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Abstract— This study investigates the nonlinear dynamics of
traction for an omniwheel mobile robot platform. A nonlinear
slip model is incorporated into the dynamics of the system and
the resulting equations of motion are derived using a Euler-
Lagrange formulation. These are additionally transformed into
slip-space, where the dynamical equations lend themselves to
a convenient analysis of the slip dynamics. The conventional
assumptions for ideal rolling are also explored and a reduced
expression for the nonlinear dynamics is generated for such
situations. Preliminary explorations toward a comprehensive
analysis of the dynamics for omniwheel platforms under various
control schemes is also initiated.

I. INTRODUCTION

Wheeled mobile robots are typically modelled as nonholo-
nomic systems with an ideal rolling constraint. Whilst ideal
rolling, the wheels of the mobile robot platform are assumed
to roll without slipping. However, rolling conditions are often
violated while the platform is accelerating or decelerating,
resulting in a non-zero slip that can cause navigational
error. In addition, certain slip states may deteriote and cause
complete slippage (under acceleration) and lockup (under
braking).

Previous works in mobile robot platforms for omniwheel
motion systems often neglected the full import of these con-
siderations [1], [2]. Subsequently, in this paper, the relevant
dynamical theory is developed to explore the effects of slip
and the performance of various control schemes for a mobile
robot platform with an omniwheel motion system.

The dynamics presented here approximates the traction
forces at work with a nonlinear slip model widely used in
the field [3],[4]. The resulting equations of motion for the
omniwheel platform are generated and also transformed to
slip-space where it becomes convenient to investigate the
stability of slip dynamics. The conventional dynamics for
ideal rolling are also presented with a brief analysis of
some of the typical assumptions made when implementing
a control scheme for a system modelled on ideal rolling.

Section II introduces the architecture of the omnidirec-
tional robot, utilizing the omniwheel platform, undergoing
development in our laboratories. Section III develops the
underlying dynamics fundamental to a comprehensive analy-
sis of navigational motion for an omniwheel platform while
Section IV provides a preliminary investigation into the more
common control schemes used for mobile robot platforms.
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II. OMNIDIRECTIONAL ROBOT PLATFORM

A. Motion Mechanism

One of important features for mobile robots is the ability
to maneuver quickly and efficiently. To achieve this, many
mobile robots adopt omnidirectional mechanisms that enable
them to freely move without the constraints of a traditional
mobile platform with the conventional differential drive.

Many different configurations exist for an omnidirectional
platform. Some of these can provide omnidirectionality, but
require the platform to reconfigure its internal state before
major adjustments in its motion. One of the more popular
arrangements however, ones utilizes mecanum wheels that
allow freedom of motion without the necessity of reconfig-
uring its internal state. The omnidirectional robot currently
under development in our laboratories possesses a three
wheeled mecanum configuration. The mechanical design for
the platform can be seen in Figure 1. It consists of three
drive units comprising of a motor, a belt drive and omniwheel
each. The design tries to maximize the utilization of space
available underneath to accommodate the large motors.

Fig. 1. Mobile Robot Platform

Its design is configured for high performance, but it must
also robustly handle a wide variety of surfaces and differing
payloads in its environment. To obtain the accelerations
required for high performance, 200W motors are used to
drive the wheels. Subsequently, it is potentially possible for
the robot to acquire an acceleration of 3m/s2 and a top
speed of 3m/s. Its ability to robustly handle a wide variety
of environments however must be enabled through accurate
dynamic modelling and robust control.

B. Vision System

The vision system employed on the mobile robot platform
has the ability to use both dioptric and polydioptric vision
systems .These provide a wide field of view that is assumed
to be able to provide the mobile platform with accurate
localisation data with a 360o field of view.
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C. The System Architecture

The robot has been designed as shown in Figure 2. The
architecture is modular and utilizes an onboard PC for the
main processing unit.
The component subsystems of the onboard electronics and

Fig. 2. The System Architecture

the software on the onboard PC can be seen in Figure 2. The
onboard electronics consist of the control algorithm running
on a TMS320C28xx series DSP module. The modular struc-
ture of the architecture enables efficient and parallel develop-
ment of the component subsystems. The complete assembly

Fig. 3. The complete robot assembly

of the robot with the catadioptric omnivision system fitted
on can be seen in Figure 3.

