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Abstract— Traditionally in monocular SLAM, interest fea-
tures are extracted and matched in successive images. Outliers
are rejected a posteriori during a pose estimation process,
and then the structure of the scene is reconstructed. In this
paper, we propose a new approach for computing robustly
and simultaneously the 3D camera displacement, the scene
structure and the illumination changes directly from image
intensity discrepancies. In this way, instead of depending on
particular features, all possible image information is exploited.
That problem is solved by using an efficient second-order
optimization procedure and thus, high convergence rates and
large domains of convergence are obtained. Furthermore, a
new solution to the visual SLAM initialization problem is given
whereby no assumptions are made either about the scene or
the camera motion. The proposed approach is validated on
experimental and simulated data. Comparisons with existing
methods show significant performance improvements.

I. INTRODUCTION

Visual SLAM consists in estimating the motion of a
camera while simultaneously reconstructing the environment
in which it navigates. In the computer vision community
this problem is also called Structure From Motion [1]. This
challenging task is traditionally divided into three major
steps. First, carefully chosen, distinctive image features are
extracted, e.g. by SIFT or Harris detector, and then tracked
(or matched) between successive images. Once this data
association problem has been solved, only pixel coordinates
of the salient points will be available for further processing.
However, the data association is never perfect and the outliers
(aberrant measures) are usually rejected in a second step
using a robust technique (e.g. RANSAC). The objective is
to find a set of corresponding points free from mismatches
that allows to estimate a tensor containing the camera dis-
placement (e.g. the Essential matrix, the Trifocal tensor, etc.).
Once the camera displacement has been extracted from the
tensor, one can reconstruct the structure of the scene up to a
scale factor. The reader may refer to the techniques proposed
e.g. in [2], [3] among many others.

In this work, we depart from this paradigm and we propose
a new approach to perform that core of monocular SLAM.
The proposed technique computes simultaneously the 3D
pose and the scene structure directly from image intensity
discrepancies. In this way, instead of depending on particular
features, all possible image information is exploited. In
other words, motion and structure are directly used to align
multiple reference image patches with the current image so
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that each pixel intensity is matched as closely as possible.
Here, besides these global and local geometric parameters,
global and local photometric ones are also included in
the optimization process. This enables the system to work
under illumination changes and to achieve more accurate
alignments. In turn, the global variables related to motion
directly enforce the rigidity constraint of the scene during
the minimization. Hence, besides increasing accuracy, the
technique becomes naturally robust to outliers.

The proposed technique is also different from the existing
direct methods in many other aspects. The strategy [4],
besides being sensitive to variable illumination, does not
consider the strong coupling between motion and structure
in their separated estimation processes. The method [5],
though using a unified framework, relies on the linearity of
image gradient which limits the system to very slow camera
motions. The proposed unified approach is in fact based
on an efficient second-order minimization procedure. Thus,
higher convergence rates and larger domains of convergence
are obtained. Furthermore, we propose a suitable structure
parameterization which enforces, during the optimization, its
positive depth (cheirality) constraint. Moreover, we advocate
the parameterization of the visual tracking by the Lie algebra,
which further improves its stability and accuracy. In addition,
it is well-known that representing a scene as composed by
planes leads to an improvement of computer vision algo-
rithms in terms of accuracy, stability and rate of convergence
[6]. For this reason, we suppose that any regular surface
can be locally approximated by a set of planar patches. To
respect real-time requirements, an appropriate selection of
a subset is performed. Other contribution is concerning the
initialization of the visual SLAM. This is not a trivial issue
since, at the beginning of the task, any scene can be viewed
as composed by a single plane: the plane at infinity [7].
The scene structure only appears when the translation of
the camera becomes sufficiently large with respect to the
depths. Given this ill conditioning, some systems e.g. [4]
rely on a simple solution: one installs a reference pattern
in the environment and uses it in the initial frame. Other
systems e.g. [8] propose to recover the Essential matrix
and to decompose it. However, if the scene is planar such
a matrix is degenerate, and its decomposition provides an
erroneous translation vector. In this article, a new solution for
initializing the system is proposed whereby the environment
is neither altered nor assumed that it is non-planar.

