
Semantic Knowledge-Based Execution Monitoring for Mobile Robots

Abdelbaki Bouguerra and Lars Karlsson and Alessandro Saffiotti
AASS Mobile Robotics Lab, Örebro University, SE-70182 Örebro, Sweden.

Email:{aba,lkn,asaffio}@aass.oru.se

Abstract— We describe a novel intelligent execution monitor-
ing approach for mobile robots acting in indoor environments
such as offices and houses. Traditionally, monitoring execution
in mobile robotics amounted to looking for discrepancies
between the model-based predicted state of executing an action
and the real world state as computed from sensing data.
We propose to employ semantic knowledge as a source of
information to monitor execution. The key idea is to compute
implicit expectations, from semantic domain information, that
can be observed at run time by the robot to make sure actions
are executed correctly. We present the semantic knowledge
representation formalism, and how semantic knowledge is used
in monitoring. We also describe experiments run in an indoor
environment using a real mobile robot.

I. INTRODUCTION

Plan-based approaches have been a major trend in devel-
oping mobile robotic architectures capable of accomplishing
complex tasks in non-structured environments. An important
challenge that is faced by such architectures is how to carry
out the execution of their plans so that tasks are achieved
despite the presence of uncertainty and the dynamics of the
real world. It has been recognized since the first days of
autonomous mobile robots [1], that robust action execution
requires monitoring the state of both the world and the robot
to cope with contingencies that might occur at run-time.

Execution monitoring approaches have generally focused
on using the explicit effects of actions to derive expectations
that are compared with what is really produced by the
execution of the action [2], [3]. This supposedly means that
the effects to monitor are directly observable. That is, of
course, not always realistic in a complex environment where
checking expectations is a complex process. Therefore, we
propose to use more advanced forms of reasoning in execu-
tion monitoring, where:

• high-level expectations are inferred from semantic in-
formation.

• these expectations are derived and verified online, for
each step of the plan that is being executed.

By semantic information we mean knowledge about objects,
their classes and how they are related to each other (this
knowledge is sometimes called ”ontological” especially in
the context of web contents). For instance, in an office
environment, an office is a class whose individual instances
(objects) denote rooms that have at least one desk and a

This work has been supported by the Swedish KK foundation and the
Swedish research council.

chair; the entities desks and chairs are themselves defined as
pieces of furniture . . . etc.

We use description logics [4] to encode semantic informa-
tion. The major advantages of using description logics (DLs)
are summarized as follows:

• DLs provide a concise representation of the world, as
they can express general knowledge about classes of
objects. Thus a lot of information can be kept implicit.
For instance, one does not have to state explicitly
that room-5, which is an office, contains a desk. Such
information can be inferred from the general description
of the class ’office’.

• DLs are fairly expressive yet supported by efficient
inference mechanisms, making them practically useful.

As a concrete example of our approach, consider a mobile
robot that is asked to deliver mail to the office of a certain
person. As the robot enters the room asserted to be the
office, it should expect to see at least a desk, a chair, and
possibly a PC. These expectations are derived from the type
of the room the robot is entering. If the robot is entering a
kitchen instead, it should expect to see an oven, a sink,...etc.
Therefore, checking semantic expectations when acting in
indoor environments helps, among other things, to verify that
the robot is in the correct room, and not (1) dislocated or (2)
have an erroneous map.

Semantic information plays an important role in many
application areas, and the semantic web [5] is just one
example. There have also been applications of semantic
information in mobile robotics, mainly for the purpose of
facilitating human robot communication in a spoken lan-
guage [6], classification of map spaces for navigation tasks
[7], and as a means of publishing and sharing knowledge
in multi-robot environments [8]. In fact semantic knowledge
has been proved to be useful in building indoor 3D maps
[9] where semantic information is expressed in terms of
geometric constraints to classify points into floor, ceiling,
or objects classes. However, to our knowledge this paper
represents the first attempt to use semantic knowledge in the
context of execution monitoring.

