbolically using 
simple closed-form rules [16], [18], [19]. 
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Figure 1. Link frames of Stäubli RX-90 robot. 

(D3 = 0,45m and RL4 = 0,45m) 
 

B. Dynamic identification model 
Different identification models have been used in robotics 
[2], [3], [4], [5], [9], [10], [12], [13], [15]. In the following, 
we use the inverse dynamic model, which was found to be 
the best one. It is represented for a robot with n joints by: 
 
Γ  =  ID(q, .q , ..q ,χs)             (1) 
q, .q  and ..q  are the (nx1) vectors of joint positions, 
velocities and accelerations.  
Γ is the (nx1) vector of motor torques. 
χs is the (Nsx1) vector of standard dynamic parameters 
(inertial parameters and friction parameters) of the robot. 
 
A common friction model at non zero velocity is given by: 

jfτ  = jFs  sign( jq ) + jFv  jq          (2) 
where jq  is the velocity of joint j, 

sign(.) denotes the sign function, 

Wisama KHALIL 1, Maxime GAUTIER 2, Philippe LEMOINE 1 

1 École Centrale de Nantes 
2 Université de Nantes 

IRCCyN UMR CNRS 6597, 1 rue de la Noë, BP 92101, 44321 Nantes Cedex 3, France 

Mailto:   wisama.khalil@irccyn.ec-nantes.fr,   maxime.gautier@irccyn.ec-nantes.fr,   philippe.lemoine@irccyn.ec-nantes.fr 

Identification of the payload inertial parameters of industrial manipulators 
 

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrE11.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4943



 
 

 

jFv , jFs , are the viscous and Coulomb friction parameters. 

The inertia of the rotors is generally taken in this model as: 

jrτ  = jIA  jq                      (3) 

We take into account jIA , jFv  and jFs  in χs . 

 
A particular choice of the link inertial parameters allows 

obtaining the dynamic model linear in relation to the 
dynamic parameters, such that: 

 
Γ = ΦS (q, .q , ..q ) χs =

si=1,N

i
s∑ Φ  χsi        (4) 

where: 
ΦS  is a (nxNs) matrix, and i

sΦ  is the ith column of ΦS , 
χsi is the ith element of χs , 
χs is the vector of standard dynamic parameters given by: 
χs  =  [χs1T   χs2T  …  χsnT]T          (5) 
with χsj   is the dynamic parameters of joint and link j: 
 
χsj  =  [XXj  XYj  XZj  YYj  YZj  ZZj  MXj  MYj  MZj  Mj  
IAj  Fsj  Fvj]T                (6) 
where: 
- XXj, XYj, XZj, YYj, YZj, ZZj are the six components of 
the inertia matrix of link j at the origin of frame j; 
- Mj is the mass of link j; 
- MXj, MYj, MZj are the components of the first moments; 
- jIA  is the inertia moment for rotor and gears of actuator j. 

The columns of the matrix Φs(q, .q , ..q ) can be obtained 
using the recursive algorithm of Newton-Euler, which 
calculates Γ in terms of the same set of standard dynamic 
parameters, such that the ith column of Φs is equal to: 
Φsi  =  ID (q, .q, ..q with χsi = 1, χsj = 0 for j ≠ i)   (7) 
 

To increase the efficiency of this algorithm, we use the 
customized symbolic technique. Moreover, this technique is 
convenient for the computation of the observation matrix, 
which is composed of the concatenation of Φs on all the 
points of a given trajectory, using an array multiply operator 
(.* of Matlab) without using loop calculations. 

C. Particularities of the robot RX 90 
The RX 90 robot is characterized by: 

1. There is a spring on the joint 2, which compensates the 
gravity torque due to the robot links. The corresponding 
torque is added to the torque Γ2 of joint 2, it is 
calculated using the manufacturer data in terms of θ2. 

 
2. There is a coupling among the joints 5 and 6 such that: 

5 5

6 6

5 0
6 6

qr qK
qr qK K

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
       (8) 

 
Thus, the duality relation of torques gives: 
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c rK K
c rK

Γ Γ⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥Γ Γ⎣ ⎦⎣ ⎦ ⎣ ⎦

      (9) 

where: 

jqr : is the velocity of the rotor of motor j, 

jq  : is the velocity of joint j, 

Γcj : the motor's torque of joint j, with coupling effect, 
Γrj : electro-magnetic torque of the rotor of motor j, 
K5 : the transmission gain ratio of axis 5, 
K6 : the transmission gain ratio of axis 6. 
 