The experimental and simulation results also demonstrate
that the image regions survive for larger camera motions and
variations of illumination than by using traditional methods.
Hence, by exploiting the same information in long periods
of time, one avoids an early accumulation of drifts or even
a total failure of the system.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrC7.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4090



II. THEORETICAL BACKGROUND

The gradient operator with respect to a variable v is here
represented by ∇v(·), while {vi}n

i=1 corresponds to the set
{v1, v2, . . . , vn}, (Q−1)�=(Q�)−1 is abbreviated by Q−�,
and 0 is a matrix of zeros of appropriate dimensions. We
also follow the usual notations v̂, ṽ, v, v′ to represent
respectively the estimate, an increment to be found, an
augmented version and a modified one of v.

A. The Lie Group and The Lie Algebra of SE(3)
Consider an image I∗ captured from a rigid scene. After

displacing the camera by a rotation R ∈ SO(3) and a
translation t ∈ R

3, another image I of the same scene is
acquired. This motion can be represented by the homoge-
neous transformation matrix T ∈ SE(3).

Let Ai, i = 1, 2, . . . , 6, be the canonical basis of the Lie
algebra se(3) [9]. Any A ∈ se(3) can be written as a linear
combination of the Ai:

A(x) =
6∑

i=1

xiAi ∈ se(3), (1)

where x = [x1, x2, . . . , x6]� ∈ R
6, and xi is the i-th element

of the base field. Such an algebra is transformed to the Lie
group SE(3) via the exponential map:

exp : se(3) �→ SE(3); A(x) �→ e(A(x)). (2)

The mapping (2) is smooth and one-to-one onto, with a
smooth inverse, within a neighborhood of the identity el-
ement of se(3) and the identity element of SE(3). However,
these properties are valid within a very large region. Besides,
due to this mapping the resulting matrix is always in the
group, and no approximation is performed. Hence, the local
parameterization (1) improves stability and accuracy, and is
highly suitable to express incremental 3D displacements.

B. Visual Tracking Parameterized in the SE(3)
Let p ∈ P

2 be the vector containing the image coordinates
of a pixel. Then, we denote I(p) the image intensity of the
pixel p. Consider that an appropriate planar region R has
been defined in I∗ (see Section III-A). The coordinates of a
pixel p∗ defined in R∗ ⊂ I∗ are linked to its corresponding
p in I by a projective homography G ∈ SL(3). Thus, a
warping operator can be defined:

w( · ;G) : P
2 �→ P

2; p∗ �→ p = w(p∗;G). (3)

Let K be the upper triangular (3× 3) matrix containing the
camera intrinsic parameters. Given K, then G can be written

G(T,n∗) = K
(

R + t n∗�
3
√

1 + t�Rn∗

)
K−1, (4)

where n∗ ∈ R
3 denotes the normal vector of the plane scaled

by its distance to the reference camera frame.
For simplicity, let us suppose for the moment that the nor-

mal vector is known (in the Section III-C we will show how
the problem can be solved if the normal vector is unknown).
The problem of geometrical direct visual tracking can be
formulated as a search for the optimal matrix T to warp all

the pixels in the region R∗ ⊂ I∗ so that their intensity values
match as closely as possible to their corresponding ones
in the current image I. For that, a non-linear minimization
procedure has to be derived since the pixel intensity I(p)
are, in general, non-linear in p. A standard technique to
solve this problem consists in performing an expansion of the
cost function in Taylor series and after applying a necessary
condition of optimality. The solution of the obtained linear
least squares problem iteratively updates an initial guess until
convergence. Hence, given an T̂ of T, the problem is to find
the optimal T̃ = T(x̃) through an iterative method which
solves

min
ex∈R6

1
2

∑
p∗

i ∈R∗

[
I
(
w

(
p∗

i ;G
(
T̂T(x̃)

))) − I∗(p∗
i )

]2

, (5)

with an update of the transformation matrix as

T̂ ←− T̂T(x̃) = T̂ e(A(ex)), (6)

by using (2). The convergence may be established when the
increments become arbitrarily small, i.e. ‖x̃‖ < ε.

III. THE DIRECT VISUAL SLAM APPROACH

This section presents an unified approach where geometric
and photometric models are included in a direct visual
SLAM. Furthermore, it is also shown how to initialize and
to obtain consistently and efficiently the optimal global and
local parameters related to those models.

A. Selection of the Interest Regions

Due to real-time requirements and the fact that the entire
image may not contain sufficient information for constraining
all the parameters of the model, the whole image is not
considered for processing. Indeed, a selection of image
patches according to an appropriate score is needed. For
direct methods, high scores should reflect strong image
gradient along different directions.