We should emphasize that our approach is intended as a
complement to other approaches. We believe that execution
monitoring needs to be performed at different levels, from
detection of hardware errors to high-level deliberation. In
this context, semantic knowledge can be one contributor to
a multi-layered and multi-source monitoring process.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB6.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3693

 Location

 Room Corridor

 Bedroom Living-room

 Furniture

 Bed Seat Table

Sofa Chair

Fig. 1. Two taxonomies of some classes of objects in a house environment.
(Left) the different types of locations. (Right) the different types of furniture.
The relationships between the classes of the taxonomies are not shown

The rest of the paper is organized as follows. In section II,
we describe how we encode and reason with semantic knowl-
edge using the LOOM system [10]. In section III, we present
the monitoring framework. Section IV presents a number of
experiments intended to demonstrate the feasibility of the
approach. They address monitoring navigation tasks, where
the robot observes a room in order to determine that it is the
type of room it expects to be in. Finally, before concluding
the paper, we give an overview of related work.

II. SEMANTIC KNOWLEDGE

Semantic knowledge in this paper refers to the meaning of
objects expressed in terms of their properties and relations
to other objects. Objects that share the same properties and
relations are grouped into classes (or concepts). For instance
objects of type room and with at least one bed are instances
of the class bedroom. While rooms with sofas and TV sets
define a class of living-rooms,...etc.

To clarify our concepts, we use short examples of a house
environment domain. The house will contain entities such
as rooms (bathroom, living-room, kitchen,...), and furniture
items (chairs, sofas, beds,...)(see figure 1).

A. Knowledge Representation

We opted for description logics (DL) [4] as a mechanism
for representing the semantic domain information, since they
provide a good trade-off between representation power and
reasoning tractability. In fact one variant of the Semantic
Web ontology language OWL uses descriptions logics as an
inference engine.

1) Description Logics: are decidable fragments of first
order logic intended as knowledge representation and man-
agement formalisms. They are used to represent domain
knowledge of applications through the specification of the
domain concepts and relationships between concepts (also
called terminology). The description of the world consists in
asserting properties and relations between individuals present
in the domain. An important characteristic of DL is their
reasoning capabilities of inferring implicit knowledge from
the explicitly represented knowledge.

In DL formalisms, unary predicates represent concepts
(also called classes) i.e. sets of individuals (also called
objects), and binary predicates express relationships between

individuals. Concept expressions can be built using a small
set of connectives and constraints over the individuals that
are in a relationship with a specific individual. Concepts that
are not defined in terms of other concepts are called atomic
concepts.

2) The LOOM System: In this paper, we use LOOM [10],
a well established knowledge representation and reasoning
system for modeling and managing semantic domain infor-
mation, that uses description logics as its main inference
engine. The choice of LOOM, was suggested by practical
considerations: mainly because it is a well supported open
source project. LOOM provides a definition language to
write definitions of concepts and relations, and an assertion
language to specify constraints on relations and concepts and
to assert facts about individual objects.

Semantic knowledge in LOOM is organized in knowledge
bases that contain definitions of concepts and relations be-
tween concepts. Concepts are used to specify the existence
of classes of objects such as “there is a class of rooms” or
“a bedroom is a room with at least one bed”:

(defconcept Room)

(defconcept Bedroom
:is (:and Room

(:at-least 1 Has-Bed)))

The term Has-Bed in the second definition specifies a
relation between objects of class Bedroom and objects of
class Bed. This relation is defined in LOOM as follows:

(defrelation Has-Bed
:domain Bedroom
:range Bed)

The construct (:at-least 1 Has-Bed) specifies a
constraint over the number of beds that can be in a bedroom.
It is also possible to specify constraints over the types
of objects an object can be in relation with. Note that
(:at-least 1 Has-Bed) defines itself a class denoting
all objects that have at least one bed.

More complex concept expressions are constructed by
combining other concept names using a limited number of
connectives (and, or, not, implies). The semantics
of concept expressions are interpreted in terms of set theory
operations (intersection, union,...) or in terms of equivalent
first-order logic formulas over a non empty set of individuals.

Once the general semantic knowledge is constructed, spe-
cific instances of classes can be asserted to exist in the real
world. For example:

(tell (Bedroom r1)(Has-Bed r1 b1))

Asserts that r1 is an instance of Bedroom and results
in classifying b1 as a bed (because the range of the relation
Has-Bed is of type Bed). The instance r1 is also classified
(deduced) automatically as an instance of the class Room.

