
 
 

 
Abstract – Many successful indoor mapping techniques 

employ frame-to-frame matching of laser scans to produce 
detailed local maps, as well as closing large loops.  In this 
paper, we propose a framework for applying the same 
techniques to visual imagery, matching visual frames with 
large numbers of point features.  The relationship between 
frames is kept as a nonlinear measurement, and can be used 
to solve large loop closures quickly.  Both monocular 
(bearing-only) and binocular vision can be used to generate 
matches. Other advantages of our system are that no special 
landmark initialization is required, and large loops can be 
solved very quickly. 1 

I. INTRODUCTION 
Visual motion registration is a key technology for many 

applications, since the sensors are inexpensive and 
provide high information bandwidth.  In particular, we are 
interested in using it to construct maps and maintain 
precise position estimates for a mobile robot platform 
indoors and outdoors, in extended environments over 
loops of > 100m, and in the absence of global signals such 
as GPS – this is a classic SLAM (simultaneous 
localization and mapping) problem.  

In a typical application, we gather images at frame 
rates, and extract hundreds of features in each frame for 
estimating frame to frame motion.  Over the course of 100 
m, moving at 1 m/sec, we can have a thousand images and 
half a million features.  The best estimate of the frame 
poses and feature positions is then a large nonlinear 
optimization problem.  In previous research using laser 
rangefinders, one approach to this problem was to perform 
frame-to-frame matching of the laser scans, and keep only 
the constraints among the frames, rather than attempting 
to directly estimate the position of each scan reading 
(feature).  This technique is used in the most successful 
methods for large-scale LRF map-making, FastSLAM 
[11][17] and Consistent Pose Estimation [8][12][15][16].  
Using matching instead of feature estimation reduces the 
size of the nonlinear system by a large factor, since the 
features no longer enter into it. 

In this paper, we present a frame-to-frame method for 
constructing maps from visual data.  The main purpose of 
the paper is  
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• To show that precise realtime estimation of pose is 
possible, even in difficult outdoor environments, by 
visually matching frames that are spatially close 
(and not just temporally close, as in visual 
odometry). 

• To show that a nonlinear frame-frame system is 
capable of quickly solving large-scale loop closure 
from visual information. 

Precise estimation of frame pose is important in 
constructing good maps.  In visual odometry, the pose is 
estimated by matching image features across several 
consecutive frames [1][18][19].  Current techniques 
achieve very precise results, but pose errors grow 
unbounded with time, even when the camera stays in the 
same area, because there is no matching of frames that are 
close in space, but not time.  In contrast, the frame-frame 
matching techniques for LRF maps look for matches 
between frames that are spatially close, and obtain very 
precise floorplan results (see Figure 1).  In a similar 
manner, our system computes the structure of spatially-
coherent frame-frame visual constraints, and optimizes 
incrementally for realtime performance. 

Recent research in vision-based SLAM has 
concentrated on solving the pose estimation problem for 
small areas by keeping track of feature positions.  
Davison’s innovative technique [2] used a combined EKF 
over a small set of features.  More recently, several 
approaches use a large number of features, each with its 
own independent EKF [4][23][21][22].  These methods 

 
Figure 1  Frames linked by matching laser scans.  Red arrows 

are frames, lines are links.  Whenever there is a significant 
overlap of scans, a link is inserted, e.g., when the LRF sees 
through a doorway into the hall from separate rooms. 
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rely on novel techniques for matching against a large 
database of features to achieve realtime performance.  In 
both cases, the pose estimation accuracy suffers because 
of mismatches and imprecision in feature localization.  
We are investigating the relative performance of these 
techniques in small areas against our frame-frame 
matching, but do not yet have results to report here. 

One advantage of the frame system is that no special 
initialization is required for landmarks, even in the 
monocular case, since we do not track the 3D position of 
landmarks.  Instead, we use standard techniques in 
structure from motion to match image features and solve a 
projective system for the optimum local registration of 
frames and features [19][10][25].  Our novel technique is 
to derive a synthetic nonlinear measurement among frames 
alone that summarizes the registration.  One obstacle to 
frame-frame constraints in the monocular case is that they 
are only partially constrained (up to scale) – current laser 
scan systems, for example, cannot handle this case [13].  
Our technique is more general, and can handle projective 
or even less-constrained cases. 