Hence, define firstly a suitable gradient-based image G
issued from I. Also, let the image region R∗ be a (w ×w)
matrix containing pixel intensities, whose size can be viewed
as a compromise between robustness and accuracy. Given G,
a possible score image S may be obtained as the sum of all
values of G within a (w ×w) block centered at every pixel.
This operation is well-known as a convolution of the kernel
Kw composed by “ones” with G

S = G ⊗ Kw, (7)

which is performed extremely fast. Also, a second criterion
to be added to (7), possibly with a different weight, is based
on the quantity of local maxima of G within each block.
This prevents from assigning high scores on single peaks.
The resulting S contains the scores which are then sorted,
without any absolute thresholds on the strengths to be tuned.

B. Improving the Robustness to Illumination Changes

An important issue to all vision-based methods which
work directly with pixel intensities is its robustness to
variable lighting. A naı̈ve method to increase its robustness is
by performing a photometric normalization. For example, the
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image region may be normalized by using the mean and the
standard deviation. Instead of this remediation, illumination
parameters are explicitly taken into account as follows.
A warped image region changed due to an illumination
variation is here explained by two terms α, β ∈ R:

I ′
(
w

(
p∗

i ;G(T)
))

= α I
(
w

(
p∗

i ;G(T)
))

+ β, (8)

∀p∗
i ∈ R∗. Since (8) comprises local and global parameters,

this piecewise linear model can be interpreted as a model
for regulating the contrast of a particular region and the
brightness of the entire image. This has been shown to be
a good compromise between modeling error (especially if
each R∗ has a small size) and computational complexity
(few parameters together with a sparse Jacobian, as shown
in Subsection III-E). In addition, it does not require any a
priori knowledge about either the reflectance properties of
the surface or the characteristics of the light sources. Thus,
given that an iterative procedure has to be used and that the
update rule for the illumination parameters is simply{

α̂ ←− α̂ + α̃

β̂ ←− β̂ + β̃,
(9)

we can define the warped and illumination compensated pixel
intensity as

I ′
i = (α̂ + α̃) I

(
w

(
p∗

i ;G
(
T̂T(x̃)

)))
+ β̂ + β̃. (10)

Therefore, by incorporating (10), the model-based visual
tracking problem (5) becomes

min
ex∈R

6

eα,eβ∈R

1
2

∑
p∗

i ∈R∗

[ I ′
i − I∗(p∗

i )
]2

. (11)

As a remark, the proposed model of lighting variation (8)
is different from existing ones when applied to different parts
of the same image. For example, the method [5], though
the model is also affine, uses two local parameters for each
region. By not considering the global contribution explicitly,
which represents the variation of the ambient reflection, esti-
mation of many more parameters are required. This may de-
grade frame-rate performance and, even worse, it may lead to
convergence problems. Second, the parameters related to our
model are obtained by performing an efficient second-order
approximation of the cost function. Hence, nicer convergence
properties are obtained without never computing the Hessians
explicitly (see Section III-D). Furthermore, some approaches
modify the reference R∗ ⊂ I∗ to compensate severe changes
of its appearance in the current I. Instead, we propose to
consider also the last warped and illumination compensated
(k − 1) image of the sequence in the optimization problem.
Thus, we transform (11) into

min
ex∈R

6

eα,eβ∈R

1
2

∑
p∗

i ∈R∗

{[ I ′
i − I∗(p∗

i )
]2 +

+
[
I ′

i − α(k−1) I
(
w

(
p∗

i ;G
(
T(k−1)

)))
+ β(k−1)

]2
}

. (12)

The application of this latter modification is optional (since it
increases the number of equations to be solved) and depends
on the complexity of the scenario.

C. The Full System

Since the 3D model of the scene is unknown a priori,
its structure parameters must be included as optimization
variables as well. For that, we perform a parameterization
of the scaled normal vector n∗ ∈ R

3 by using the depth
zi > 0 of any 3 image points p∗

i within R∗ (e.g. its corners)
as follows. Define the vector z �

[
z−1
1 , z−1

2 , z−1
3

]�
. Then,

n∗ = K� [ p1 p2 p3 ]−� z � Mz, M ∈ R
3×3, (13)

from the equations of the perspective projection of 3D
points which lies on the plane. Next, given that an iterative
procedure has to be devised and that the depths must be
strictly positive scalars, we also parameterize them as z =
z(y) = ey, y ∈ R

3. This provides the update rule

ẑ ←− ẑ · z(ỹ) = ẑ · eey = diag(ẑ) eey, (14)

where “·” denotes elementwise multiplication. Therefore, by
using this parameterization n∗ = n∗(z(y)) we enforce,
during the iterative optimization procedure, that the scene
region is always in front of the camera.