III. MODELLING

In this section we present three alternative methods for
modelling the dynamics of an omniwheel mobile robot
platform.

A. System Definition

The basic architecture of the wheeled platform is illus-
trated in Figure 4. A local frame of reference is fixed on the
body of the robot at its centre of mass with basis vectors
{e′x, e′y, e′z}. The dynamics for this system can utilise these

Fig. 4. Frames of Reference

rotating basis vectors or the basis fixed in the world frame
{ex, ey, ez}. If the robot is a differential drive robot, it is
mathematically convenient to use the rotating set of basis
vectors since the velocity and accelerations of the robot
with respect to an observer on the robot are always in one
direction (non-rotating). However, this advantage is nullified
for an omnidirectional robot, so the following derivations
will use the set of basis vectors fixed in the world frame for
the dynamics calculations. Some transformations that will be
used later are presented here for convenience.

e1 = ey e′x = cos φ ex + sinφ ey,

e2 = −(
√

3/2) ex − (1/2) ey e′y = − sinφ ex + cos φ ey,

e3 = (
√

3/2) ex − (1/2) ey, e′z = ez (1)

B. Traction Forces and Slip

Under ideal conditions, a rolling wheel moves without
slipping. This constraint is such that a point on the wheel
in contact with the ground is assumed to be instantaneously
stationary with respect to the ground. When this condition
is not met, the wheel is said to be undergoing slip. This
can be in the form of genuine slipping (under acceleration)
or skidding (under braking). The mathematical definition of
slip for a single wheel is given by

s =
(rwω − v)

max{rwω, v}
, (2)

where ω, v are the angular and linear velocity of a wheel
with radius rω. The equation is normalised so that the slip
variable is constrained to −1 ≤ s ≤ 1. The wheel is said
to be ideal rolling if it maintains a state of no-slip (s = 0,
ṡ = 0).

When no torque is applied to the wheel, it can be verified
that ideal rolling is an asymptotically stable mode, where
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the only friction at work is a minimal rolling friction.
However, under the presence of a non-zero torque, this
mode becomes asymptotically unstable and the wheel will
commence slipping (or skidding if braking). When the wheel
is slipping, a corresponding frictional force is generated. This
force is referred to as the traction force and it is significantly
larger than the rolling friction. Experimental results indicate
traction forces are of the form ft = µa(s)N where N is the
normal force and the adhesive co-efficient function, µa(s)
closely matches a nonlinear function that is dependant on the
surface type. Figure 5 illustrates measured estimates for the
adhesive co-efficient on a variety of surfaces ranging from
dry asphalt (a) through to packed snow (d). Most surfaces
fall inbetween (a) and (b).

Fig. 5. Empirical Estimates of the Adhesive Co-efficient

In these measurements, the negligible effects of rolling
friction (in comparison to the tractive forces) have been
ignored. An efficient formula for numerical algorithms that
captures the salient features of the adhesive co-efficients is
given by

µa(s) = c1(1− e−c2s)− c3s. (3)

It can also be shown via a theoretical analysis [4], that under
suitably low torques, wheel slips will converge to a non-zero,
steady-state slip mode. This observation indicates that there
will always be slip error under acceleration or braking.

Under higher torques, this steady state slip mode bifurcates
and eventually collapses again, leading to 100% slippage
under acceleration, or lockup under braking.

To cater for the effects of slip, some simulation and
experimentation is needed to determine the extent of the
errors caused by the steady state slip modes as well as
the critical torques that precede bifurcation and complete
instability.

C. Euler-Lagrange Dynamics

We utilise the standard Euler-Lagrangian formulation for
the dynamics of the system.

d

dt

[
∂L
∂q̇i

]
− ∂L

∂qi
= Fi (4)

where the qi are the generalised co-ordinates of the system
listed previously and the Fi are the corresponding gener-
alised forces not derivable from a potential field.

1) Generalised Co-ordinates: The mobile robot platform
is a 6DOF system. Three variables are needed for world
configuration (position and orientation with respect to a
world frame) and three for internal configuration (wheel
orientations). These are denoted by q = [x, y, φ]T and
θ = [θ1, θ2, θ3]T respectively.

