
 
 

 

  

Abstract—Prior papers have introduced steerable needles 
composed of precurved concentric tubes. The curvature and 
extent of these needles can be controlled by the relative rotation 
and translation of the individual tubes. Under certain 
assumptions on the geometry and design of these needles, the 
forward kinematics problem can be solved in closed form by 
means of algebraic equations. The inverse kinematics problem, 
however, is not as straightforward owing to the nonlinear map 
between relative tube displacements and needle tip 
configuration as well as to the multiplicity of solutions as the 
number of tubes increases. This paper presents a general 
approach to solving the inverse kinematics problem using a 
pseudoinverse solution together with gradients of nullspace 
potential functions to enforce geometric and mechanical 
constraints. 

I. INTRODUCTION 
EEDLES are used to deliver drugs, implants and 

surgical tools to locations throughout the body. A 
fundamental limitation on the variety and complexity of 
procedures for which needles can be used is the extent to 
which a needle can be steered around delicate or bony 
structures during insertion as well as the capability to 
articulate the needle tip at the target site. 

Recently, needles composed of precurved concentric 
tubes have been proposed as a technology which is capable 
of substantially increasing steerability and tip control in 
comparison to existing needles [10],[12],[13]. In this 
approach, the initial curvatures of the tubes interact to 
produce the mutual curvature along the length of the needle. 
Needle curvature can be controlled by rotating and 
translating the tubes with respect to each other. Fig. 1 
depicts an example comprised of four tubes. 

While closed-form inverse kinematic equations have been 
derived for several simple needle designs [10], a general 
approach to inverse kinematics is needed which can be 
employed for both closed-loop control and surgical 
planning. The method must be computationally efficient to 
be useful for control and should also, in the case of 
kinematic redundancy, enable exploration of the self motion 
manifold to compare alternative paths to surgical targets.  

This is a difficult problem since computation of 
concentric-tube needle curvature is a 3D beam bending 
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problem. Solving problems of this type typically requires 
numerical integration along the length of the beam to solve a 
two-point boundary value problem [1]. Such a model is 
cumbersome to implement in a surgical planning system let 
alone for real-time control. Alternatively, as introduced in 
[10], an approximate algebraic model for beam curvature 
can be adopted. While this model makes certain 
assumptions, such as negligibility of external forces on the 
shape of the needle and torsional rigidity of the individual 
tubes, it substantially reduces the computational complexity 
of the kinematics. Using this model, tubes of initial 
piecewise constant curvature combine to form steerable 
needles of piecewise constant curvature [10]. 

 
Figure 1.  Four-tube steerable needle with forceps grasping a suture needle. 

This paper presents a generalized inverse Jacobian 
approach for efficiently solving the inverse kinematics 
problem for concentric tube needles. This approach also 
facilitates mapping of the self-motion manifold as well as 
the inclusion of constraints on tube length and curvature. 
While the algebraic curvature model of [10] is used here, the 
approach applies to any algebraic curvature model which 
results in a needle of piecewise constant curvature. Such a 
shape is advantageous for a concentric tube needle, since it 
can be inserted into tissue in a telescoping fashion while 
applying minimum off-axis forces to the tissue. 

Generalized inverse Jacobian solutions to the kinematics 
problem are widely reported in the literature for robots 
comprised of links and joints [3],[5],[6].  Steerable needles, 
however, belong to the class of continuum robots which lack 
discrete links and joints [9].  The kinematics of these 
systems have been addressed in [2],[4],[11].  

In contrast to hyper-redundant manipulators, the number 
of kinematic variables of a steerable needle (relative tube 
rotations and translations) is modest. Thus, while the 
coordinate frames employed here have some similarity to the 
backbone reference frames of [2], the kinematic map is most 
easily expressed in terms of shape functions specific to the 
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component tubes (i.e., piecewise constant curvature) rather 
than a more general modal mapping. In approach, this paper 
is closest to [4] which derives the kinematic map for a multi-
section continuum robot in which the curvature and length 
of each section is determined by the length of three cables 
equally spaced around the trunk. The present work differs 
from [4] in several respects. First, the kinematic inputs are 
the relative rotations and translations of the tubes. Second, 
the curvature of each needle section depends on all tubes 
within that section and the number of sections can vary as 
tubes are extended and retracted. Third, constraints on tube 
length and curvature exist which can be directly 
incorporated in the inverse solution. 