Accordingly, the warped and illumination compensated
pixel intensity expressed in (10) has to be changed into

I ′′
i = (α̂+ α̃) I

(
w

(
p∗

i ;G
(
T̂T(x̃),n∗(ẑ ·z(ỹ))

)))
+ β̂ + β̃.

In order to incorporate this latter modification into all regions
R∗

j , j = 1, 2, . . . , n, Eq. (12) is changed into

min
θ∈R7+4n−1

1
2

∑
j

∑
p∗

ij∈R∗
j

{[ I ′′
ij − I∗(p∗

ij)︸ ︷︷ ︸
d′

ij

]2 +

[
I ′′

ij−α
(k−1)
j I

(
w

(
p∗

ij ;G
(
T(k−1),n∗

j
(k−1))))+β(k−1)︸ ︷︷ ︸

d′′
ij

]2
}

(15)

where θ =
[
x̃�, β̃,

{
α̃j , ỹj

}n

j=1

]�
. Remark that in this case

the regions are not tracked independently. In fact, the rigidity
constraint of the scene is also explicitly enforced since all
the regions share the same motion parameters. Concisely, our
system can then be rewritten so as to find the optimal value

θ◦ = arg min
θ∈R6+4n

1
2

∥∥d(θ)
∥∥2

(16)

such that norm of the vector of intensity discrepancies

d(θ) =
[
{d′i1}i, . . . , {d′in}i, {d′′i1}i, . . . , {d′′in}i

]�
, (17)

whose elements are defined in (15), is minimized. In the next
subsection, an efficient algorithm to solve it is developed.

In all case, regions which violate the models (e.g. inde-
pendently moving ones) must be detected and discarded by
the algorithm. For that, two meaningful metrics are used to
evaluate the j-th template: a photometric measure as well as
a geometric one. The former is here defined as

RMS2
j � 1

2 card(R∗
j )

∑
p∗

ij∈R∗
j

(
d′2ij + d′′2ij

)
, (18)

where card(·) denotes the cardinality of the set. Notice that
the illumination variation has already been compensated for
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in this measure. The geometric one is naturally the side
ratio between the current and the previously warped region.
That is, if a template shrinks or elongates significantly in at
least one direction, this may mean insufficient content for
constraining all the parameters (and can thus be discarded).

D. The Optimization Procedure

This subsection extends the efficient second-order mini-
mization [10] in order to iteratively solve the problem (16).
Indeed, it can be shown that, neglecting the third-order
remainder, an efficient second-order approximation of d(θ)
around θ = 0 is

d(θ) = d(0) + 1
2

(
J(0) + J(θ)

)
θ. (19)

The Jacobians can be found in [10], where this procedure
was used for solving the problem (5). In our case, the
current Jacobian J(0) within the j-th region is divided into
the Jacobian with respect to the motion parameters, to the
illumination parameters, and to the structure parameters:

J(0) =
[

Jx(0), Jαβ(0), Jz(0)
]
, (20)

where 


Jx(0) = α̂JIJwJKJbTJX(0)
Jαβ(0) =

[ ∇bβI ′′, ∇bαI ′′ ]
=

[
1, I ]

Jz(0) = α̂JIJwJKJbnMz,

by applying the chain rule. Correspondingly, the Jacobian
J(θ) is divided into

J(θ) =
[

Jx(θ), Jαβ(θ), Jz(θ)
]
, (21)

where 


Jx(θ) = α̂JI∗JwJKJTJX(θ)
Jαβ(θ) =

[
1, I∗ ]

Jz(θ) = α̂JI∗JwJKJnMz.

