
A Force-Feedback Algorithm for
Adaptive Articulated-Body Dynamics Simulation

Sandy Morin and Stephane Redon

i3D - GRAVIR - INRIA

Abstract— This paper introduces a novel algorithm for haptic
interaction with an adaptive simulation of articulated-body
dynamics. Our algorithm has a multi-threaded structure, which
allows us to separate the force feedback computation from the
adaptive dynamics simulation. The algorithm we propose for
force feedback computation has a logarithmic complexity in the
number of degrees of freedom in the articulated body. We have
implemented our approach and tested it on a 3.0GHz dual
processor Xeon PC. The preliminary benchmarks presented
here demonstrate that our multi-threaded approach, as well as
the logarithmic complexity of the force feedback computation,
allow us to interact in a stable way with large articulated bodies
that have complex dynamics (such as articulated-body models of
proteins). Whatever the update rate of the adaptive simulation
loop, the force feedback computation is performed in a few tens
of microseconds.

I. INTRODUCTION

Haptic feedback is widely believed to contribute not only
to the realism of a virtual environment (and the feeling of
presence), but also to improve the ability of a user to interact
and control the environment. As such, haptic feedback is
often desirable in control and simulation applications such
as tele-operation, CAD/CAM, virtual prototyping, simulation
of and interaction with micro- and nano-structures, steered
molecular dynamics simulations, protein design, etc.

Although some well-known basic mechanisms exist to
connect a haptic device to a virtual environment (e.g. virtual
coupling [1]), force-feedback algorithms often have to be
tailored to the objects being haptically rendered (e.g. rigid or
articulated bodies, deformable bodies, fluids, etc.). In partic-
ular, haptics algorithms are often strongly dependent on the
simulation methods being used in the virtual environment.

This paper focuses on haptic display of articulated-body
dynamics. Although several methods have been proposed in
the past (see e.g. [2], [3], [4], [5] for recent overviews),
for example to deal with contacting robots, it seems none
has attempted to provide haptic rendering of very complex
articulated bodies, containing numerous degrees of freedom
(such as articulated-body representation of deformable bod-
ies, cables, proteins, snake robots, etc.).

We believe one reason for this might be that optimal
forward dynamics algorithms are linear in the number of
degrees of freedom in the articulated body. As a result,
these optimal algorithms are bound to be too slow for
sufficiently complex articulated bodies. To overcome this
problem, we have recently introduced an adaptive articulated-
body dynamics algorithm [6], which allows us to arbitrarily

Fig. 1. Haptic interaction with an articulated-body model of the
bacteriorhodopsin membrane protein (857 degrees of freedom). Our
algorithm for haptic display of adaptive articulated-body dynamics allows
a user to interact and feel the dynamics of complex articulated bodies.

impose a precision threshold on the simulation (or, equiva-
lently, impose a limitation on the number of active degrees
of freedom), while letting the adaptive dynamics algorithm
automatically select the most relevant set of active joints (cf
Section II).

This paper proposes a novel force-feedback algorithm
adapted to such an adaptive dynamics framework. Specifi-
cally, our method allows a user to interact with an adaptive
dynamics simulation of a complex articulated body using a
haptic device. We demonstrate that our novel force-feedback
algorithm has a logarithmic complexity in the number of
degrees of freedom in the articulated body, which allows us
to compute the force fed back to the user within a few tens
of microseconds. Thanks to the multi-threaded structure of
our algorithm, we can provide a force feedback to the user
at haptics rates, whatever the update rate of the simulation.

This paper is organized as follows. Section II provides an
introduction to adaptive articulated body dynamics. Section
III gives an overview of our approach. Section IV describes
our novel force-feedback algorithm and Section V presents
two applications to haptic interaction with complex artic-
ulated bodies. Finally, Section VI concludes and proposes
some future research directions.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrA4.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3245

II. ARTICULATED-BODY DYNAMICS

In this section, we provide a brief introduction to
articulated-body dynamics with the divide-and-conquer al-
gorithm (DCA) by Featherstone [7], [8] and the adaptive
dynamics (AD) algorithm by Redon et al. [6], [9].

