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Abstract— Physicians perform percutaneous therapies in
many diagnostic and therapeutic procedures. Image guidance
promises to improve targeting accuracy and broaden the
scope of needle interventions. In this paper, we consider the
possibility of automating the guidance of a flexible bevel-tip
needle as it is inserted into human tissue. We build upon a
previously proposed nonholonomic kinematic model to develop
a nonlinear observer-based controller. As a first step for control,
we show that flexible needles can be automatically controlled
to remain within a planar slice of tissue as they are inserted
by a physician; our approach keeps the physician in the loop
to control insertion speed. In the proposed controller, the
distance of the needle tip position from the plane of interest is
used as a feedback signal. Numerical simulations demonstrate
the stability and robustness of the controller in the face of
parametric uncertainty. We also present results from pilot
physical experiments with phantom tissue under stereo image
guidance.

I. INTRODUCTION

Many diagnostic and therapeutic procedures require ac-

curate needle targeting. In interventional brachytherapy for

cancer treatment, a physician inserts a long thin needle into

human tissue, guides it to the target where the seeds are to

be placed, and then delivers the treatment. In fine needle

aspiration biopsy and needle core biopsy, needles are used

to access a designated area to remove a small amount of

tissue from a lesion to test whether the tumor is malignant

or benign. These techniques are based on medical images,

relying on online fluoroscopy, ultrasound scanning, or prior

MRI/CT scans of the targeted region. In many cases, a physi-

cian’s performance is limited by the amount of “steering”

she can obtain once the needle is inserted. Studies have

shown that needle divergence from a desired path decreases

effectiveness in both brachytherapy [11] and biopsy [2].

Efforts to overcome this have focused on improving imaging

modalities for building pre- and intraoperative models, better

path planning, and new needle placement devices.

Another approach to improving accuracy, and expanding

the applicability of needle interventions in general, involves

actively steering a needle as it is inserted into tissue. For a

human operator, navigation in 3D under image guidance by

manipulating the needle at the base would require profound

spatial reasoning skills and extensive training even for the

most skilled surgeon.

We propose the use of automatic control to enable real-

time image-based following of pre-planned needle trajec-

tories. Recent studies have presented and experimentally

validated “plant models” for manipulating a needle from
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outside the patient. DiMaio and Salcudean [4] showed that

symmetric tip needles that are stiff relative to the surrounding

tissue can be steered by moving the base of the needle so

as to deflect the tissue as the needle is inserted. They show

that this effect can be modeled as a kinematic control system

with a numerically determined Jacobian matrix that relates

base motions to needle-tip motions. Glozman and Shoham

[9] approximate the tissue using springs to compute local

deformations for planning needle steering. Webster et al.

consider flexible bevel-tip needles that do not significantly

deflect surrounding tissue as they are inserted [13]. They

model such needle insertion as a nonholonomic, kinematic

control system. In both the rigid and flexible cases described

above, the inputs at the base of needle can be treated as

the input to a kinematic control system. While we know of

no prior work on automatic image-guided needle steering

control, path planning and obstacle avoidance have been

investigated for both rigid [3], [5] and flexible needles [1],

[12].

In the current paper, we design and demonstrate a non-

linear image-based observer-controller pair to stabilize a

flexible bevel-tip needle to a desired 2D plane. We base our

plant model on the nonholonomic kinematic model presented

in [13]. We assume that the position of the needle tip can

be measured by an imaging modality such as fluoroscopy or

3D ultrasound. This controller can serve as a low-level con-

troller while implementing the 2D path planning algorithms

developed in [1]. We believe that this step will also help us

gain significant understanding of the control issues in a more

generic path-following case.

II. SYSTEM OVERVIEW AND NEEDLE STEERING MODEL

A flexible bevel-tip needle [7], [8], [13] is one which can

be steered by rotation and insertion at the base of the needle

(outside the patient). The asymmetry of the bevel creates a

moment at the needle tip, deflecting the needle and causing it

to follow a circular arc. As the needle is rotated, the bevel tip

is reoriented in space, so that subsequent insertion follows

an arc in a new plane. Figure 1 shows a fluoroscope image

of a needle being inserted into bovine muscle. It is clear that

the flexible bevel-tip needle curves when inserted into tissue.

We have implemented a setup similar to that described in

[13] which enables image-guided needle placement experi-

ments (see Figure 2). We use transparent gels made from

mixtures of PVC plastics, which have similar mechanical

properties to human tissue. The insertion device has the

ability to push the needle forward and to rotate the needle

about its shaft and we treat the insertion and rotation speeds
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Fig. 1. This fluoroscope image demonstrates that a 0.6 mm diameter bevel
tip nitinol needle can steer through bovine muscle [13].