By applying a necessary condition for θ = θ◦ to be an
extremum of our cost function in (16) gives

∇θ

(
1
2 d(θ)�d(θ)

)∣∣∣
θ=θ◦

= ∇θ

(
d(θ)

)∣∣∣�
θ=θ◦

d(θ◦) = 0. (22)

Provided that J(θ)
∣∣
θ=θ◦ is full rank (see Section III-E) and

using (19) around θ = θ◦, Eq. (22) yields
1
2

(
J(0) + J(θ◦)

)
θ◦ = −d(0). (23)

This is not a linear system in θ◦ because of J(θ◦). However,
due to the suitable parameterization of the tracking (see
Section II-B), we exploit the left-invariance property of
the vector fields on SE(3) [9]: JX(θ◦) θ◦ = JX(0) θ◦.
Moreover, provided that JT ≈ JbT and Jn ≈ Jbn, we can
write the left hand side of (23) as

J′ θ◦ � 1
2

[
α̂ (JI+JI∗)J′′

x,
[
2, (I+I∗)

]
, α̂ (JI+JI∗)J′′

z

]
θ◦,

(24)
where J′′

x = JwJKJbTJX(0) and J′′
z = JwJKJbnMz. Then,

by stacking appropriately each J′
j = J′ given in (24) to take

into consideration all templates j = 1, 2, . . . , n (see Section
III-E), as well as all the Jacobians associated to {d′′j }n

j=1,
the following rectangular linear system is achieved:

J
′
θ◦ = −d(0), (25)

whose solution1 θ◦ iteratively updates the minimization
parameters according to (6), (9) and (14) until it becomes
arbitrarily small or until the cost value is arbitrarily close to
stability. Therefore, we provide a second-order minimization
procedure which is computationally efficient because it only
involves first-order derivatives. In other words, differently to
other second-order techniques (e.g. Gauss-Newton), the Hes-
sians are never computed explicitly. This in turn contributes
to obtain nicer convergence properties.

E. Initialization of the System

In this subsection, a new method to initialize the visual
SLAM is presented. The technique consists in exploiting the
conditioning of the Jacobians of the proposed minimization
algorithm. For that, let us first of all rewrite the Jacobian J′

defined in (24) as

J′ =
[

J′
x, J′

αβ , J′
z

]
. (26)

Next, let us expand the augmented Jacobian J
′

in (25):

J
′
=


 J′

x1 1 J′
α1 0 0 J′

z1 0 0
...

... 0
. . . 0 0

. . . 0
J′
xn 1 0 0 J′

αn 0 0 J′
zn


 (27)

=
[

J
′
x, J

′
αβ , J

′
z

]
. (28)

At the beginning of the task the translation may be small
relative to the distance to the scene. If this occurs, the
augmented Jacobian of the structure J

′
z is ill-conditioned,

which means that the structure parameters are not observable
yet. In this situation, the motion parameters together with the
illumination ones can explain most of the image differences.
Thus, the set of linear equations (25) is initially changed into[

J
′
x, J

′
αβ

] [
x̃◦�, β̃◦,

{
α̃◦

j

}n

j=1

]� = −d(0), (29)

whose solution
[
x̃◦�, β̃◦,

{
α̃◦

j

}n

j=1

]�
is also obtained in the

least-square sense, and then it iteratively updates (6) and (9).
The structure parameters are only used jointly to explain
the image discrepancies, i.e. by solving (25), whenever the
difference between the resulting cost value by using (29)
and the resulting one from previous (image) optimization
exceeds the image noise. This minimal parameterization
presents many strengths. First, by not including unobservable
parameters in the process, the pose ones are not indirectly
perturbed. Second, there is no delayed initialization: all tem-
plates are always directly exploited to compute the motion.
Furthermore, once the optimal structure parameters for a
given set of regions are obtained, there is no reason to
maintain them in the optimization (although they are back
whenever that difference is exceeded). Besides that their val-
ues may be perturbed e.g. the image resolution decreases (or
whenever a partial occlusion is present), less parameters in
the minimization mean more available computing resources.
In this case, another set of regions can be selected. Moreover,
a variable-order (the regions may drop in and out) Kalman
filter was used to speed up the system by providing an
estimate of the minimization parameters for the next image.

1obtained in the least-squares sense by solving its normal equations
J
′�

J
′
θ◦ = −J

′�
d(0).
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IV. RESULTS

In order to validate the algorithm and to assess its perfor-
mance, we have tested it with both simulated and real-world
scenes. Due to paper length restrictions, we report here only
one sequence for each scenario. In all cases, the trivial initial
conditions were used: T̂0 = I4, α̂j0 = 1, β̂j0 = 0, n̂∗

j0 =
[0, 0, 1]�, j = 1, 2, . . . , n. We also emphasize that: (i) bundle
adjustment is not performed in any case; (ii) no off-line
training phase is carried out; and (iii) a priori knowledge is
not imposed anywhere.