A. Divide-and-Conquer Algorithm

Featherstone [7], [8] recursively defines an articulated
body by assembling two (rigid or articulated) bodies together.
A complete articulated body is thus represented by a binary
tree: the root node describes the whole articulated body,
while each leaf node is a rigid body with a set of handles, i.e.
locations attached to some rigid bodies. Let C an articulated
body with m handles, Featherstone defines the articulated-
body equation:

a1
a2
...

am

 =

Φ1 Φ12 · · · Φ1m
Φ21 Φ2 · · · Φ2m

...
...

. . .
...

Φm1 Φm2 · · · Φmm

f1
f2
...
fm

+

b1
b2
...

bm

where, ai is the 6× 1 spatial acceleration of handle i, fi is
the 6×1 spatial force applied to handle i, bi is the 6×1 bias
acceleration of handle i, Φi is the 6×6 inverse articulated-
body inertia of handle i, and Φi j is the 6×6 cross-coupling
inverse inertia between handles i and j.

To simplify the notation, we write this equation as follows:

aC = ΦCfC +bC. (1)

Assume an articulated body C is formed by assembling two
articulated bodies A and B. Featherstone [7], [8] shows that,
in the DCA, the bias accelerations (bC) and the inverse
inertia (ΦC) of C can be computed from those of A and
B. Denoting fΦ the function using to compute Φ and fb the
one used to compute b:

ΦC = fΦ(ΦA,ΦB) bC = fb(bA,bB) (2)

These coefficients are thus computed recursively, from the
leaf nodes to the root node (bottom-up pass), starting with
leaf coefficients defined as follow:

Φi = Φi j = I−1 bi = I−1(fk −v× Iv) (3)

where I is the rigid body’s spatial inertia, v is its spatial
velocity, and fk is an acceleration-independent external force
applied on the rigid body.

Conversely, the handle forces fA and fB of A and B, as
well as the joint acceleration q̈C of C, are a function F of
the handles forces fC of C:

(fA, fB, q̈C) = F(fC) (4)

All handles forces and joint accelerations are thus computed
in a top-down pass, from the root node to the leafs, starting
with fC = 0 for the root node. After these two passes,
all joints accelerations and kinematic constraint forces are
known.

Fig. 2. A multi-threaded approach. Our approach decouples the adaptive
dynamics simulation loop from the force-feedback computation. This allows
us to efficiently compute the force applied to the user (within a few tens of
microseconds in our tests) while ensuring that the simulation communicates
the necessary dynamics coefficients to the force-feedback loop as soon as
they become available.

B. Adaptive Dynamics

We have recently proposed an adaptive algorithm for
forward dynamics of articulated bodies [6], [9], which allows
us to rigorously simplify the dynamics of an articulated
body, based on its current state, the applied forces and
motion metrics. The adaptive dynamics algorithm uses a new
representation of an articulated body: hybrid bodies, in which
active joints form only a subtree of the complete assembly
tree. Consequently, any node of the complete tree belongs to
one of two groups:

• rigid nodes: the node is a leaf or all joints in the subtree
are inactive.

• hybrid nodes: the principal joint of the node is active
but some of its descendants are rigid.