Classification is performed based on the definitions of
concepts and relations to create a domain-specific taxonomy
(figure 1 shows a taxonomy of a house domain). The
taxonomy is structured according to the superclass/subclass

FrB6.3

3694

Monitoring

Process

Semantic

Knowledge

Base + Engine

(LOOM)

Vision System

Perception

Module

Assertions/Queries

Images

Answers

Robot

Plans

Fig. 2. The different modules involved in monitoring implicit expectations

relationships that exist between entities. When new instances
of objects are asserted (added to the knowledge base), they
are classified into that taxonomy.

III. MONITORING FRAMEWORK

The general scenario involves a mobile robot acting in an
indoor environment. The robot stores in its knowledge base
(KB) information about its environment in terms of concepts
(or classes of objects), relationships between concepts, as
well as objects (individuals) expressed as instances of con-
cepts. We will use the term semantic information to refer
to such knowledge. The robot is supposed to execute tasks
related to its environment, and to do so it formulates and
executes symbolic plans. For example, if the robot is asked
to clean the living-room, a plan to achieve such a task could
be (goto d1);(enter r1 d1);(clean r1) where
r1 and d1 are symbols denoting the living-room and a door
that leads to it, respectively.

When executing action (enter r1), a standard plan
execution monitor would make sure that the robot is in r1
simply by checking the current location provided by the
robot’s self-localization system. Our semantic-knowledge-
based monitor checks also the implicit effects implied by
being in r1 through the use of semantic knowledge. In par-
ticular, since r1 is an instance of the class Living-room,
the robot looks for indications that it is in a living-room
such as seeing a TV set or a sofa. If, on the other hand, the
robot sees an oven, it should conclude that it is not in the
living-room, since ovens must be in the kitchen. Such kind
of information is derived from the semantics of the different
rooms and objects present in the house.

A. Components

Figure 2 gives an overview of the different modules
involved in monitoring task execution using semantic infor-
mation. The architecture includes a vision system whose task
is to provide a description of the scenes captured by the on-
board camera in terms of percepts and their properties. This
is mainly a description of objects of atomic classes like beds,
sofas, and sinks.

The Perception module, on the other hand, establishes and
maintains the correspondence between the percepts produced
by the vision system and the symbols used by the symbolic

planner and the semantic knowledge base. The robot plans
module keeps track of the current plan and its execution
context, as well as maintains the current expected state,
which among other things includes the current expected
location of the robot.

LOOM is used to store the semantic knowledge about the
domain and object instances. It also processes and answers
queries on its knowledge base. Finally, the monitoring pro-
cess is responsible of making sure that plan actions are exe-
cuted successfully, by comparing the expected consequences
of an action to what has been perceived by the perception
module.

B. The Monitoring Process

Figure 3 outlines the main steps performed by the
semantic-knowledge-based monitoring process to check
whether the execution of an action was successful. We will
use examples of navigation actions to explain the steps of the
process, however, the process is generic and can be adapted
to check the execution of other types of actions.

The process gets as input the name of an individual that
refers to an object of interest. In the case of monitoring a
navigation action, the name of the individual refers to the
expected location of the robot.

The pseudo operations prefixed by “LOOM” involve using
semantic knowledge, whereas those prefixed by “PERCEP-
TION” involve the perception module.

semantic-monitoring(obj)
1. CL←− LOOM:get-class(obj)
2. temp←− PERCEPTION:perceived-object
3. Π←− PERCEPTION:perceived-prop&rel(temp)
4. LOOM:create-instance (temp,Π)
5. if LOOM:is-instance-of(temp, CL) then
6. success
7. else if LOOM:is-not-instance-of(temp, CL) then
8. failure
9. else

10. - check implicit expectations
11. - lack of information
end

Fig. 3. The semantic-knowledge based monitoring process

In step 1, the process queries LOOM about the type of
the object it is dealing with. For instance, if the object
is the expected location r1, LOOM is queried about the
asserted class of r1. Next, a temporary name is created
for the perceived object that is of the same type as the
object of interest obj. Then, the perception module is asked
about the perceived properties and relations (to the other
perceived objects) of the perceived object (step 3). The
information returned by the perception module is used to
create a new instance in the semantic knowledge base (step
4). For instance, if the perception module answers that the
robot is in a room and that one chair ch1 and one bed b1
have been observed in that room, then the monitoring process

FrB6.3

3695

adds those facts to the semantic knowledge base through
LOOM by issuing the following command:

(tell (Room temp)
(Has-Chair temp ch1)
(Has-Bed temp b1))

Where temp is a temporary symbol used to refer to the
current perceived room (where the robot is). LOOM performs
an automatic classification of the newly created instance
based on the properties and relations to the observed objects.