Fig. 2. The needle steering device inserts the needle into phantom tissue
while the needle tip position is tracked using two overhead cameras.

as two inputs to a control system. Two overhead cameras

track the needle as it is inserted through the gel.

As the needle is pushed through tissue, there is a small

amount of tissue deformation and the needle must be steered

to avoid bones and other sensitive organs through which

it cannot or should not pass. Researchers have developed

simulation-based path planning algorithms that compute an

optimal path in the tissue while compensating for tissue

deformations and avoiding obstacles. Alterovitz et al. cur-

rently have planning algorithms to generate desired needle

trajectories within a 2D plane [1]. The output of these 2D

planners is a path that can be followed by alternating between

forward insertion of the needle in to the tissue without any

rotation and a 180◦ rotation of the needle base without

any insertion. This planner assumes that during the whole

process, the needle stays in a known (nominal) 2D plane.

However, our numerical tests (see Section V) indicate that

small errors of only a few degrees in needle tip orientation

cause the needle to deviate rapidly from the nominal 2D

plane.

Planned trajectories have to be followed despite real world

uncertainties such as noisy sensors, imperfect actuators, and

small tissue deformations. In this current work we study

the possibility of controlling the needle to stay in a desired
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Fig. 3. Kinematic bicycle model: Frame A is the inertial world reference
frame. Frames B and C are attached to the two wheels of the bicycle. This
figure is reproduced from [13] with permission from the authors.

2D plane. We envision this controller can work in parallel

with the 2D planners previously developed [1]. Whenever

there is a 180◦ rotation, this controller can be employed to

make the needle stay on the nominal plane, thus making

the planning algorithm work. We believe that this work is a

crucial first step in making inroads towards fully automated

needle guidance in human tissue. Our controller will also

allow us to validate the efficacy of the kinematic model

described in [13].

We use the notation and kinematic model developed by

Webster et al. [13] for a bevel tip flexible needle. It is

modeled as a generalization of the nonholonomic bicycle

model, and neglects torsional compliance of the needle

shaft. This model (Figure 3) is reproduced here for reader

convenience.

In the model, ℓ1, ℓ2 determine the location of bicycle

wheels with respect to the needle tip. Parameter φ is the

fixed front wheel angle relative to the rear wheel. Frame A
is the inertial world reference frame and frames B and C are

attached to the two wheels of the bicycle. In homogeneous

coordinates, the rigid body transformation between frames

A and B is given by the rigid body transformation matrix:

g =

[

R p
0T 1

]

∈ SE(3) where R ∈ SO(3) and p ∈ R
3.

Let v,ω ∈ R
3 denote, respectively, the linear and angular

velocities of the needle tip written relative to frame A.

Webster et al. use Lie-group theory to find a “coordinate-

free” differential kinematic model:
[

v

ω

]

= (g−1g)∨ = u1V1 + u2V2, (1)

where ˆ and ∨ are the usual isomorphism between se(3) and

R
6, u1 is the insertion speed, u2 is the rotation speed of

the needle, and the control vector fields are given by V1 =
[0, 0, 1, κ, 0, 0]T (which corresponds to insertion) and V2 =
[0, . . . , 0, 1]T (which corresponds to needle rotation). Here,

κ = tanφ/ℓ1 is the curvature that the needle follows. Note

that insertion, u1, causes the needle to move in the body-

frame z-axis direction, but also to rotate (due to the bevel tip)

about the body-frame x-axis. Rotation of the needle shaft,

u2, causes pure rotation of the needle tip about the z-axis.
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III. PLANT MODEL

We use Z-Y-X fixed angles as generalized coordinates to

parameterize R, the rotation matrix between frames A and

B. Let γ be the roll of the needle, β be the pitch of the

needle out of the plane and α be the yaw of the needle

in the plane. Let the position of the origin of frame B be

p = [x, y, z]T ∈ R
3 relative to the inertial frame A. We

assume that an imaging system measures the location of the

origin of frame B. Note that by driving the origin of frame

B to the y-z plane the needle tip will also be stabilized to

the y-z plane.

Using this notation, q =
[

x, y, z, α, β, γ
]T

∈ U ⊂
R

6 forms a (local) set of generalized coordinates for the

configuration of the needle tip. The coordinates are well

defined on

U =
{

[x, y, z, α, β, γ]T ∈ R
6 : α, γ ∈ R mod2π,

β ∈ (−π/2, π/2)
}

.
(2)

It is easy to show that the body frame velocity may be

expressed as

V = J q̇, where

J =

[

RT 03×3

03×3 A

]

and A =





cos β cos γ sin γ 0
− cos β sin γ cos γ 0

sinβ 0 1



 .

and the kinematic model (1) of the bevel tip flexible needle

reduces to

q̇ = J−1V1u1+J−1V2u2 =

















sinβ 0
− cos β sinα 0
cos α cos β 0
κ cos γ sec β 0

κ sin γ 0
−κ cos γ tanβ 1

















[

u1

u2

]

.