The set of active nodes is called the active region, and the
set of rigid nodes is called the rigid region. The dynamics
coefficients of the hybrid nodes are computed using Equation
(2), but those of a rigidified node use “rigid equations”, with
modified functions ˜fΦ and f̃b [6], [9]:

ΦC = ˜fΦ(ΦA,ΦB) bC = f̃b(bA,bB) (5)

Similarly, Equation (4) is used to compute handle forces and
joint accelerations of hybrid nodes, and a “rigid” version is
used to compute handle forces for rigid nodes (not the joint
acceleration, since it is assumed to be zero):

(fA, fB) = F̃(fC) (6)

Periodically, the adaptive dynamics algorithm updates the
active region, in order to accommodate changes in the
articulated-body state, applied forces, or in the number of
degrees of freedom (or precision) allowed by the user. The
active region is determined using motion metrics, whose
coefficients are also updated using sub-linear algorithms. In
particular, Redon et al. [9] use an acceleration metric that
is a weighted sum of the joint accelerations in an articulated
body:

A (C) = ∑ q̈T
i Aiq̈i, (7)

and show that the acceleration metric value of an articulated
body is a quadratic function of the kinematic constraint
forces:

A (C) = (fC)T ΨCfC +(fC)T pC +η
C, (8)

FrA4.2

3246

Fig. 3. Update region in the force-feedback algorithm (cf Section IV).

where the acceleration metric coefficients ΨC, pC and ηC

can be adaptively computed from the bottom up (similar
to the articulated-body coefficients). The acceleration metric
is used to restrict the back-substitution pass to the most
important sub-tree of the assembly tree, based on user-
defined stopping criteria. Please refer to [6], [9] for the
complete description of the algorithm.

III. OVERVIEW

We now describe the overall structure of our algorithm,
and define several concepts used in the presentation of the
force feedback computation (cf Section IV).

A. Multi-threading structure

Similar to our recent work on six degree-of-freedom haptic
rendering of contacting rigid bodies [10], our algorithm is
divided in three main threads which communicate through
shared memory (see Figure 2):

• The simulation loop, which computes the adaptive dy-
namics of the articulated body based.

• The coupling loop, which determines the force applied
back to the user, based on the articulated-body dynamics
and the force applied to it by the user.

• The haptics loop, which manages an impedance-
controlled haptic device, i.e. transmits its current config-
uration and reads the force feedback that will be applied
to the user.

This paper’s contribution is in the force feedback computa-
tion, i.e. the coupling loop. We assume that the force applied
by the user is computed based on the discrepancy between
the current haptic device location, and its ideal representation
on the articulated-body (typically, the point the user selected
on the articulated body). Denoting by xh the current haptic
location, and xs the current ideal location provided by the
simulation loop, the force applied to the articulated body is:

fu = ks(xh−xs), (9)

where ks is a user-defined constant.
This definition can be readily extended to accommodate

six degree-of-freedom haptic devices and apply torques to

articulated bodies. Note that this impedance control scheme
allows the user to move outside the workspace of the
articulated body.

B. Definitions

The force feedback computation method is based on the
adaptive dynamics algorithm. As a result, we are able to
restrict computations of the force to a limited region of
the assembly tree, and design a O(logn) force feedback
algorithm, where n is the number of degrees of freedom in
the articulated body. For reasons that will soon become clear,
we define some regions associated to the different passes as
follows.

Without loss of generality, let C be a rigid body with only
two handles, and let fu be the force applied by the user to C.
The rigid body C corresponds to a leaf node of the assembly
tree (equivalently denoted by C). First, let up-region denote
the union of node C and all its ascendants, and let extended
up-region denote the union of the up-region and all siblings
of the up-region nodes. We know that the principal handle of
a rigid body (i.e. , the handle used to form the parent node)
is precisely in its parent node. However, its other handle has
been used in another assembly operation, which is described
somewhere else in the assembly tree, and corresponds to
another internal node. We call this other internal node, which
refers to this second handle, a joint owner node. In general,
a rigid body with h handles has h joint owners, one of which
is the parent node of the rigid body.

To simplify the description of our algorithm, we define
the coupling region as the union of the up-region, the joint
owner, and the ascendants of the joint owner. Finally, we
define the extended coupling region as the union of the
coupling region and its child nodes (see Figure 3). Note that
the extended up-region is a subset of the extended coupling
region.