The coupling between joints 5 and 6, leads also to add the 
effect of the inertia of rotor 6 and new viscous and Coulomb 
friction parameters Fvm6 and Fsm6 to both Γc5 and Γc6. 
Thus, we can write: 

 
Γc5 = Γ5 + IA6 ..q6 + Fvm6 .q6 + Fsm6 sign( .q6)   (10) 
Γc6 = Γ6 + IA6 ..q5 + Fvm6 .q5 + Fsm6 sign( .q5)   (11) 
where: 
Γ5 , Γ6 are obtained from (4), they have already the terms 
(IAj 

..qj + Fvj .qj + Fsj sign( .qj)) for j =5 and 6 
 
IA5 = K5^2 JA5 + K6^2 JA6, 
IA6 = K6^2 JA6, 
JAj is the moment of inertia of the rotor j, 
Fvm6 and Fsm6 are the friction parameters due to coupling. 

D. Calculation of the base dynamic parameters 
It has been seen that some inertial parameters cannot be 

identified because they have no effect on the dynamic 
model, and some parameters are grouped with some others. 
The identifiable parameters, called also base inertial 
parameters [20], can be determined for the serial robots 
using simple closed-form rules if the Khalil and Kleinfinger 
notations are used to describe the robot kinematics [16], 
[18]. For the robot RX 90 the following parameters cannot 
be identified, they do not belong to the base inertial 
parameters: 
- YYj, MZj and Mj for j = 1, … , 6. 
- XX1, XY1, XZ1, YZ1, MX1, MY1, IA1 and IA2. 
 
The grouped parameters are: 
ZZ1R=IA1 + D3^2*(M3 + M4 + M5 + M6) + YY2 + YY3 + ZZ1 
XX2R= - D3^2*(M3 + M4 + M5 + M6) + XX2 - YY2 
XZ2R= - D3*MZ3 + XZ2 
ZZ2R=IA2 + d3^2*(M3 + M4 + M5 + M6) + ZZ2 
MX2R=D3*(M3 + M4 + M5 + M6) + MX2 
XX3R=2*MZ4*RL4+(M4 + M5 + M6)*RL4^2 + XX3 - 
YY3+YY4 
ZZ3R=2*MZ4*RL4 + (M4 + M5 + M6)*RL4^2 + YY4 + ZZ3 
MY3R=MY3 - MZ4 - (M4 + M5 + M6)*RL4  
XX4R=XX4 - YY4 + YY5            (12) 
ZZ4R=YY5 + ZZ4 
MY4R=MY4 + MZ5 
XX5R=XX5 - YY5 + YY6 
ZZ5R=YY6 + ZZ5 
MY5R=MY5 - MZ6 
XX6R=XX6 - YY6 
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A numerical method based on the QR decomposition can 

also be used to determine the base inertial parameters [21]. 
The dynamic model of the RX90 model is a function of 

40 inertial parameters. It is also a function of 14 friction 
parameters: (Fvj and Fsj for j=1,…,6) and (Fvm6 and Fsm6). 
The total number of the dynamic base parameters, denoted 
by Nb ,is equal to 54. 
 

The dynamic model can be written using the base inertial 
parameters as follows: 

Γ =  Φ(q, .q , ..q ) χ =
bi=1,N

i∑ Φ χi     (13) 

where Φ is obtained from Φs by eliminating the columns 
corresponding to the non identifiable parameters. 

III. RECALL OF THE IDENTIFICATION METHOD 
 

We consider off-line identification of the base dynamic 
parameters χ , given measured or estimated off-line data for 
Γ , , , q q q , collected while the robot is tracking some 
planned trajectories. 

The principle is to sample the identification model (13) at 
a sufficient number of samples it , for i=1, ..., en , with 

e(nxn ) >> Nb , in order to get an over-determined linear 
system of e(nxn ) equations: 

 + = χ ρY W                   (14) 
ρ  is the e((nxn ) 1)x  vector of errors between the data in Y  
(measurement or estimation of the torques), and the data 

χW  , predicted by the model. 
( , , )W q  q  q is the ( e(nxn ) x bN ) observation matrix. 

 
Y  and W are obtained by grouping together the 

equations of each joint on all the trajectory such that: 

Y  =  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤Y1

…

Yn

,  W  =  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤W1

…

Wn

          (15) 

where Yi and Wi represent all the equations of joint i. 
 

Most of the schemes in robotics solve the system (14) 
using ordinary (OLS) or weighted (WLS) least squares 
methods [2], [11], [16]. A maximum likelihood approach 
proposed by [6], reduces in practice to a WLS method. An 
approach based on LMI (linear matrix inequality) tools takes 
into account perturbations in the observation matrix but 
without improving the estimation given by the WLS. To our 
knowledge the best experimental results have been obtained 
with the WLS method, which is presented in the following.  