(3)

Due to the introduction of generalized coordinates, there are

singularities at β = ±π/2 that cause detJ = cos β = 0.

To stabilize the needle to the y-z plane, the states y, z,

and α need not be controlled. Also, these states do not

affect the dynamics of the remaining states, x, β, and γ.

Let x = [x1, x2, x3]
T = [x, β, γ]T denote the state vector

of the “reduced” order system. Tracking the needle tip with

an imaging systems typically enable us to measure only the

position of the needle and not its orientation (without per-

forming any differentiation), which in reduced coordinates is

just the distance from the y-z plane, namely x. This system

can be represented in state space form:

ẋ = f(x)u1 + g(x)u2 =





sinx2

κ sinx3

−κ cos x3 tanx2



u1 +





0
0
1



u2

y = h(x) = x1.
(4)

Note that x = 0 corresponds to the desired equilibrium

state of remaining within the y-z plane to which we wish

to stabilize the needle.

We reparameterize the system in terms of insertion dis-

tance, l, enabling the physician to control the insertion speed.

In a slight abuse of notation, we write ẋ where we mean

dx/dl, and interpret the insertion distance as “time” for

convenience of exposition.1 This results in

ẋ =





sinx2

κ sinx3

−κ cos x3 tanx2



 +





0
0
1



u

y = h(x) = x1, where u = u2/u1.

(5)

IV. FEEDBACK CONTROL

Using judiciously chosen generalized coordinates, we re-

duced the plant model to a third order nonlinear system (5).

This system can be feedback linearized (see, e.g. [10]) via a

transformation of state and input coordinates:

z =
[

h, Lfh, L2

fh
]T

=
[

x1, sinx2, κ cos x2 sinx3

]T
(6)

and

v =L3

fh + LgL
2

fhu = −κ2sinx2 + κ cos x2 cos x3u. (7)

The state equations in the feedback linearized form are:

ż = Afz + Bfv =





0 1 0
0 0 1
0 0 0



 z +





0
0
1



 v

y = Cfz =
[

1 0 0
]

z.

(8)

The system (Af , Bf , Cf ) is completely controllable and

observable.

A. Estimator Dynamics and Control

Note that even though the change of coordinates from the

nonlinear system (5) to the feedback linearized system (8)

is highly nonlinear, the first state – and more importantly

the output – is identical for both systems. In other words the

system is completely observable even though only one of the

states (y = z1 = x1) can be measured directly.

Hence, simple control system design techniques from

linear system theory can be used to control this system. A

full state Luenberger observer with the following dynamics

estimates all the states from the output:

˙̂z = Af ẑ + Bfv + L(y − ŷ)

ŷ = Cf ẑ =
[

1 0 0
]

z.
(9)

The control input to the system is then given by full-state

feedback, using the state estimate:

v = −Kẑ. (10)

Because the system is linear and time-invariant, the separa-

bility principle allows us to select the observer gain matrix,

L, and proportional gain matrix, K, independently. Since

estimates of the states are used to calculate the control input,

u, we use high gain observer feedback. Note that it may

be possible to measure the state x2 too if the needle can

be segmented while it is being inserted into the tissue. The

1This is equivalent to setting u1 = 1 in (4).
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“roll” (x3) cannot be measured even in these cases due to

very small size of the bevel-tip. In such cases, we can use

a reduced state Luenberger observer instead of the full state

observer.

Note that one difficulty arises because we must compute

u from (7). However, we do not know x, so we must use

ẑ to compute an estimate of x by plugging ẑ into the

inverse of (6). This implies that the estimator dynamics will

have an input error. In this paper, we assume that the error

computing u is negligible; determining the robustness of our

observer-controller framework given this discrepancy is work

in progress.

B. Stability Analysis

In the present framework, there are singularities at β =
±π/2 due to the introduction of generalized coordinates. In

addition, the nonlinear transformation from x to z also intro-

duces singularities at γ = ±π/2. This limitation seems in-

escapable: global linearization is mathematically impossible

for dynamical systems on the space of rigid transformations.

Fortunately, our feedback linearization scheme works for all

needle positions and orientations except when the needle is

orthogonal to the plane to which we are trying to stabilize.