In the next section, the forward kinematic map between 
the tube variables and needle tip frame is derived as the 
product of three mappings. Section III develops the inverse 
solution to these three maps. The subsequent sections 
provide examples inverse kinematic solutions for several 
needle designs as well as conclusions. 

II. FORWARD KINEMATIC MODELING 
Using the methodology proposed in [10], needles can be 
designed and described according to the relative bending 
stiffness between sets of tubes. Limiting cases correspond to 
when the bending stiffness ratio of a pair of tubes is either 
close to one (balanced stiffness) or very large (dominating 
stiffness). In this approach, a needle design can be described 
in terms of the stiffness ratios of its tubes starting from the 
outermost tube and proceeding to the innermost. For 
example, the design of Fig. 1 can be described as (1) 
balanced stiffness 1 2/ 1I I ª , (2) dominating stiffness 

1 2 3 4( ) ( )I I I I+ +  and (3) dominating stiffness, 3 4I I . 
Note that tube 4 has zero initial curvature. When the tubes 
are extended in telescoping fashion, this ordering also 
describes the ordering of controllable sections from the 
proximal to the distal end. 
 When balanced stiffness tubes are rotated with respect to 
each other, their combined curvature varies. This is the case 
for the outer pair of tubes in Fig. 1. As the relative rotation 
angle between these tubes is changed, their curvature varies 
from zero (straight) to a maximum value. If, as shown in 
Fig. 1, additional tubes are contained inside this pair, which 
are very flexible in comparison to the outer pair, the shape 
of the inner tubes conforms to that of the outer pair. If these 
inner tubes are extended beyond the end of the outer tubes, 
however, they relax to their own curvature. 

The kinematic input variables ( , )θ l  for each tube consist 
of its rotation angle,θ , and extension length, l . It is 
assumed here that any balanced stiffness tube pairs in a 
design are included for curvature control over their mutual 
length and so their extension lengths are constrained to be 
equal. For a needle comprised of n  tubes with p  balanced 
pairs, the kinematic input variables can arranged in 
m n p= -  groups of either ( , )iθ l  or ( )1 2, ,

i
lθ θ . The latter 

applies for balanced stiffness pairs. 
The kinematic mapping from tube variables to needle tip 

frame is diagrammed in Figure 2 as a product of three 
mappings. The first mapping converts the tube kinematic 
variables to m  corresponding input curves of curvature 
ˆ ˆ ˆ( ) ( ) ( )i x y i

s s sκ κ κ⎡ ⎤= ⎢ ⎥⎣ ⎦  and extension length, il . These m  

curves are of piecewise constant curvature. The second 
mapping converts the input curves to the actual arcs of the 
needle, ( ), , , 1, ,x y j

s j n…κ κ = , where the number of arcs, n , is 

the total number of constant curvature segments for all the 
tubes combined. These two mappings are considered 
separately because the designs of the individual tubes are 
most easily described in the input curve space. This proves 
useful when computing the inverse kinematics.  

The third mapping determines the needle tip coordinate 
frame, ( )(0)W

mW l , with respect to the needle base frame 
from the sequence of needle arcs as previously described in 
[10]. 

 

 
Figure 2 Kinematic mappings. 

A. Mapping Tube Parameters to Input Curves 

Balanced stiffness tube pairs require use of a curvature 
model in this step. The model from [10] will be used here. 
For a set of p  tubes, the resultant curvature is 
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where 
T

f fx fyκ κ κ⎡ ⎤= ⎣ ⎦  is the resultant curvature of the 

combined tubes, 
T

i xi yiκ κ κ⎡ ⎤= ⎣ ⎦  is the initial curvature of 

tube i prior to assembly, and 
1 0
0 1i i iK E I

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 is the 

stiffness matrix for tube i, with iI  being the tube cross 
section moment of inertia [10]. To apply (1), all of the iκ  
must be expressed in the same coordinate frame. This is 
done, as shown in Fig. 1, by assigning a frame ( )0iF  to the 

base of tube i, such that the z-axis of ( )0iF  is tangent to the 
tube and the y-axis is aligned with the tube’s initial 
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curvature vector. When the tubes are assembled, the frames 
( )0iF  are initially coincident with each other and with a 

stationary world frame ( )0W  (not shown). As each tube is 
rotated by an angle iθ  about the common z-axis, the frames 