The estimation of χ  is obtained as the OLS solution of 
the over-determined linear system (14): 

χ̂  = 2Arg.min  || ||
χ

ρ  = +W  Y          (16) 

where +W  = T 1 T( )−W W W  is the pseudo inverse of W . 
If W  is a full rank matrix the LS solution χ̂  is unique. 

W  numerical rank deficiency can come from two origins: 
- structural rank deficiency, which is solved by calculating 
the base or minimal parameters; 
- data rank deficiency due to a bad choice of noisy 
experimental , , q q q  samples in W , which can be solved by 
a good planning of exciting trajectories. 

In practice, the experimental measurements or estimations 
of ( )itΓ , ( ),  ( ),  ( )i i it t tq q q  give noisy data. The matrices 
Y and W  are perturbed and the LS solution may lead to a 
bias estimation if the two random matrices are not 
independent. Because the coefficients in the observation 
matrix ( , , )Φ q q  q  are non linear functions of , , q q q , it is 
not possible to get a theoretical expression of the bias and 
variance. To overcome this difficulty we adopt a practical 
strategy which reduces bias and variance of the LS solution 
with twofold: 
- data filtering to decrease noise effect in (14); 
- closed loop identification for the robot to track exciting 

trajectories which ensure persistency excitation. 
In order to cancel high frequency torque ripple in Γ, the 

vector Y and the columns of the observation matrix W are 
both low pass filtered and decimated. This parallel filtering 
procedure [22] can be carried out with the Matlab decimate 
function [3], [5], [16]. 
 

Standard deviations are estimated considering W to be 
deterministic, and ρ to be a zero mean additive independent 
Gaussian noise, with standard deviation σρ such that [3]: 

Cρ = E(ρ ρT)  =  σρ
2 Ir         (17) 

where E is the expectation operator and Ir is the (rxr) 
identity matrix. 
An unbiased estimation of σρ can be: 

σρ
2 =  

||Y – W χ̂||2
(r – c)            (18) 

The covariance matrix of the estimation error is given by: 
Cχ̂ = E[(χ – χ̂ ) (χ – χ̂ )T] =   σρ

2 (WT W)-1     (19) 

The standard deviation σχ̂ j
 and its relative value σχ̂ jr% by: 

σχ̂ j
  =  Cχ̂ (j,j)            (20) 

σχ̂ jr%  =  100  
σχ̂j

|̂χj|
           (21) 

 
The equations of joint i will be weighted with the inverse 

of the standard deviation of the error calculated using the 
equations of joint i [3], [5]. This weighting operation 
normalises the errors to give the WLS estimation of the 
parameters.  
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The WLS solution is obtained by a recursive formulation 
of the QR decomposition of the weighted matrix W [3]. 

Some small parameters remain poorly identifiable because 
they have no significant contribution in the torque. These 
parameters can be cancelled in order to simplify the dynamic 
model. Parameters such that σχ̂ jr% is greater than a bound 

between 5 and 10 are cancelled to keep a set of essential 
parameters of a simplified dynamic model without loss of 
accuracy [3]. The essential parameters are calculated using 
an iterative procedure starting from the base parameters 
estimation. At each step the base parameter which has the 
largest relative standard deviation is cancelled. A new 
parameter estimation of the simplified model is carried out 
with a new error standard deviation σρe. The procedure ends 
when σρe ≥ 1.02 σρb, where σρb is the initial error standard 
deviation obtained with all the parameters. 

IV. IDENTIFICATION OF THE DYNAMIC PARAMETERS OF 
THE ROBOT RX 90 

A. Data Acquisition and identification 
The identification of the dynamic parameters without load 

has been carried out using 18 trajectories. The path of each 
trajectory consists of about 14 intermediate points. The 
trajectory between the points is carried out using the 
interpolation function of the controller CS8 of the Stäubli 
robots. The joint positions and torques are read with a 
sampling frequency equal to 250 Hz. The condition number 
of the observation matrix of all the trajectories is equal to 
58, which is considered as being sufficiently exciting. The 
total number of equations is about r = 63000. A 
supplementary trajectory is used in the validation of the 
estimated values of the dynamic parameters.  

The estimation of .q  and ..q  are carried out from q by a 
low pass Butterworth filter and a central derivative 
algorithm. The Matlab function filtfilt, which is a zero-phase 
forward and reverse digital filtering, can be used. 
 