We believe that this scenario is not of clinical significance;

such large errors in orientation should be addressed at the

level of planning, not with low-level servo control.

That said, it is important for the above described controller

never to take the system – or even the state estimate! – to

these singularities. In this section, we perform Lyapunov

stability analysis to find the region of attraction of the

controller.

Let r ∈ R be a number such that r < 1

2
min(1, 1/κ).

For z ∈ D = {z ∈ R
3 : ‖z‖ ≤ 2r}, the coordinate

transformation mapping x to z is well-defined and invertible.

This implies that β and γ never reach the singularities at

±π/2. By defining e = z− ẑ as the error in estimation, the

closed-loop feedback system is now given by
[

ż

ė

]

=

[

Af − BfK BfK
Af − LCf 0

] [

z

e

]

.

The matrices K and L are chosen to make (Af − BfK)
and (Af − LCf ) Hurwitz (eigenvalues in the open left-

half plane). Hence for every such K and L, there exist

real symmetric positive definite matrices P and R such that

(Af−BfK)T P+P (Af−BfK) = −I and (Af−LCf )T R+
R(Af − LCf ) = −I , respectively. Consider the sets De =
{e ∈ R

3 : ‖e‖ ≤ r} and Dz = {z ∈ R
3 : ‖z‖ ≤ r}. We

define a positive definite function V : Dz × De → R as:

V (z, e) = azT Pz + beT Re where a, b ∈ R, a, b > 0.

Taking the time derivative of the function V , we obtain

V̇ (z, e) = −azT z − beT e + 2azT PBfKe

= −a ‖z − PBfKe‖
2
− b ‖e‖

2

+ aeT (KT BT
f P 2BfK)e

Note that Q = KT BT
f P 2BfK is a real symmetric positive

semi-definite matrix. Hence we can always choose a, b ∈ R

and a, b > 0 with b > aλmax(Q). With this choice of a and

b, we observe that V is a Lyapunov function for the complete

closed-loop feedback system.

Our goal is to ensure that neither the states, nor their

estimates, encounter the singularities introduced by feedback

linearization. Note that

V ≥ λmin(P ) ‖z‖
2

+ λmin(R) ‖e‖
2
≥ d ‖z‖

2
+ d ‖e‖

2
,

where d = min(λmin(P ), λmin(R)). If c > 0 ∈ R is chosen

such that c ≤ dr2, then for all (z, e) ∈ S = {(z, e) ∈
Dz × De : V (z, e) ≤ c}, z, ẑ belongs to the set D. If the

initial deviation of the system from the desired plane is such

that the initial states are in S, then the proposed controller

will stabilize the needle to the desired plane without reaching

any singularities.

V. EXPERIMENTAL VALIDATION

A. Numerical Simulations

Extensive simulations were conducted in MATLAB to test

our proposed controller. We used a discrete-time implemen-

tation of the system and the controller-observer pair, to reflect

a real-world implementation as closely as possible. The plant

model was discretized assuming constant insertion of the

needle into the tissue between samples. We assumed mea-

surement noise of up to ±1 mm with a uniform distribution.

This seems clinically reasonable given that 3D ultrasound

imaging can be accurate to within 0.8 mm [6]. The parameter

value for the model has been taken to be 1/κ = 9.7 cm,

the smallest radius of curvature value we have achieved in

laboratory trials.

In our simulations, it was observed that if the entry point

is too far away from the desired plane, the estimator states

leave the region of attraction. To avoid such singularities, we

performed estimator saturation, i.e., if the estimator states

left the region of attraction, they were pulled back to the

closest point in region of attraction in the same direction.

For example, if [ẑ1, ẑ2, ẑ3]
T = [0, 1.5, 0]T , then it is pulled

to [ẑ1, ẑ2, ẑ3]
T = [0, 1, 0]T . Since we use a proportional

gain controller in z-space, this pull-back affects only the

magnitude of the input and not the sign of the input.

We tested our controller over a uniform grid (10×10×10)

of 1000 initial conditions of up to ±10 mm error in depth

from the plane, and up to ±15◦ initial error in both “pitch”

and “roll” (x2 and x3). In all cases, we seeded the initial

condition of the observer to ẑ2 = ẑ3 = 0◦, and for the first

state, ẑ1 = z1 + noise of up to 1 mm. Each initial condition

was simulated 10 times with noise, for a total of 10,000

simulations. Each insertion was to a length of 30 cm. We

found that:

• 93% of initial conditions converged to within ±6 mm.

• 75% of initial conditions converged to within ±3 mm.

• even when the states did not converge within the ±6 mm

tolerance, they did not “blow up” (i.e. the states did not

diverge to infinity).