The next step is to check whether the classification is
consistent with the type of the object obj (step 5). For our
example, assuming that r1 is a living-room, this is performed
by sending the following two questions to LOOM:

(ask (Living-room temp))
(ask (:not (Living-room temp)))

LOOM’s answers1 to these two questions are interpreted in
three ways:

1) Consistent Classification: The classification of the
temporary object is the same as the object of interest obj.
This is the result when all the implicit expectations are
verified. Therefore, the monitoring module concludes that
the action has been successfully executed (step 6). For our
example, this happens when the robot has observed objects
that cause the current location temp to be classified as a
living-room (remember that that the robot is expected to be
in room r1 which is asserted to be a living-room).

2) Inconsistent Classification: This is the result when the
classification of the temporary object is proved not to be
of the same type as the object of interest obj. This occurs
when an implicit expectation is violated. For instance, if
the robot observes that it is in a room with a sink, then
LOOM can confirm that the room cannot be a living-room,
since the implicit expectation of living-rooms having zero
sinks is violated. As a result of inconsistent classification, the
monitoring module concludes that the action has failed (step
8). In our example this means that the robot is dislocated.

3) Unknown Outcome: This outcome results when there is
lack of information which makes some constraints (implicit
expectations) not known to hold nor to be violated. The
constraints in question are those that appear in the definition
of the class of the object of interest obj, which the monitoring
process is asking about. In our example, if the constraint
(:at-least 1 Has-Sofa) is not known to be true or
false for the current room, then the room cannot be classified
as a living-room by LOOM. Notice that the reason is that the
robot did not see any sofa so far (lack of information).

In this case, the monitoring module may ask the semantic
knowledge base whether the location is an instance of
another class (that is not a superclass of the expected class)
to check whether the robot is dislocated. If the class of the
location is still not known, using perceptual information, the
monitoring module assumes that the location is correct as

1LOOM’s answer to the first question is either YES or NO, where NO is
interpreted both as FALSE and UNKNOWN. Therefore, the second question
is used

long as no evidence of the contrary is detected. To enforce
its decision each constraint (that is part of the definition of
the class of the expected location) is individually checked
looking for an evidence of being in that location (see the
experiment in section IV-A).

C. Recovery Strategies for Navigation

In this section we give an overview of some possible
recovery strategies for navigation actions. Whenever the
monitoring module finds out that an action has not been
executed successfully, a recovery procedure can be launched
to correct the unexpected situation, either by updating the
location of the robot or by collecting more information about
the location where the robot is.

1) Location Update: This type of recovery is performed
when the monitoring module concludes that the robot is
dislocated (see section III-B.2 above). Consequently, the
location of the robot should be updated to the right one.
However, special care should be taken when performing
location update, because sometimes the new location might
be not unique. For instance, if all what the robot has observed
so far is a sink, and sinks are defined to be either in a kitchen
or a bathroom, then LOOM classifies the current sector as
being a kitchen or a bathroom. Therefore the monitoring
module should take this into consideration when notifying
the localization module. In our experiments, the localization
process creates a probability distribution over the possible
locations to reflect this outcome (see the experiment in
section IV-D).

2) Information Gathering : Information gathering can be
performed to recover from situations where LOOM cannot
determine the class of the location of the robot due to lack
of information (section III-B.3 above). One way to gather
information is to devise an active sensing plan whose aim is
to move and make more observations in the room where the
robot is located so that the implicit expectations not known
to hold can be verified or refuted.

IV. EXPERIMENTS

In order to validate our approach, we implemented the
proposed monitoring framework on a Magellan Pro mobile
robot called Pippi (figure 4) running a fuzzy behavior con-
trol architecture for navigation purposes [11]. The robot is
equipped with 16 sonars, and a color CCD pan-tilt camera
used by the vision system to recognize and classify objects.
In practice, our vision system associates degrees of certainty
to the possible shapes of an object. We let the perception
module select the shape with the highest degree.

Since our main focus is showing the capacity of using
semantic knowledge in monitoring and not on object recog-
nition, we let simple shapes like balls and boxes stand in for
beds, sofas, etc. The experiments reported below have been
performed in a lab environment, placing the simple objects
above to simulate pieces of furniture.