 The frame-frame constraints are linked into a nonlinear 
system that mimics the much larger frame+landmark 
system.  One of the weaknesses of current visual SLAM 
techniques with large numbers of landmarks is closing 
larger loops.  In the course of a 100 m loop, there can be 
significant drift even with good frame-frame matching – 
in typical outdoor terrain our system has 2-4% error.  
After finding a loop-closing match, the frames in the loop 
can experience significant dislocation from their initial 
values.  Our system computes the optimal nonlinear 
solution to the frame poses, in a fraction of a second, for 
large frame sets (> 1K frames).   

Similar work in large-scale loop closure has recently 
emerged in undersea mapping using cameras [20][24] 
[26], although not in a realtime context.  This research 
also uses frame-frame matching of images that are 
spatially close, but then filters the frame constraint system 
using a sparse information filter.  In contrast, we construct 
an approximate nonlinear system, which can better 
conform to loop-closing constraints.  

II. VISUAL MATCHING AND NONLINEAR SYSTEMS 
Our approach derives from structure from motion 

theory of computer vision, in particular Sparse Bundle 
Adjustment (SBA).  Of necessity we will present a short 
overview to introduce notation, and then apply it to frame-
frame matching and the construction of the frame 
constraint system.  Readers are urged to consult the 
excellent review in [25] for more detailed information.   

A.  Sparse Bundle Adjustment 
We wish to estimate the optimal values of a set of 

parameters x, given a set of measurements z .  A 
measurement function )(xz  describes the expected 
measurement from a given configuration of parameters x.  
The error or cost induced by a given parameter set is  

(1) )(xzz −=ε  . 
If there are a set of independent measurements zi, each a 
Gaussian with covariance 1−

iW , then the MLE estimate x̂  
minimizes the cost sum 

(2) ∑=
i

ii
T

i WE εε . 

Since (2) is nonlinear, solving it involves reduction to a 
linear problem in the vicinity of an initial solution.  At a 
value x, f can be approximated as 

(3) xxxxxx δδδδ Hgff TT
2
1)()( ++≈+  , 

where g is the gradient and H is the Hessian of f with 
respect to x.  The minimum of f is found by equating the 
derivative to zero.  A further approximation gets rid of the 
second-derivative Hessian terms in favor of the Jacobian 

xz ∂∂≡J  (the Gauss-Newton normal equations): 

 (4) 0εδ WJWJJ TT −=x  , 
with W the block-diagonal matrix formed from all the 
individual Wi.  In the nonlinear case, one starts with an 
estimate x0, and iterates the linear solution until 
convergence to an estimate x̂ .  The Hessian has been 
approximated by 

(5) WJJH T≈ . 

It should be noted that Ĥ  is also the inverse of the 
covariance of x̂ , that is, the information matrix. 

The general linear system (4) can be solved using a 
variety of methods, paying attention to step size to insure 
that there is a reduction in the total cost.  In the application 
of (4) to camera frames and point features, SBA takes 
advantage of the sparse structure of H to derive an 
efficient decomposition.  Consider a set of camera frames 
p and features q.  The measurement functions ),( jiij qpz  

are the projection of features qj onto the frames pi.  Since 
only a small, bounded number of all features are seen by 
any camera frame, the pattern of the Jacobian xz ∂∂  is 
very sparse (the primary structure).  If we reconstruct (4) 
by ordering the frames first and the features second, we 
get the following block structure: 
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where Hpp and Hqq are block-diagonal.  Figure 2 shows a 
small example of three frames and two features. 
 Since the number of features is normally much larger 
than the number of frames, (6) would be easier to solve if 
it consisted just of the Hpp section.  In fact, it is possible to 
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reduce (6) to the form 
 (7) gH pp −=pδ , 

where  

 (8) 
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After solving the reduced system (7) for the p’s, the 
results can be back-propagated to find the q’s, and the 
process iterated.  Note that ppH  is the inverse covariance 

of the frame pose estimate. 
 It is important that in our application, the Hessian of the 
reduced system remains sparse as the number of frames 
grows (Figure 2, bottom).  This is because each feature is 
seen by only a small, bounded number of frames, and so 
the number of elements of ppH  grows only linearly with 

the number of frames. 
 Another characteristic of the system (7) is that the 
choice of origin is arbitrary.  All of the measurements are 
relative to a frame, and are preserved under arbitrary rigid 
transformations.  So we can take any solution of (7) and 
transform it to a particular coordinate system, or 
equivalently, fix the pose of one of the frames.  In fixing 
the pose, we eliminate the frame parameters, but keep it in 
the measurement equation as a fixed value for projection 
errors. 