IV. FORCE FEEDBACK

A. Force Feedback Equation

The force feedback computation is based on the Feath-
erstone’s spatial equation describing the motion of a rigid

FrA4.2

3247

body. If the only force applied to the currently selected rigid
body was the user force fu, the motion equation would be:

Ia = fu−v× Iv, (10)

where I is the spatial velocity of the rigid body, a is its
spatial acceleration, and v is its spatial velocity.

However, the selected rigid body is subject to other forces:
external forces fext (such as forces applied by other rigid
bodies or other users), and constraint forces fc, imposed by
the kinematics of the articulated body. The complete motion
equation of a rigid body is thus:

Ia = fu + fext + fc−v× Iv, (11)

where fc = ∑ fi is the sum of the handle forces fi.
The force f f eed fed back to the user is defined as the force

responsible for the difference between the two accelerations
in Equations (10) and (11):

f f eed = fext +∑ fi. (12)

To compute the coefficients used in the force feedback
equation, i.e. fext and fi, bottom-up and top-down passes are
executed. However, as in the adaptive dynamics framework,
we just perform those in a subregion, as detailed in the next
two subsections.

B. Bias Accelerations Computation

Again without loss of generality, we assume for simplicity
that the user applied a force to a rigid body with only two
handles. Thus, f f eed = fext + f1 + f2.

As in the adaptive dynamics framework, the bias accel-
erations are recursively computed from the bottom up in a
specific region. The goal of this pass is to update the bias
accelerations used in the computation of the handle forces
f1 and f2.

Bias accelerations take into account external forces and
the applied user force (cf Equation 3), but in a linear way.
Consequently, we can define the bias accelerations as the
sum of two terms: one depending of the external forces
and the coriolis term (bext), and one only depending on the
user force (bu). Moreover, we know that bext is updated in
the simulation loop, so the coupling loop can just retrieve
those coefficients from the simulation loop, where necessary,
through the shared memory.

Furthermore, we have to compute bias accelerations where
the user force has an influence, i.e. in the up-region (where
bu is not 0). The recursive nature of the bias acceleration
update equation (2)) dictates where the bext coefficients must
be retrieved. This results in the following bias acceleration
update algorithm:

• Data retrieval: we retrieve bext from the shared
memory for each node in the extended up-region but
not in the up-region. And, we also read bext and the
inverse inertia Φ of the principal leaf node, where the
user force is applied. Finally, we retrieve the inverse
inertia Φ of each internal up-region node.

• Bias accelerations computation:

– Initialization: for the principal leaf node, we ini-
tialize b with bext , and we add the term associated
to the user force applied : Φfu. For the other leaf
present in the extended up-region, the user force
doesn’t have an influence on the bias acceleration
(i.e. bu = 0), so its bias acceleration is equal to
bext .

– Update step: we compute the bias accelerations in
the extended up-region recursively from the bottom
up to the root node. If a node is in the extended up-
region but not in the up-region, its bias acceleration
is set to bext . The bias acceleration of an internal
up-region node is computed according to the node
state: using Equation (5) if the node is rigid, or
Equation (2) if the node is active.

At the end of the bottom-up pass, all the bias accelerations
which depend on the user force have been updated. Provided
the assembly tree is balanced, this pass has a logarithmic
complexity. We can now perform a (restricted) top-down pass
to compute the handle forces of the selected rigid body.

C. Handle Forces Computation

We now need to compute the handle forces f1 and f2.
Recall that handle forces and joint accelerations are recur-
sively computed from the top down to the leaves of the
assembly tree, using Equation (4) or Equation (6) (cf Section
II). However, because we only need f1 and f2, we only need
to traverse the nodes which are ascendants of the nodes that
own the corresponding handles: the parent of the selected
rigid body, as well as the joint owner. This corresponds to
the coupling region defined above.