( )0iF  are related to the world frame by 

( ) ( ) ( )0 , 0i iF R z θ W= . Since the frames ( )0iF  are chosen 
such that the initial curvature is entirely in the direction of 
the y-axis, the curvature of tube i in frame ( )0W  can be 
written as 

 ( ) ( )(0) (0)(0) sin cosi i
TF FW

i i i i iκ κ θ κ θ⎡ ⎤= −⎢ ⎥⎣ ⎦  (2) 

 
Fig. 1.  Tube coordinate frames and initial curvatures. 

The application of mapping #1 for each type of fundamental 
element follows. 

1) Individual Tubes: When a tube’s bending stiffness is 
greatly exceeded by that of its outer neighbor, it is treated 
individually and the curvature model (1) does not need to be 
applied. Its curvature is given by 

 ( ) ( )(0) (0)(0)ˆ sin cosi i
TF FW

i i i i iκ κ θ κ θ⎡ ⎤= −⎢ ⎥⎣ ⎦ . (3) 

2) Balanced Stiffness Tube Pair:  The composite 
curvature for these tubes is computed using (1). The 
resulting map for this type of element is 

( ) ( )

( ) ( )

(0)
1 1 1 2 2 2

1 2 1 1 1 2 2 2

sin sinˆ 1
ˆ cos cos

i i

i i

F FW
i i i i i ixi

F F
yi i i i i i i i i

K K

K K K K

⎡ ⎤− −⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ + ⎢ ⎥+⎣ ⎦ ⎢ ⎥⎣ ⎦

κ θ κ θκ
κ κ θ κ θ

,(4) 

and its composite stiffness is 1 2
ˆ

i i iK K K= + . 

B. Mapping Input Curves to Needle Arcs 
The maximum number of needle arcs corresponds to the 
sum of piecewise constant curvature segments of all the 
tubes, n . As the extensions of the tubes vary, however, the 
actual number of arcs and the sequence of arcs from base to 
tip varies as well. This is treated here by assuming that there 
are always n  arcs, but that some may be of zero arc length. 
For any given needle design, there will be a finite number of 
sequences of these n  arcs. As will be demonstrated in the 
example section of the paper, this mapping must encode 
each extension-length dependent sequence of needle arcs. 
The curvature of each is computed using (1) applied to all 
input curves within the arc length. 
 

C. Mapping Needle Arcs to Tip Frame 
From [10], the transformation for a single arc is 
( ), ,x yT sκ κ =  

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

⎡ ⎤− −+
⎢ ⎥
⎢ ⎥
⎢ ⎥− −+⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 2

2 2 2

2 2

2 2 2

1 cos 1 coscos sin

1 cos 1 coscos sin

sin sin sin
cos

0 0 0 1

x y yx y y

x y xy x x

y x

κ κ s κ κ s κκ κ s κ s κ κ
κκ κ κ

κ κ s κ κ s κκ κ s κ s κ κ
κκ κ κ

s κ κ s κ κ s κ
s κ

κ κ κ

. (5) 

The needle tip frame can then be written as a concatenation 
of all of the arc transformations,  
 ( ) ( ) ( )(0)

1 1 1, , , ,W
m x y xn yn nW l T κ κ s T κ κ s= ⋅⋅⋅ . (6) 

III. INVERSE KINEMATICS 
Solving the inverse kinematics relies on inverting the 
sequence of mappings described by Figure 2. While the first 
mapping between tube parameters and input curves is 
nonlinear, it can always be explicitly inverted. The second 
mapping from tube input curves to needle arcs is linear, but 
is not square since the number of needle arcs can exceed the 
number of input curves. Furthermore, the tube input curves 
are constrained by the curvatures and stiffnesses of the 
individual tubes. It is therefore advantageous to employ a 
generalized inverse Jacobian method to invert the second 
and third mappings since tube property constraints can be 
enforced via projection on the self motion manifold. 

A. Inverting the Tube Parameters to Input Curves Map 
The inverse can be performed explicitly for individual tubes 
and balanced stiffness pairs. Each is treated below. 