B.  Frame-Frame Matching 
So far, the development has been a standard exposition 

of SBA.  We will use (8) to calculate an incremental 
bundle adjustment [5] when adding a new camera frame to 
the system.  For a large system, however, full SBA 

becomes computationally expensive, and more 
importantly, unstable when closing loops with significant 
offset.  By using the idea of frame-frame matching from 
the LRF SLAM literature, we can convert a large 
nonlinear system of frame and feature measurements into 
a simpler (still nonlinear) system of frame-frame 
constraints.  This conversion is only approximate, but we 
will show in a series of experiments that it produces good 
results. 

Consider a simple system consisting of two frames p0 
and p1, along with a large set of features q that are visible 
in both frames.  Fix p0 to be the origin, and calculate the 
estimated value 1p̂  and its inverse covariance 11H

)
 (from  

(8)) using SBA.  These two values summarize the 
complicated nonlinear relationship between p0 and p1 
(constructed from the feature measurements) as a 
Gaussian PDF.  This is exactly the PDF we would get 
from the measurement and its associated function 

(9)  
1

11

ˆ
)(

pz
ppz

=
=

, 

with inverse covariance 11H
)

 (see Appendix I).  Here the 
measurement itself is 1p̂ , the estimated position of 1p .  
So we have compressed the effect of all variables q and 
their projections z  into a simple synthetic linear 
measurement on 1p . 
 Unfortunately (9) only holds when 0p  is the origin.  
What we would like is a measurement function that 
characterizes the relationship of 0p  and 1p  no matter 
where 0p  is located.  The easiest way to do this is to 
measure the position of 1p  in the frame 0p .  Changing 
from the global frame to 0p ’s frame is accomplished by a 
homogenous transformation (see [3]); the value of 1p  in 

0p ’s frame is denoted 1
0 p .  Now the measurement and 

its function are  

(10)  
1

0
1

0
10

ˆ
),(
pz

pppz
=

= , 

again with inverse covariance 11H
)

.  This measurement 
function is no longer linear in the frame variables, but it is 
easy to see that when 0p  is the origin, it reduces to (9).   
More importantly, (10) produces exactly the same PDF for 

1p  as does SBA, when both use the same (arbitrary) fixed 
value for 0p  (see Appendix I for a proof). 
 It is worth emphasizing the import of going from the 
large set of projective measurements ),( jiij qpz  to the 

single measurement 1
0

10 ),( pppz = .   

 
 

 
 
 
 
 
Figure 2  Top left: Three frames (arrows) and three features 

(dots).  The dotted lines indicate that a feature is viewed from a 
frame.  The Hessian is on the right, with the nonzero elements 
marked.  Bottom left: reduced Hessian Hpp, showing banded 
structure. 
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• The nonlinear system is reduced from several hundred 
variables (the features plus frames) to two variables 
(the frames).   

• The nonlinear nature of the system is preserved, so that 
it is invariant to the absolute orientation and position of 

0p  and 1p .  This is in contrast to working with a 
reduced linear system (as in [20]), where re-
linearization to correct bad initial angles is not possible. 

• The measurement function (10) is a good 
approximation of the original system, as long as 1

0 p  is 

close to 1
0 p̂ . 

•  The measurement function (10) can be over-
parameterized – the obvious case is for a monocular 
camera, in which the relation between 0p  and 1p  can 
be determined only up to a scale factor.  The inverse 
covariance 11H

)
 has a null space and is not invertible, 

but is still useable in finding an ML estimate.  This 
property is a great benefit, since we don’t have to 
worry about finding a minimal representation, and can 
use frame-frame measurements even when they are 
only partially constrained, e.g, in the monocular case. 

There is nothing that restricts frame-frame matching to 
working with just two frames – the reduction to pose 
differences works with any number of frames that have 
features in common.  One frame must be chosen as the 
origin (say 0p ); the general form is 

(11)  
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with inverse covariance ppH

)
.  If all frames have at least 

one feature in common, then ppH
)

 has no nonzero 

elements, and the frames are fully connected. 