A synthetic 3D scene was constructed so that a ground
truth is available. It is composed by four planes disposed
in pyramidal form, and cut by another plane on its top. In
order to simulate realistic situations as closely as possible,
textured images were mapped onto the planes (see Fig. 1).
Afterward, a sequence of images were generated by displac-
ing the viewpoint while varying the illumination conditions
significantly: we apply an α(k) which changes the image
intensities up to 50% of its original value, and a β(k) which
varies sinusoidally with amplitude of 50 pixels. We have then
compared our approach (using 30 regions of size 21 × 21)
with traditional methods as well as with a direct method.
The results obtained by the proposed technique are shown
in the Fig. 1, which successfully tracks the image regions by
performing robustly and simultaneously the reconstruction of
the pose and the scene. With regard to standard methods, we
tested the SIFT keypoints, and the sub-pixel Harris detector
along with a Zero-mean Normalized Cross-Correlation with
mutual consistency check for matching those latter points.
Afterward, 100 of those matched salient features were fed
into a RANSAC procedure (typically 300 trials) with the
state-of-the-art 5-point algorithm [11] for robustly recovering
the pose. The comparisons are shown in the Fig. 2, where
those strategies are called respectively by S+R+5P and
H+ZNCC+R+5P. Since the scale factor is supposed to be
unknown, the translation error is measured by the angle
between the actual and the recovered translation directions.
Notice that, despite the fact that more features were used,
larger errors were obtained by applying those techniques
to that challenging sequence, especially at the initialization
step and for large displacements. Observe that the proposed
initialization procedure performs well. In addition, the results
show a rapidly decreasing number of tracked features, and an
increasing percentage of outliers. Therefore, to avoid an early
failure, a more frequent replacement of features is certainly
required by those methods. As a remark, despite their relative
inferior accuracy, feature-based methods can be global and
thus could be used as an input to our technique. With respect
to the direct methods, we have made a comparison with
[5], whose results can be seen in the Fig. 3. Given that
the displacements (motion and illumination) were not very
small, what violate their assumptions, that algorithm failed
in the seventh image of the sequence. Due to the efficient
second-order approximation we propose, larger inter-frame
displacements are allowed. The method proposed in [4] could
not be applied since the scene is supposed to be unknown,
and that it is not possible to alter the environment (it needs
a reference pattern for the initialization).
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Fig. 2. Results from traditional methods and from the proposed approach.
Top: errors in the recovered motion. Larger errors were obtained from
traditional methods especially at the initialization step and for large dis-
placements. Observe also that the proposed initialization step performs well.

Fig. 3. Results of the tracking (in red) by using [5] at the 2nd and 7th
image of the sequence, where it fails. The regions were the same as shown
in Fig. 1. Observe that even at the 2nd image, many regions has already
been discarded. This method also failed for the sequence presented in Fig. 4.

The results of the proposed method over a real-world
sequence are shown in Fig. 4. At the beginning, the scene
can be seen as the plane at infinity (see first frame). As the
camera progresses, more accurate results are obtained. Note
once again that the initialization step performs well. The
regions were selected using [7] to show that much denser
mapping can also be achieved with our technique.

V. CONCLUSIONS

In this paper, we have given various contributions for
improving vision-based SLAM. First of all, we have han-
dled the observability problems in the initialization step.
Then, we have provided an efficient and robust method
that directly computes the scene structure, the illumination
variations and the camera displacement with respect to a
reference frame. We have proved that standard methods need
to add new features to track more frequently. Hence, the
proposed method allows to reduce the drift by maintaining
longer the estimation of the displacement with respect to the
same reference frame. Future work will be devoted to the
implementation of a complete visual SLAM method with
small drift over large distances.
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Fig. 1. Top: some frames of the Pyramid sequence superposed with the regions tracked (in red) by using the proposed approach. Observe the substantial
illumination changes. Bottom: both pose and scene being incrementally reconstructed. At the beginning, the entire scene corresponds to the plane at infinity.

Fig. 4. Top: some frames of the Versailles sequence superposed with the regions tracked (in red) by using the proposed approach. Bottom: both pose and
scene being incrementally reconstructed. Observe that, at the beginning of the task, the entire scene is viewed as the plane at infinity.
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