2) Generalised Forces: The external forces are derived
from the torque τi at the motors and the traction forces fti

at each wheel contact. The generalised forces corresponding
to the generalised co-ordinates defined previously are of the
form

Fq = Q(φ)f t,

Fθ = τ − rwf t (5)

where

Q(φ) =

 − sin(φ) − sin(φ+2π/3) − sin(φ+4π/3)

cos(φ) cos(φ+2π/3) cos(φ+4π/3)

r r r


Here r is the radius of the mobile robot platform and rw is
the wheel radius.

3) Lagrangian: The Lagrangian is simply a function of
the Kinetic Energy of the mobile robot platform.

L =
1
2

{
m(ẋ2 + ẏ2) + IRφ̇2 +

3∑
i=1

Iwθ̇2
i

}
(6)

where IR is the moment of inertia of the robot and Iw is the
moment of inertia of each wheel.

D. Nonlinear E-L Dynamics

Substituting (5),(6) into (4) we obtain in matrix form,

M q̈ = Q(φ)f t, (7)

Iwθ̈ = τ − rwf t. (8)

where

M =

 m 0 0
0 m 0
0 0 IR

 .

and m, IR are the mass and moment of inertia of the mobile
robot platform, while rw, Iw are the radius and moment of
inertia of each wheel. This represents the full (slip included)
nonlinear dynamics for the mobile robot platform. Each
traction force is of the form fti

= µa(si)N and thus depends
nonlinearly on the slip. The representation used for the
adhesive co-effecient is given by (3).

E. Nonlinear E-L Dynamics ((q, s) space)

The nonlinear functions (7) and (8) utilise the state vari-
ables q,θ. However, since slip is a function of both robot
and wheel states (2), it is possible to investigate the nonlinear
dynamics using the pair of independant state variables (q, s)
rather than the usual pairing of (q,θ). This provides an
elegant and meaningful interpretation of the dynamics.
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1) Wheel Velocity: For an omnidirectional robot, the slip
(2) for the i-th wheel under braking is defined as

si =
(rwθ̇i − vwi

)
vwi

,

where vwi
is the velocity of the i-th wheel with respect to

the world frame. The individual wheel velocities are given
by

vwi
= v · ei + rφ̇,

= (ẋex + ẏey) · ei + rφ̇,

where v = (ẋex + ẏey) is the velocity of the centre of mass
of the robot and the ei are the unit vectors aligned in the
direction of each wheel (refer to Figure 4). Substituting the
expressions from (1) for each wheel,

vw1 =−vx sin φ+vy cos φ+rφ̇,

vw2 =−vx(−
√

3
2 cos φ+ 1

2 sin φ)+vy(−
√

3
2 sin φ− 1

2 cos φ)+rφ̇,

vw3 =−vx(
√

3
2 cos φ+ 1

2 sin φ)+vy(
√

3
2 sin φ− 1

2 cos φ)+rφ̇.

In matrix form,

vw = RT (φ)q̇, (9)

where

R =

 0 1 r

−
√

3/2 −1/2 r
√

3/2 −1/2 r

 T (φ) =

 cos φ sin φ 0

− sin φ cos φ 0

0 0 1


Subsequently,

v̇w = RT (φ)q̈ + φ̇RT ′(φ)q̇,

= RT (φ)M−1Q(φ)f t + φ̇RT ′(φ)q̇, (10)

where we have substitued for the acceleration q̈ from (7).
2) The Slip Equation: Returning to the dynamics, the

second of the E-L equations (8) can be transformed to the
slip space s in the following manner. First we derive the rate
of change of slip for the i-th wheel.

ṡi =
(rwθ̈i − v̇wi)

vwi

− (rwθ̇i − vwi)v̇wi

v2
wi

,

=
(rwθ̈ivwi

− rwθ̇iv̇wi
)

v2
wi

,

v2
wi

ṡi = rw

(
τi − rwfti

Iw

)
vwi − vwi(si + 1)v̇wi ,

vwi
ṡi =

[(
rw

Iw

)
τi −

(
r2
w

Iw

)
fti

− (si + 1)v̇wi

]
,

In matrix form,

Vwṡ =
rw

Iw

[
τ −M∗(s)M−1Q(φ)f t −N∗q̇

]
,

where

S = diag(s),
Vw = diag(vw),

N∗ = φ̇
Iw

rw
(S + I)RT ′(φ),

M∗(s) = rQ−1(φ)M +
Iw

rw
(S + I)RT (φ).