III. IMPLEMENTATION 
The goal of this research is to implement a system that 
builds a map in realtime from visual information.  The 
map system has the following elements:  

1. Map state is the estimated pose p̂  of a set of frames 
that are extracted during camera motion.   

2. Frame measurements are a set of measurements of 
the form (10) or (11).   

3. Image features are point features extracted at each 
frame, associated with the frame.  Image features do not 
enter into the map structure, and are kept only to 
perform image-to-image matching. 

When a new frame is acquired, the system augments the 
map state p̂ , and computes new frame measurements 
based on visual matching with other frames that are near 
in time and space.  Then, a portion of the system is 
optimized using a subset of the frames and measurements.  
Where only local matches are made, a local area is 
optimized; for larger loops, the whole system may be 
involved.  The optimization then updates the estimated 
pose p̂ . 

A. Visual Matching 
The system expects calibrated cameras, and can use 

either monocular or binocular matching.  For the binocular 
case, we match two frames; for monocular, three frames 
are used to preserve the relative scale.  In either case, we 
use simple Harris points, and find putative matches by 
normalized cross-correlation of a small patch around the 
point.  A robust RANSAC method [6] is used to find a 
good motion hypothesis.  In the binocular case [18][1], 
three matched points are triangulated and then an absolute 
orientation step is used to estimate the 3D motion.  The 
estimate is scored by projecting all features back onto the 
images and counting the number of inliers. 

For monocular motion, the 5-point method of [18] is 
used to hypothesize an essential matrix for the first and 
third frames, and the second frame is estimated from a 
three-point resection [9].  Again projection is used to find 
the maximum number of inliers. 

For the best hypothesis, the SBA method of Section 
II.A optimizes the whole system, and at the same time 
computes the Hessian for the frame-frame constraint (10) 
or (11).  Note that in the monocular case, the Hessian has 
a null space of dimension one, since the overall scale is 
indeterminate.  This exactly characterizes the relative 
placement of the three frames, while leaving open the 
scale. 

B. Data Association 
Visual matching takes place independent of the state of 

the map system, producing frame-frame measurements.  
One of the critical system choices is deciding which 
measurements to add when a new frame is added.  For this 
paper we adopted a simple scheme that is efficient and 
produces reasonable results.  First, we add a set of 
measurements that connect to the previous N frames, 
where N is a small number, typically 1 to 5.  Then, we add 
at most one measurement to any close, non-recent frame.  
These additions keep the map estimate consistent locally.  
Finally, we search for longer-range measurements that 
close larger loops, and add one of these if appropriate. 

For short-range motion, spatially nearby frames can be 
identified if they are close in the graph of measurements 
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[8].  For longer-range loops, we are investigating the use 
of more invariant features to reliably identify closure 
hypotheses, e.g., the method of [24]. 

C. Computation 
The more demanding case is binocular, because 

features must be extracted from two images, and matched 
across the images as well as with previous images.  Figure 
3 presents a breakdown of the computation on a 2 GHz 
Core Duo Pentium M, using 512x384 images and 
approximately 500 points in each image.  For each new 
frame, the first three computations must be performed to 
connect to the previous frame.  For more matches to 
previous frames, only the motion estimation step needs to 
be done; for matches to close frames, both feature tracking 
and motion estimation are needed.  The system can 
perform several visual matches within a 15 Hz cycle, with 
visual matching partitioned between the two cores.  
Updating the map system takes very little time compared 
to the matching stage:  Figure 3 also shows some timings 
for medium to large systems.  The system is implemented 
and runs on an outdoor robot that uses stereo to 
autonomously build maps in off-road environments [14]. 

IV. RESULTS 
We performed two sets of experiments, one with 

simulated data where the ground truth is known, and one 
with a dataset from an outdoor robot moving about 100 m 
in  a loop. 

A. Simulated monocular system 
In this experiment we compare the frame-frame system 

to the standard SBA method on a local loop, to test its 
accuracy.  The motion is circular, with the camera looking 
in the direction of motion.  For the frame system, we use 
3-frame constraints to propagate relative scale.  We varied 
the density of constraints for each frame, from 1 to 5.  
Figure 4 shows typical results, with the SBA motion in 
blue, and the frame system in red.  For the frame system, 

the last few frames were matched against the first few to 
create loop constraints.  For SBA, image feature tracks 
average 7 frames, and no loop-closure matching is used.  
Note the accuracy of the frame system, even though it 
uses several orders of magnitude fewer measurements. 