Now, because the functions in Equations (4) and (6)
depend on the bias accelerations and inverse inertias of
A and B [7], [6], the coupling loop needs to have these
coefficients at hand in the extended coupling region. Because
of the bottom-up pass described above, these coefficients
have already been retrieved (and potentially updated) in the
extended up-region. Thus, all we have to do is to retrieve
the remaining necessary coefficients from the shared memory
(which have already been computed in the simulation loop
and are constant until the next simulation step), and compute
the handle forces in the coupling region. This results in the
following handle forces computation algorithm:

• Data retrieval: retrieve the coefficients (bias accelera-
tions and inverse inertias) that have not been retrieved or
updated in the bottom-up pass, in the extended coupling
region.

• Handle forces computation: recursively compute, from
the root node to the joint owner(s) (that is, in the
coupling region), the handle forces.

When this algorithm terminates, all the nodes which own
the handles have been reached, and all handle forces of the
selected rigid body have been computed. The force fed back
to the user can then be readily computed using equation (12).
Assuming again the assembly tree is balanced, this second
step also has a logarithmic complexity. This results in an

FrA4.2

3248

Fig. 4. Interactive unfolding of the α-Helix structure of a polyalanine
model (40 degrees of freedom).

extremely efficient coupling loop, able to compute the force
applied to the user in a few tens of microseconds, whatever
the simulation loop update rate (cf Section V).

V. APPLICATIONS

We have implemented the force feedback algorithm in C++
and included it in our adaptive dynamics framework. In this
section, we present some preliminary applications performed
on a 3 GHz bi-processor Xeon PC, using a Phantom Omni
from Sensable as haptics device.

A. Polyalanine model

The first benchmark is a simple polyalanine model with
α-helix structure, represented as an articulated body with
40 degrees of freedom (see Figure 4). Figure 5 reports the
performance of both the coupling loop and the simulation
loop, during a typical interaction session with the adaptive
molecular dynamics simulator (e.g., interactively unfolding
the α-helix, while feeling the resistance due to, for example,
van der Waals forces, see Figure 4). As can be observed, our
force feedback algorithm computes the force applied to the
user in about 50 microseconds on average, while an adaptive

dynamics step is performed in about 10-12 milliseconds (all
degrees of freedom are active). Regions a, b and c correspond
to periods where the user has selected an atom and applied a
force to it. The increase in the simulation loop execution time
corresponds to the preparation of the coefficients transmitted
to the coupling loop through the shared memory.

B. Bacteriorhodopsin model

The second benchmark is an articulated-body model of a
more complex membrane protein: a bacteriorhodopsin (857
degrees of freedom). This model is challenging not only due
to the number of degrees of freedom, but because the native
(folded) structure of the protein is such that many atoms are
close to other atoms. As a result, a large number of internal
forces (electrostatic, van der Waals, and dihedral forces) have
to be updated, even when just a few degrees of freedom
are active. As can be observed from the measured timings,
however (see Figure 5), our decoupled approach allows us
to compute the force applied to the user within a few tens of
microseconds, resulting in a stable interaction with the large
protein. As before, regions d, e and f correspond to periods
where the user has selected an atom and applied a force to
it. Note the decrease in the execution time of the adaptive
dynamics simulation loop between d and e, when the user
reduces the number of active degrees of freedom from 857
to 48.

VI. CONCLUSION AND FUTURE WORK

We have proposed an algorithm for haptic interaction with
an adaptive simulation of articulated-body dynamics1. Our
approach has a multi-threaded structure, which decouples the
adaptive dynamics simulation loop from the computation of
the force applied to the user. Our force feedback computation
method has a logarithmic complexity, which allows us to
update the force applied to the user at very high haptic rates
(always higher than 10KHz in the presented benchmarks),
even when simulating large articulated bodies with complex
dynamics.

We have demonstrated our approach on two articulated-
body models of proteins, a polyalanine with α-helix struc-
ture (40 degrees of freedom), and a bacteriorhodopsin (857
degrees of freedom). In both cases, the user is able to act
on the adaptive molecular dynamics simulation, and feel the
dynamics of the protein model (internal forces, and resulting
local minima). We believe the efficiency of the coupling loop
greatly contributes to the stability of the interaction.