After elimination of the parameters with large relative 
standard deviation (RSD), the robot dynamics is represented 
by 28 essential parameters. The estimated values of these 
parameters are not given here. They are close to the first 28 
parameters of Table 2. 
 

B. Validation of the identification results 
The validation of the identification result is carried out by 

comparing the measured joint torques mesY  and the 

estimated torques estχW  on a trajectory which has not 
been used in the identification (cross validation). Owing to 
the limited number of pages, the validation curves are not 
presented in this paper. However, the identification of the 
payload inertial parameters presented in the following 
section constitutes another validation procedure. 

V. IDENTIFICATION OF THE INERTIAL PARAMETERS OF THE 
PAYLOAD  

A. Presentation of the different methods 
Having estimated the dynamic parameters of the robot 

without load, we present in this section four methods for the 
identification of the inertial parameters of a payload fixed on 
the terminal link of the robot. 

 
1)  Making use of the values estimated without payload 

 
When the robot is carrying a payload, the dynamic 

equations can be written as follows:  
YT  =  W(q, .q , ..q ) χ + WL(q, .q , ..q ) χL  +  ρ    (22) 
 
where 
YT : the measured torques when the robot is loaded, 
W : the observation matrix without load, 
χ  : the vector of the dynamic parameters of the robot 
without load (this is already estimated), 
χL  : the(10x1) vector of the inertial parameters of the load, 
WL : the observation matrix corresponding to the load 
inertial parameters. 
 
The load inertial parameters are estimated from (22) by: 
 χ̂L =  (WL)+  (YT – W χ)           (23) 
 

We note that physically the 10 inertial parameters are 
identifiable. 

In this method we suppose that the friction parameters are 
invariant with respect to the payload. If this hypothesis is 
not satisfied these parameters should be taken into account 
in both WL and χL . 
 

2)  New identification of the robot parameters with the 
payload 

 
We identify once more all the dynamic parameters while 

the robot is carrying the payload. The inertial parameters of 
the load can be computed using the variation on some 
estimated inertial parameters with and without payload. In 
this case we make use of the grouping relations (12). Let ∆χi 
be the variation of an inertial parameter: 
∆χi  =  χ̂j  (robot with payload)- χ̂j (robot without payload)   (24) 
 

The load inertial parameters XYL, XZL, YZL, ZZL, MXL, 
MYL can be obtained directly as ∆XY6, ∆XZ6, ∆YZ6, 
∆ZZ6, ∆MX6, ∆MY6. Using (12) and (24), the parameters 
XXL, YYL, MZL and ML can be obtained by solving the 
following relations: 

∆ZZ1R= D3^2* ML 
∆XX2R= - D3^2* ML 
∆ZZ2R= D3^2* ML 
∆MX2R= D3*ML           (25) 
∆XX3R= RL4^2 * ML 
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∆ZZ3R= RL4^2* ML  
∆MY3R= - RL4* ML 

 
∆XX5R= YYL 
∆ZZ5R= YYL            (26) 

 
∆MY5R= - MZL           (27) 

 
∆XX6R= XXL – YYL         (28) 

 
The parameters ML and YYL are estimated by the least 

squares solution of equations (25) and (26) respectively, 
whereas the parameters MZL and XXL are directly obtained 
from equations (27) and (28) respectively. 
 

3)  Using the difference between the joint torques 
before and after loading the robot on the same trajectory 

 
In this method we make use that the term W χ of (22) is 

equal to the joint torques without load. Consequently the 
payload parameters could be identified by (23) after 
replacing W χ by YwL representing the joint torques on the 
same trajectory without load, which gives: 
 χ̂L    =  (WL)+  (YT – YwL )          (29) 

 
The unknowns of this method are only the 10 inertial 

parameters of the payload, which lead to the possibility of 
reducing considerably the number of points needed for the 
construction of the observation matrix. In our experiment 
just one trajectory (out of the planned 8) was sufficient. 

This method supposes that the control system is efficient 
such that the difference between the joint positions with and 
without payload is negligible and that the friction parameters 
are the same under the two conditions. For the RX 90 robot 
the maximum error on joint positions due to the load is 10-3 

rad while carrying a load of 7.025 Kg, which allowed 
obtaining good results with this simple method. 

 
4) Global identification of the robot parameters and the 
load parameters 

 
In this method the identification model is constructed by 

grouping two sets of equations, the first representing a 
trajectory without load, and the second representing a 
trajectory with load. These two trajectories could be 
different: 
 

a

b L

W
W W L

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

0a

b

Y
Y

χ
χ        (30) 

 
where the first row represents the equations of the trajectory 
without payload, whereas the second row corresponds to the 
trajectory with payload. 