Figure 5 shows statistics for varying amounts of 
Gaussian noise on the image points.  The error is 
measured as the rms distance of poses from their ground-
truth positions, averaged over 20 runs.  Since the scale and 
placement of the result is not constrained, we did a final 
minimization step, using a rigid transformation and scale 
to bring it into correspondence with ground truth. 

The key aspect of Figure 5 is that the reduced system 
results are as good as or better than SBA, especially at 4 
and 5 links.  As the image noise increases, SBA does 
increasingly worse because it is open-ended, while the 
frame system degrades less.  Note that these results are 

Algorithm CPU time 
Feature extraction and stereo matching 25 ms 
Visual matching  24 ms 
Motion estimation (per constraint) 16 ms 

System optimization 
 

              80 frames   30 ms 
             330 frames 100 ms 
             660 frames 220 ms 
           1330 frames 340 ms 
Figure 3  Computation times for the main parts of the 
mapping system.  2 GHz Pentium M, 512x384 images, 
~500 points per image. 

 
Figure 4  Typical circular motion estimate at high noise 

levels, projected onto the XY plane.  Green crosses are the 
ground truth frame positions.  Blue is full SBA, red is the frame 
system with 2 links (3 pixels image error).   

Figure 5 RMS error in pose (mm) for circular motion, for 
different numbers of links and image noise.  Red lines are frame 
system, blue lines are full SBA.  Bottommost red and blue lines 
are for 0.5 pixels image noise, topmost are for 2.5 pixels noise. 
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much more accurate than the reduced system in [7], which 
uses an averaging technique between adjacent frames, and 
neglects longer links.  This experiment validates the use of 
the frame system for high-accuracy motion estimation in a 
local area. 

B. Outdoor stereo system 
We conducted a large outdoor experiment, using a mobile 
robot with a fixed stereo pair, inertial system, and GPS 
(Figure 6).  The FOV of each camera was about 1000, and 
the baseline was 12 cm; the height above ground was 
about 0.5 m, and the cameras pointed forward at a slight 
angle.  This arrangement presents a challenging situation: 
wide FOV and short baseline make distance errors large, 
and a small offset from the ground plane makes it difficult 
to track points over longer distances.  

The test course covered about 110 m, and concluded at 
the spot where it started.  Figure 8 shows the global 
position, as determined by GPS and inertial systems, and 
the poses computed from the frame system – 1172 frames 
with average spacing of just under 0.1 m.  The run started 
from the origin, went across and diagonally down to the 
lower right, then came back below the original track.  The 
frame system did a reasonable job, with an accumulated 
error of about 3 m over the run.  The angle gets off a bit 
on the return trip, and consequently the loop meeting point 
is overrun.  Note that the travel distance was very close – 
110.9 m for GPS, 110.02 for VO. 

To correct the accumulated error, we closed the loop by 
matching the last frame to the first.  Our visual matching 
algorithm was used to find the constraint, since the two 
frames were close.  The visual results now track GPS 
much more closely (Figure 8), and in fact are better than 
GPS right around the origin, where GPS is off by almost 1 
m.  The path length has not changed, but the angular error 
along the path has been corrected and spread evenly, 

based on the loop closure. 
Even more interesting is the data from the Z (earth-

normal) direction, in Figure 7.  The GPS/inertial data 
drifts considerably over the run, ending at almost -7m.  
The frame data (blue) also drifts, but to much less extent, 
ending at -3 m.  Adding loop closure corrects the drift at 
the origin, and pulls up the rest of the path as well. 

Given our timing results, it is possible to perform loop 
closure online.  But we can reduce the computational load 
still further by reducing the number of frame-frame 
constraints.  To do this, we use the same technique as in 
(6)-(8), but add to the features q all the frames between 
two endframes.  The reduced system (7) then contains just 

 
Figure 6  Outdoor robot in typical terrain.  Robot is part of a 

DARPA project, Learning Applied to Ground Robotics.  Two 
stereo systems are on the upper crossbar. 

 
Figure 7  Comparison of Z vs. X motion of GPS (green), 
frame system (blue), and frame system with loop closure 
(red). 