The proposed algorithm, however, is general, and could
probably be used or extended to other domains (such as
CAD/CAM, virtual prototyping, or even modeling). To
supplement the haptic interaction, we would thus like to
introduce (continuous) collision detection and response in
this algorithm, similar to our recent work on six degree-of-
freedom haptic interaction with contacting rigid bodies [10].
Besides, we would like to extend this work to collaborative
(or two-handed) haptic interaction with a complex articulated

1Of course, because our adaptive articulated-body dynamics framework
can be seen as a generalization of Featherstone’s DCA, our force-feedback
algorithm can be used with the DCA.

FrA4.2

3249

Fig. 5. Performance of our approach on articulated-body models of
proteins. Whatever the complexity of the simulated articulated body, our
approach is able to compute the force applied to the user within a few tens
of microseconds (cf Section V).

body. This way, a user could apply several forces on a
single articulated body, and feel the influence of the forces
applied by other users with their own haptic device. Denoting
by n the total number of nodes and n f the number of
bodies where a force is applied, we believe merging coupling
regions to handle multi-point interactions would result in
a O(n f log(n/n f)) complexity (growing to O(n) when n f
grows to n) [6].

Acknowledgments

The authors wish to acknowledge the contribution of
Romain Rossi, Mathieu Isorce, Julien Flocard, Serge Crouzy
and Michel Vivaudou in the design of the Adaptive Molecu-
lar Dynamics library. This work was funded by the AMUSI-
BIO contract (project MDMS NV 2) with the French Na-
tional Agency of Research in the “Masse de données”
program and the PAI STAR project.

REFERENCES

[1] J. E. Colgate, M. C. Stanley, and J. M. Brown, “Issues in the
haptic display of tool use,” In Proceedings of IEEE/RSJ on intelligent
Robotics and Systems, vol 24, No 2, 1995.

[2] O. Khatib, O. Brock, K. Chang, D. Ruspini, L. Sentis, and S. Viji,
“Human-centered robotics and interactive haptic simulation,” Robotics
Research, vol 23, No 2, 2004.

[3] P. Meseure, J. Lenoir, S. Fonteneau, and C. Chaillou, “Generalized
god-objects: a paradigm for interacting with physically-based virtual
worlds,” 2004.

[4] W. Son, K. Kim, B. Jang, and B. Choi, “Interactive dynamic simulation
schemes for articulated bodies through haptic interface,” ETRI Journal,
2003.

[5] S. Kim, X. Zhang, and Y. Kim, “Haptic puppetry for interactive
games,” Lecture Notes in Computer Science, 2006.

[6] S. Redon, N. Gallopo, and M. C. Lin, “Adaptive dynamics of artic-
ulated bodies,” In ACM Transactions on Graphics (SIGGRAPH‘05),
24(3), 2005.

[7] R. Featherstone, “A divide-and-conquer articulated body algorithm for
parallel o(log(n)) calculation of rigid body dynamics. part 1: Basic
algorithm,” International Journal of Robotics Research 18(9):867-875,
1999.

[8] ——, “A divide-and-conquer articulated body algorithm for parallel
o(log(n)) calculation of rigid body dynamics. part 2: Trees, loops, and
accuracy,” International Journal of Robotics Research 18(9):876-892,
1999.

[9] S. Redon and M. C. Lin, “An efficient, error-bounded approximation
algorithm for simulating quasi-statics of complex linkages,” In Pro-
ceedings of ACM Symposium on Solid Modeling and Applications,
2005.

[10] M. Ortega, S. Redon, and S. Coquillart, “A six degree-of-freedom god-
object method for haptic display of rigid bodies,” In Proceedings of
IEEE International Conference on Virtual Reality, 2006.

FrA4.2

3250