1) Individual Tubes:  The inverse is trivially obtained 
from (3) to be 
 ( )ˆ ˆatan2 ,i xi yiθ κ κ= − . (7) 

2) Balanced Stiffness Tube Pair: The resulting 
curvature of the tube pair is in a direction obtained by 
rotating the y-axis of (0)W  by an angle iα  about the z-axis. 
This angle is defined as 
 ( )ˆ ˆatan2 ,i xi yiα κ κ= − . (8) 

Equation (4) can be inverted to yield two solutions since 
equal clockwise and counterclockwise relative rotations of 
the tube pair produce the same curvature,  

( ) ( ) ( )
( )

( )

2 2 2 2
1 1 2 2 1 21

2
2 1 2 2

2
1 2

ˆ
cos

ˆ2

atan2 1 ,

i i i i i i i
i i

i i i i i

i i

K κ K κ κ K K
θ α

κ κ K K K

θ θ c c

−
⎛ ⎞− + + +⎜ ⎟= ± +
⎜ ⎟+⎝ ⎠

= − ± −

, (9) 

where ( )2 1cos i ic θ θ= −  and is given by 

 
( ) ( ) ( )2 22 2

1 2 1 1 2 2

1 2 1 2

ˆ

2
i i i i i i i

i i i i

κ K K K κ K κ
c

K K κ κ
+ − −

= . (10) 
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B. Jacobian of Input Curve to Needle Arc Mapping 

The m  tube input curves ( )ˆ ˆ( ), ( ),x y i
s s lκ κ  are mapped to the 

n m≥  needle arcs ( ), ,x y j
sκ κ  using the linear map of (1). Its 

derivative is denoted by 2J  which satisfies 

 

( )

( )

( )

( )

1 1

2

ˆ ˆ( ), ( ),, ,

, , ˆ ˆ( ), ( ),

TT
x yx y

T T

x y x yn m

s s ls

J

s s s l

κ κκ κ

κ κ κ κ

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (11) 

C. Jacobian of Needle Arc to Tip Frame Mapping 

Given the transformation for a single arc in (5), the 
instantaneous spatial velocity at the arc tip is given by the 
twist, 

Ts s sV v ω⎡ ⎤= ⎢ ⎥⎣ ⎦  [8]. The matrix form ˆ sV  is given by  

 1ˆ sV TT−= . (12) 
Expressing (12) in vector form defines the spatial Jacobian 

aJ  for a single arc,  

 , ,
Ts

a x yV J sκ κ⎡ ⎤= ⎢ ⎥⎣ ⎦ , (13) 

where the Jacobian is given by 

( )( )
( )( )
( )( ) ( )( )
( ) ( )( )
( )( ) ( )
( )( ) ( )( )

1 1 1

3

32 2

32 2

0 1 cos 0

1 cos 0 0

sin sin

sin sin

sin sin

1 cos 1 cos 0

a
x y

x y

x y x y x

x y y x y

y x

T T TJ T T T
s

s

s

s s s s

s s s s

s s s s

s s

κ κ

κ κ

κ κ

κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ κ κ

κ κ κ κ κ κ κ κ κ κ

κ κ κ κ κ κ

∨∨ ∨
− − −

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎢ ⎥⎟⎜⎟⎜ ⎟⎜⎟⎟ ⎜= ⎜ ⎟⎢ ⎥⎟ ⎜⎟ ⎜ ⎟⎜ ⎜⎟⎟⎜ ⎝ ⎠⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

− −

−

− −
=

+ −

− +

− − −

3
1
κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (14) 

For a needle consisting of n  arcs, the Jacobian of the 
mapping is 
 [ ]3 1 1 2 1,Ad , ,Ada a n anJ J J J−= , (15) 

in which Ad j is the adjoint transformation for arcs 1 j… ,  

 1 1 1

1 1,...
0

j j j
j

j j

R p R
Ad

R

∧⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (16) 

D. Pseudo Inverse Solution 
The Jacobians of mappings #2 and #3 are combined to 

yield the following 

 

( )

( )

1

32

ˆ ˆ( ), ( ),

ˆ ˆ( ), ( ),

T

x y

s

T

x y m

s s l

V J

s s l

κ κ

κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (17) 

in which 32 3 2J J J= . This relation is inverted using the 
generalized inverse, 

 

( )