The link parameters χ  and the payload inertial 

parameters Lχ  are estimated by solving (30) using weighted 
least squares solution. This method has the advantage of 
using a global identification procedure that can avoid the 
accumulation of errors, which may occur for sequential 
identification methods. 

 

B. Experimental results 
To test the proposed methods, a calibrated payload is 

used. The inertial parameters are provided by the software 
package CATIA. These values, denoted in the following as a 
priori, are sufficiently accurate due to the simplicity of the 
shape of the load. The mass of the reference payload is 
estimated as 7.025 Kg using a weighing machine whose 
accuracy is ± 0.050 Kg. The four methods have been applied 
and the results are nearly the same. We give the results of 
methods 3 and 4. Method 3 is considered as the simplest 
one, whereas method 4 is considered as the best scientific 
one. 

The results of methods 3 and 4 are given in Tables 1 and 
2 respectively. We note that the parameters XXL, YYL, MZL 
and ML are very well identified in both methods in terms of 
relative standard deviation. The reference values of the other 
parameters are almost zero. In method 3, they have big 
relative standard deviations, but the estimated values are 
almost zero. In method 4, the application of the elimination 
strategy led to eliminate automatically these parameters 
because they have negligible effect on the dynamics of the 
robot.  

The robot parameters identified in method 4 are very 
close to those estimated in section 4. 

VI. CONCLUSION 
In this paper we dealt with the problem of the 

identification of the inertial parameters of the payload of 
industrial robots. In the experimentation we used the Stäubli 
RX 90 robot with its CS8 controller for the data acquisition 
and for the trajectory generation. Four methods have been 
proposed and validated by comparing the inertial parameters 
of a reference-calibrated payload. We put the accent on two 
methods, the method 3 makes use of data of a given 
trajectory executed twice, once without the payload and then 
with the payload. This method relies on a good control 
tuning in order that the position error between the two 
executions will be small enough. The method 4 identifies 
both robot parameters and payload parameters in one step by 
a global procedure. This method avoids the accumulation of 
errors, which may occur in methods 1 and 2, and does not 
impose any hypothesis as in method 3. The experimental 
results, for the RX 90 robot, are very close for the four 
methods, thus any of them can be used for the RX90 robot. 
This may be not the case for other robots using method 3. 
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Parameter A priori Identified 2 σχ σχr % 

XXL 0.161 0.157 0.019 5.931 
XYL 0 0.007 0.009 66.152 
XZL 0 0.008 0.009 62.705 
YYL  0.161 0.153 0.018 5.738 
YZL 0 -0.005 0.009 91.418 
ZZL  0.035 0.025 0.012 24.612 
MXL 0 0.034 0.015 21.869 
MYL 0 0.006 0.015 119.190 
MZL 1.003 0.977 0.020 1.015 
ML 7.025 7.216 0.045 0.313 

Table 1. Identification of the payload parameters using method 3 
 

 Parameter A priori Identified 2 σχ σχr % 
ZZ1R  12.600 0.040 0.158 
FV1  29.300 0.139 0.237 
FS1  21.700 0.228 0.526 
XX2R  -7.770 0.053 0.339 
XZ2R  -0.866 0.039 2.227 
ZZ2R  11.400 0.046 0.204 
MX2R  15.900 0.026 0.081 
FV2  27.300 0.218 0.399 
FS2  21.300 0.286 0.670 
XX3R   1.230 0.042 1.723 
ZZ3R   1.300 0.017 0.655 
MY3R  -3.170 0.012 0.189 
IA3   1.480 0.019 0.636 
FV3   7.090 0.067 0.472 
FS3  12.800 0.102 0.399 
MX4  -0.052 0.004 4.252 
IA4   0.866 0.004 0.231 
FV4   6.000 0.023 0.191 
FS4   5.800 0.048 0.412 
IA5   0.280 0.010 1.847 
FV5   4.730 0.049 0.519 
FS5   2.310 0.063 1.369 
YZ6  -0.020 0.001 3.246 
IA6   0.104 0.002 0.997 
FV6   1.200 0.015 0.612 
FS6   0.820 0.022 1.371 
FVM6   1.050 0.012 0.552 

Robot 
parameters 

FSM6   0.700 0.024 1.679 
XXL 0.161  0.157 0.008 2.572 
YYL  0.161  0.151 0.008 2.567 
ZZL  0.035  0.027 0.002 4.487 
MZL 1.003  0.979 0.010 0.495 

Payload 
parameters 

ML 7.025  6.700 0.039 0.294 
Table 2. Identification results using method 4 
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