Subsequently the full nonlinear E-L dynamics in the (q, s)
space under braking is given by

M q̈ = Q(φ)f t,

Vwṡ =
rw

Iw

[
τ −M∗(s)M−1Q(φ)f t −N∗q̇

]
. (11)

Similar equations may be generated for accelerational slip
dynamics.

F. Ideal Rolling E-L Dynamics

Ideal rolling introduces three constraints to the dynamics.
Each constraint is of the form si = ṡi = 0. Substituting
these constraints directly into (11) and eliminating f t, the
constrained dynamics for ideal rolling can be represented by

M∗q̈ + N∗q̇ = τ , (12)

where

M∗ = M∗(0).

Under ideal rolling, the traction forces are assumed to be
able to generate the required torques to sustain ideal rolling
(ensuring the contact point remains stationary) in a similar
fashion to the manner in which static friction ensures a block
will remain stationary on a flat surface. The exact relationship
between torque and traction force can be determined directly
from (11) by setting s = ṡ = 0,

τ = M∗M−1Q(φ)f t + N∗q̇. (13)

IV. CONTROL

The dynamics models generated in the previous section
now allow us to undertake a comprehensive analysis of
various control schemes. These will be performed both in
simulation and in experiments and used to evaluate the
performance of each scheme as well. In some cases, the
effects of unmodelled slip dynamics will also be explored. In
this paper we present a few preliminary results to highlight
the use of the dynamics.

A. Computed Torque Control

Computed torque control utilises a feedback linearising
transformation of the form

τ = M∗(q̈d − u) + N∗q̇. (14)

where u is the control input, or outer loop control, while τ
is referred to as the inner loop control. If we assume an ideal
rolling dynamics model, substituting this into (12) yields the
error dynamics:

ë = u.
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The primary advantage of this method is that the feedback
linearisation allows complete customisation of the error
dynamics. Its main drawback however, is that it is not a
decoupled control strategy. The inclusion of M∗ and N∗ in
the torque (14) require that the orientation of the robot be
known in order to compute the required torque for any single
wheel.

1) PD Computed Torque Controller: There are various
ways that the outer loop control, u may be defined. Here,
we simply set

u = −Kvė−Kpe. (15)

where e = qd − q. The closed loop error dynamics are

ë + Kvė + Kpe = 0. (16)

Kv and Kp are simply chosen to ensure a desired error
convergence rate. In the case of unmodelled disturbances,
PD control returns a non-zero steady state error. In this case,
a PID controller may be substituted to improve the error
convergence.

2) Computed Torque Like Controller: The computed
torque technique can provide some level of robustness given
either small disturbances or uncertain knowledge regarding
the exact representation for M∗ and N∗. In this case the
following modified control law may be used.

τ = M̂∗(q̈d − u) + N̂∗q̇.

A Lyapunov proof using Lasalle’s Theorem and Barbalat’s
Lemma provide some assurance of ensuring a desired error
convergence for a PD or PID scheme so long as the outer
loop gains are chosen large enough.

B. Workspace Control

Workspace control is performed in the global configuration
space (x, y, φ). Errors are used to generate the required
generalised forces for convergent error dynamics.

Q(φ)f t = Kdė + Kpe,

Substituting this into (7), the closed loop error dynamics are
given by

ë + Kvė + Kpe = q̈d + (I −M−1)(Kvė + Kpe), (17)

where the right hand side is treated as a disturbance and
Kv,Kp are tuned appropriately. The actual torque required
from the motors is derived from (13),

τ = M∗M−1Q(φ)f t + N∗q̇,

= (rw +
Iw

rw
RT (φ)M−1Q)Q−1(Kdė + Kpe) + N∗q̇.

where f t = Q−1(Kdė + Kpe). In practice, M may not
be accurately known and the torque is often more simply
modelled by the approximation given by τ ≈ rwf t. This
is often justifiable as typically the model parameters ensure
rw >> Iw

rw
RT (φ)M−1Q and N∗ is small (low spin). For

our robot, rw ≈ 25(Iw/rw)RT (φ)M−1Q.

C. Classic Kinematic Control

A classic kinematic controller uses an inner/outer loop
strategy that defines a suitable reference workspace velocity
that is passed through the inverse kinematics before sending
it to the motor controller. Outer loop calculations (reference
velocity and IK transformation) are given as follows:

q̇r = q̇d + Kvė + Kpe.