( )
( )

1

32 32 32

ˆ ˆ( ), ( ),

ˆ ˆ( ), ( ),

T

x y

s

T

x y m

s s l

J V J J I h

s s l

κ κ

κ κ

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ = + − ∇⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (18) 

where ( ) 1

32 32 32 32
T TJ J J J

−+ =  and h—  is the gradient of a 
smooth positive definite function encoding constraints on 
tube input curve curvatures and extension lengths, 
 ( ) ( )( )1

ˆ ˆ ˆ ˆ( ), ( ), , , ( ), ( ),x y x y m
h h s s l s s l…κ κ κ κ= . (19) 

This is illustrated in the example section. 

E. Specifying Spatial Tip Velocity 
To use (18) to compute the tube input curves, and 

subsequently the tube parameters, associated with a desired 
tip coordinate frame as given by (6), an expression for 
spatial velocity, sV , is needed which relates the current and 
desired coordinate frames. For simplicity, the velocity 
profile is taken to be a constant velocity twist corresponding 
to the screw motion between the two frames aT  and bT . 

From [7], the direction of the screw axis, b , is given in 
matrix form by 
 [ ] ( )( ) 1

ab abb R I R I∧ −= − + , (20) 

where abR  is the rotation from the initial frame, aR ,to the 
final frame, bR , given by 
 T

ab b aR R R= . (21) 
The unit magnitude angular velocity from aT  to bT  is then 

 s b bω = , (22) 

and the rotation angle between the frames about sω  is 
 ( )12 tanab bθ −= . (23) 

The translation between the two frames, d , is given by 
 b ad p p= − . (24) 

The vector, d ∗ , the projection of d  onto a plane 
perpendicular to sω , is 
 ( )s sd dω ω∗ = × × . (25) 

Also from [7], a point on the screw axis is given by 

 2

b dq d
b

∗
∗ ∗×= + . (26) 

and the screw pitch is given by  

 ( )( )sgn s

ab

d d
h d d ω

θ

∗
∗

−
= − ⋅ . (27) 

This corresponds to a twist for use in (18) given by 

 
( ) ( )s

s

b b q h b bv
b bω

∗⎡ ⎤− × +⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
 (28) 

which can be numerically integrated from 0t =  to abt θ= . 
When the initial and desired tip frames are related by a pure 
translation, the spatial velocity is given by 

ThA8.2

1890



 
 

 

 
0

s

s

dv
ω

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (29) 

and integration in this case is from 0t =  to 1t = . 

IV. EXAMPLES 
Two examples are presented in this section. The first 

example is of a needle comprised of three tubes arranged as 
a balanced stiffness, dominating stiffness design similar to 
the design of Figure 1. The second example is comprised of 
six tubes arranged as a sequence of three balanced stiffness 
tube pairs.  

A.  Example #1 
The balanced stiffness, dominating stiffness design 

indicates that 2m = . The innermost tube has two sections of 
constant curvature – zero curvature over the proximal 
portion and a finite nonzero curvature, 0ˆ ˆκ κ= , over the 

distal portion of length 21l .  As a result, the needle will 
consist of 3n =  arcs. The mapping between tube input 
curves and needle arcs is given by  

 
( )

( )
1 2 21

2 1 2 21

3 2 1

max 0,

max 0,

s l l

s l l l
s l l

= −

= − −

= −

 (30) 

 
1 1

1
2 1 2

2
3

0
ˆ
ˆ

0 1

c
c c

κ
κ

κ
κ

κ

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (31) 

where ( )1 2
ˆ ˆ ˆ

i ic K K K= + . The Jacobian 2J  is obtained by 

differentiating these expressions resulting in 

 

( )

( )

1

1

2 21

1 2

2 1 2

2 21

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 1

c

c

l

c c

J c c

U l

U l

l

−

=

− −

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (32) 

where U  is the unit step function. The Jacobian 3J  is 
computed using (14) and (15). 

To enforce the tube constraints on curvature, the 
following positive definite function is used for (19). 