Figure 8  Top: Frame system of an extended outdoor run. 
Global pose from GPS and inertial sensors (green), frame 
system in blue.  Note the overshoot at the end of the loop. 
Bottom: Frame system with loop closure, in red. 
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the two endframes, and we construct a synthetic  
measurement between these two, as in (9).  For this 
experiment, two reductions were chosen, based on 1m and 
4m distance.  Starting with the first frame, we find the 
next frame that is greater than this distance or more than 
10o different in angle.  We then reduce all frames in 
between, add the loop closure constraint, and solve the 
system.  The reduction leads to systems of 126 and 41 
poses, respectively.  The results are shown in Figure 9.  
The blue crosses, for the 126-frame system, recover 
almost exactly the form of the original frame system.  
Even with a 10-fold reduction in the number of frames, 
from 1172 to 126, the system produces excellent results.  
With only 41 poses, errors start to appear at a small scale, 
although the overall shape still remains very good.  

V. DISCUSSION 
This paper lays the foundation for an online method of 

consistent motion estimation, one that takes into account 
global constraints such as loop closure, while preserving 
the fine structure of motion.  It is based on proven 
methods from the laser scan-matching SLAM literature, 
adapted using structure-from-motion techniques. A careful 
analysis of the structure of measurements in SBA shows 
how to construct new, nonlinear frame-frame constraints 
in a theoretically motivated way. The resultant systems 
can be almost as accurate as the original system, while 
enjoying large speedups in computation.   

One of the nice properties of the frame-frame system is 
that it keeps the set of camera frames, so that 
reconstruction (e.g., dense stereo) can be performed.  This 
is in contrast to EKF methods [1][4][23][21][22], which 
keep only a current estimate of the camera pose.   

While we show that online consistent estimation is 
possible, we have not yet developed a full system that 
exploits it.  Such a system would have a map management 

component, for keeping track of images associated with 
poses, and deciding when to match the current image 
against others for loop closure.  It would also need more 
robust features for wide-baseline matching.  It is our goal 
to construct a complete system that performs online map-
making over large areas, using just visual input.   

Our current system uses the robust VO component to 
keep track of position in varied outdoor terrain, including 
under tree cover where GPS does not work very well.  Our 
system performed the best in a final evaluation of the 
DARPA Learning Applied to Ground Robotics project in 
June of 2006, using VO to keep track of its position over a 
challenging course.  

APPENDIX  I 
Let x0, x1 and q be a set of variables with measurement 
equation ),,( 10 qxxz  and measurement z  and cost 
function 

(I1) ∑ ΔΔ ii
T
i zWz . 

For x0 fixed at the origin, let 11H
)

 be the Hessian of the 
reduced form of I1, according to (8).  We want to show 
that the cost function 

(I2) ∑ ′Δ′Δ zHz T
11

ˆ  

has approximately the same value at the ML estimate *
1x , 

where 1
0

10 ),( xxxz =′  and *
1xz =′ .  To do this, we show 

that the likelihood distributions are approximately the 
same. 
 The cost function (I1) has the joint normal distribution 

 (I3) ⎟
⎠
⎞

⎜
⎝
⎛ ΔΔ−∝ ∑ ii

T
i zWzP

2
1exp)|ˆ( xz . 

We want to find the distribution (and covariance) for the 
variable x1.  With the approximation of f(x+δx) given in 
(3), convert the sum of (I3) into matrix form. 

(I4) 
( ) ( )
( ) ( )

constWJzxHx
JxfWJxf

xfWxf

T

T
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−−−−≈

−−
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where we have used the result of (7) and (8) on the first 
term in the last line.  As *zΔ  vanishes at ** ,qx , the last 
form is quadratic in x, and so is a joint normal distribution 
over x.  From inspection, the covariance is 1

11
−H

)
.  Hence 

the ML distribution is 

(I5) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−−∝ *

11
* ˆ

2
1exp)ˆ|( xxHxxxP

T
z . 

The cost function for this PDF is (I2) for x0 fixed at the 
origin, as required. 
  When x0 is not the origin, the cost function (I1) can be 
converted to an equivalent function by transforming all 

 
Figure 9  Loop-closing with reduced number of poses.  The blue 
crosses are for 1m distance between frames (126 poses), the red 
circles for 4m (41 poses).  Green is global GPS pose. 
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variables to x0’s coordinate system.  The value stays the 
same because the measurements are localized to the 
positions of x0 and x1 – any global measurement, for 
example a GPS reading, would block the equivalence. 
 Thus, for arbitrary x0, (I5) and (I3) are approximately 
equal just when x1 is given in x0’s coordinate system.  This 
is the exact result of the measurement function 

1
0

10 ),( xxxz =′ . 
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