Next, we tested our controller with initial conditions of

up to ±10 mm error in depth from the plane, and up to
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Fig. 4. Simulation with an initial deviation of β = 5
◦ and γ = 10

◦ and
correct depth. In this simulation there is no measurement noise. With no
control, even when the needle starts on the desired plane, small deviations
in the “pitch” and “roll” cause the needle to diverge the needle from the
desired plane. With control, the needle stabilizes to the desired plane.

±10◦ initial error in both “pitch” and “roll” (x2 and x3) and

insertion length of 30 cm. We found that:

• 99% of initial conditions converged to within ±6 mm.

• 80% of initial conditions converged to within ±3 mm.

• even when the states did not converge within the ±6 mm

tolerance, they did not “blow up”.

Using an initial condition of x0 = [10mm, 3◦, 5◦]T , we

tested the controller using an incorrect value of κ (up to

20% error) and found that the controller always converged.

Thus the system appeared to be insensitive to parametric

uncertainty; an analytic proof of this remains a work in

progress.

B. Characteristic Examples

We show a few characteristic examples to give the reader

a flavour of the controller. In these simulations, the model

parameter was taken as 1/κ = 9.7 cm. In the first example,

initial conditions have the correct depth but non-zero (and

unknown) pitch and roll. Such initial conditions are typical

in physical experiments for testing 2D path planners. An

example simulation with no noise measurement is shown in

Figure 4. In the next few examples, we navigate the needle

to a desired plane in the tissue far away from its initial entry

point (Figures 5, 6, 7). In these plots, the x-axis is the length

of needle inserted into the tissue and the y-axis is the depth

(distance) of the needle tip away from the y−z plane. Recall

that, at the goal depth is zero. In all these examples, we can

observe that the controller stabilizes the needle tip to the

desired plane, while without any control, the needle tip never

converges to the desired plane.

C. Exploratory Laboratory Experiments

Preliminary experiments were also conducted on the nee-

dle steering device described in Section II. In this apparatus,

two stereo cameras track the three-dimensional position of
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Fig. 5. Simulation with initial deviation of x1 = 10mm, β = 5
◦ and

γ = 10
◦. In this simulation there is no measurement noise. With no control,

the needle very does not converge to the desired plane. With control, the
needle stabilizes to the desired plane.
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Fig. 6. With measurement noise: Simulation with insertion speed of
0.5cm/s and a deviation of x1 = 10mm, β = 3

◦ and γ = 5
◦. Noise in

the depth measurement is within ±1mm.

a needle tip. The gel used in the experiments is about

35mm thick, so that it is sufficiently transparent for tracking

purposes. This phantom tissue has a refractive index of

about 1.3. Refraction is accounted for in our calculations

by assuming that tissue’s top surface is horizontal. Due

to this assumption, we notice an error of about 4 mm

in position estimates, much higher than one expects from

fluoroscopy and ultrasound (0.8 mm). The needle used for

the experiments had a radius of curvature of 9.7 cm when

inserted into the tissue. Figure 8 shows our two best trials

to date obtained in laboratory experiments.

Since measurement noise was very high in our present

experimental setup, we noticed that our region of attraction

was very small despite carefully tuned controller gains. We

believe that with ultrasound or fluoroscopy the controller will
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Fig. 8. Experimental runs with needle inserted at the right depth: We
cannot accurately determine the initial values of other two states- x2 and
x3 during the initial insertion. With the controller the distance of the needle
tip from the desired 2D plane is within the measurement noise levels.

work much better, as can be seen in the simulations. We are

currently working to enhance the visual tracking setup to

enable measurements with lower noise.

VI. DISCUSSION AND FUTURE WORK

We present a nonlinear observer-controller pair that sta-

bilizes a flexible bevel-tip needle to a desired 2D plane.

By reparameterizing the kinematic models as functions of

arc length, rather than time, we allow for human control

of insertion speed, and our controller rotates the needle

accordingly. This paradigm will enhance safety by keeping

the surgeon in the loop in a manner that enables him or her

to regulate the insertion speed while monitoring the progress

of corrective steering actions.

Our next step is to evaluate the performance of this con-

troller by conducting tests on a variety of tissues (phantom,

ex vivo, and animal cadaver) using ultrasound or fluoro

imaging systems. Due to tissue inhomogeneity, implementing

control on real tissue might benefit from an adaptive version

of our controller that would “learn” the model parameters

while stabilizing the needle to a 2D plane. Our ultimate goal

is to incorporate automatic needle steering with pre- and

intra-operative planning to greatly enhance the effectiveness

of percutaneous therapies.
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