θ̇r = (1/rw)RT (φ)q̇r.

In the inner loop, for best results, a dynamic controller
can be used to ensure tracking of the referential angular
velocity, however this still requires knowledge of the inertial
parameters of the robot and motor subsystem. The simpler
strategy is to use a simple PD controller of the form

τ = Kvθ
ėθ, (18)

where ėθ = θ̇r − θ̇.

D. Simulation

Ideal rolling dynamics (12) were used for this simulation
in which the various controllers were tested on different
input trajectories. The purpose of the simulations are to
investigate the error convergence of each controller under
varying accelerational conditions (this is also analogous to
systems having to cope with varying payloads). This is
particularly important for platforms which require responsive
behaviour in conditions which require frequent and varying
accelerations/decellerations (robot soccer or environments
that generate curved motions).

In each of the simulations, the robot was instructed to
move in a straight line (y-direction) under varying accelera-
tions

• Zero acceleration
• Constant acceleration
• Linearly varying acceleration
• Constant spin + Constant acceleration

These trajectories were tested with each of the four con-
trollers mentioned previously.

• Computed Torque (CT)
• Workspace Control with Model Parameters (WC1)
• Workspace Control without Model Parameters (WC2)
• Classic Kinematic Controller (K)
1) Zero Acceleration: Under constant velocity (q̈d = 0),

gain parameters for the workspace and classic kinematic
controller may be tuned to match the error convergence
dynamics of the computed torque controller (note that the
gains will be different in each case - consider, for example,
re-arranging (17) for error dynamics that would match (16)).
This is illustrated in Figure 6 where gains for each controller
were chosen to match error dynamics with Kv = 10,Kp =
15.

2) Constant Acceleration: Under the presence of an ac-
celeration, only the computed torque controller remains free
from a non-zero disturbance in dynamics. This affects the
error convergence dynamics (either slowing convergence or
causing excessive overshoot depending on the sign of the
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Fig. 6. Error Dynamics under Zero Acceleration

acceleration) and also introduces a non-zero steady state
error. This could be suppressed with the appropriate gains,
but then this would in turn affect the nature of the error
convergence dynamics under constant velocity. The effects
of this can be seen in Figure 7 where the dynamic controller
(CT) has zero steady state error and the remaining controllers
have progressively larger steady state errors (WC1, WC2, K
respectively).

Fig. 7. Error Dynamics under High Acceleration

3) Varying Acceleration: Here the acceleration was in-
creased linearly from 0 to 1 (ramp function). This is illus-
trated in Figure 8 where it can be seen that the steady state
errors increase as a function of the acceleration.

4) Non-Zero Spin Velocity: In the previous examples,
WC1 and WC2 match each other quite closely and WC2
appears to be a good approximation for WC1. The most
significant difference occurs when φ̇ 6= 0 as this directly
affects the magnitude of N∗. However, variation between the
error dynamics between WC1 and WC2 remains negligible
(< 1%).

5) Summary: If responsive behaviour for varying accel-
erations is required, a dynamic controller (CT) can ensure
consistent error convergence dynamics. The remainder can

Fig. 8. Error Dynamics under Ramped Acceleration

be tuned, but error convergence dynamics will either lag
(as illustrated here) or overshoot as accelerational or inertial
conditions vary. They also exhibit an unavoidable steady
state error. These are progressively more pronounced as more
and more of the dynamics is removed from the calculations.
These effects also translate to variations in torque magnitudes
under different accerational conditions when there is an error.

V. CONCLUSION

In this paper we have presented the fundamental nonlinear
slip dynamics for an omniwheel mobile robot platform
and initiated a preliminary investigation of controllers for
navigation of such a system. Our future work will investigate
the development of a controller that utilizes an understanding
of the steady state slip modes to improve performance
when compared with that obtained under an ideal rolling
assumption. This will enable investigation of the effect of
the nonlinear slip dynamics with the conventional controllers
and the usage of sliding or adaptive controllers to improve
performance on a wide variety of surfaces and varying
payloads. The nonlinear dynamics transformed into the (q, s)
space should also provide a useful tool for exploring the
emergence, bifurcation and collapse of steady state slip
modes for an omniwheel mobile robot platform.
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