 ( ) ( )2 22 2 2 2 2 2
1 1 1,des 2 2 2,actˆ ˆ ˆ ˆ ˆ ˆx y x yh κ κ κ κ κ κ= + − + + − , (33) 

In the first term,  1,desκ̂ is selected as a value of curvature that 
the balanced stiffness pair can achieve for some relative 
rotation angle. In the second term, 2,actκ̂  is the actual value 
of curvature of the distal portion of the inner tube. After 
integrating (18) to the goal configuration, if the curvatures 

have not converged sufficiently to the desired values, sV  is 
set to zero and integration continues until the convergence 
criteria is satisfied. 

Figure 3 depicts the inverse kinematic solutions for the 
example needle tracing a portion of a sphere’s surface. The 
convergence criteria for 2,actκ̂  was 1.005cm−± . The colors 
indicate the three arcs of the needle. The red section 
corresponds to the overlap between the balanced stiffness 
pair and the nonzero curvature portion of the inner tube. 

 B.  Example #2 
This design is comprised of three balanced stiffness 

tube pairs.  The two inner balanced stiffness pairs are 
constructed similarly to the dominating stiffness element in 
the previous example with sections of zero curvature at their 
proximal ends and variable curvature at their distal ends. 
As a result, the needle consists of 5n =  arcs. These arcs can 
be arranged in three different overlap configurations as 
shown in Figure 4 where changes in curvature along a tube 
are indicated by changes in shading. 
 

 
Figure 3 Needle of example 1 tracing the surface of a sphere. 

 
Figure 4 Three possible arrangements of needle arcs for example 2. 
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The needle is in configuration (a) when 3 31 1l l l− > , in 
configuration (b) when 1 3 31 2 21l l l l l> − > − , and  in 
configuration (c) when 2 21 3 31l l l l− > − .  It should be noted 
that configuration (c) is only possible if 31 21l l> . 

The second mapping for each configuration is as follows: 

 

1 1

2 11 2

3 22

4 32 3

5

0 0
ˆ0
ˆ( ) 0 0
ˆ0

0 0 1

a
a a

a b
b b

κ
κ κ
κ κ
κ κ
κ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (34) 

( ) ( )
( )

( )

1 2 21 4 2 1 3 31 1

2 1 2 21 5 3 2

3 3 31 1

max 0, max 0,

max 0,

max 0,

s l l s l l l l l

s l l l s l l

s l l l

= − = − − − −

= − − = −

= − −

 (35) 
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5
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a
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κ
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κ κ
κ κ
κ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (36) 

( )
( )( )

( )( ) ( )

1 2 21

2 3 31 2 21

3 1 3 31 2 21 2 21

4 2 1

5 3 2

max 0,

max 0, max 0,

max 0, max 0, max 0,

s l l

s l l l l

s l l l l l l l

s l l
s l l

= −

= − − −

= − − − − − −

= −
= −

, (37) 
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⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥
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 (38) 

 
( )
( ) ( )

( )

1 3 31 4 2 1

2 2 21 3 31 5 3 2

3 1 2 21

max 0,

max 0, max 0,

max 0,

s l l s l l

s l l l l s l l

s l l l

= − = −

= − − − = −

= − −

, (39) 

where ( )1 2 3
ˆ ˆ ˆ ˆ

i ia K K K K= + +  and ( )2 3
ˆ ˆ ˆ

i ib K K K= + . 

The Jacobian 2J  is straightforward to compute, but is not 
given here due to space limitations. 

The positive definite function used in integrating (18) is 
given by  

 
( )

( ) ( )

3 22 2 2
,des

1
2 2

2 1 1 3 2 2

ˆ ˆ ˆxi yi i
i

h

l l l l

κ κ κ

λ λ

=

= + −

+ − − + − −

∑
, (40) 

where 1λ  and 2λ  are positive constants. The latter terms 
enforce the assumption of telescoping extension, 1 2 3l l l≤ ≤ . 

The figure below shows the results for this needle design 
tracing the same path on the surface of a sphere as in the 
first example. As before, sections of overlapping curvature 
between balanced pairs are shown in red. 

V. CONCLUSION 
Concentric tube needles represent a novel and exciting 
approach to enhancing the steerability of needles for 
percutaneous procedures. This paper presents a 
methodology for efficient computation of the individual tube 
rotations and extensions needed to advance a concentric tube 
needle along a desired insertion path. These techniques can 
be adapted for intervention planning and for closed-loop 
control. 
 

 
Figure 5 Needle of example 2 tracing the surface of a sphere. 
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