The following listing is a simplified and incomplete snap-
shot of the semantic knowledge base used in the experiments.
The house comprises 5 rooms named r1 to r5. r1 is

FrB6.3

3696

Fig. 4. Our Magellan Pro robot used in the experiments.

asserted to be a living-room, r2 is a kitchen, r3 and r4
are bedrooms, and r5 is a bathroom.

/* Relations */
(defrelation Has-Bed :domain Bedroom :range Bed)
(defrelation Has-Sink :domain (:or Bathroom Kitchen)

:range Sink)
(defrelation Has-Sofa :domain (:and Room (:not bathroom))

:range Sofa)
....

/*Atomic Concepts */
(defconcept Room)
(defconcept Sink)
...

/* Defined Concepts */
(defconcept Location :is-primitive (:one-of Room Corridor)
(defconcept Bed :is-primitive Furniture)

(defconcept Bedroom :is (:and Room (:at-least 1 Has-Bed)))
(defconcept Kitchen :is (:and Room

(:at-least 1 Has-Sink)
(:at-least 1 Has-Oven)))

(defconcept Living-Room :is (:and Room
(:at-least 1 Has-Sofa)
(:at-least 1 Has-TV)))

...

/* Assertions */
(tell (Living-Room r1)) /* r1 is a living-room */
...

A. Successful Execution

The aim of this experiment is to show that the monitoring
process can draw conclusions about the execution of an ac-
tion in cases where not all implicit expectations are verified.

Here, Pippi executed the plan action (enter r1) to
enter room r1. Once Pippi reached its destination location,
the monitor module was called to check that the robot
was inside the living-room using semantic knowledge. The
monitoring module queried the perception module and found
that two objects had been observed: one sofa and one table
identified by the symbols sf1 and tl1) respectively. It tells
LOOM about them:

(tell (Room temp)
(Has-Table temp tl1)
(Has-Sofa temp sf1))

Then it asked LOOM whether temp is an instance of the
class Living-room. LOOM could not determine the class
of temp based solely on those observations. The monitoring
module, subsequently, decided to check if the robot was dis-
located by asking LOOM if temp was an instance of another

class (that is not a super class of Living-room). As the
answer was negative and no evidence of not being in a living-
room was detected, the implicit expectations (constraints)
that could cause temp to be classified as a living-room
were checked. This amounted to asking LOOM whether the
constraints c1 = (at-least 1 has-sofa) and c2 =
(at-least 1 has-TV) were satisfied by the instance
temp. The reply of LOOM was that c1 is verified but c2 is
not known to hold (since there no TV set had been observed
so far).

The monitoring process decided that temp was a living-
room, since there was nothing that conflicted with this
classification. Consequently, the action (enter r1) was
considered to have been executed successfully.

B. Failed Execution
In this experiment semantic knowledge is used to help

the monitoring process to detect that the robot is dislocated.
As in the previous experiment, Pippi was expected to be
in r1 (the living room). But this time it saw a chair and
an oven. The monitoring process asserted these facts and
asked whether the current location was an instance of the
class Living-room. LOOM answered that it did not know,
because the implicit expectations of being in a living-room
were neither verified nor violated. However, the current
location was classified as a kitchen, as the domain of the
relation Has-Oven is the class Kitchen.

As a result, the monitoring process concluded that the
execution of the action (enter r1) had failed as the robot
was in fact in r2, and not in r1. Therefore, the localization
module was asked to correct the location, accordingly, and
a recovery module was called to recover from such a failure
by devising a navigation plan for the robot to navigate from
its current location r2 to the living-room i.e. r1.

C. Uncertainty in Localization
As LOOM does not handle uncertainty, we devised a very

simple ad-hoc procedure to take into account uncertainty in
localization, where uncertainty about the location of the robot
is modeled as a probability distribution over the possible
locations of the robot. For instance, P(loc = r1) =
0.8, P(loc = r2) = 0.2 represents the belief that
the robot is located either in r1 (with 80 % chance) or in r2
(with 20 % chance). In this case the location of the robot
is a multi-hypothesis. Therefore the monitoring process is
applied for each hypothesis individually.

To compute the posterior probability of being in a location
loc, the prior probability of being in loc is scaled in
accordance to the evidence that the current location of the
robot is of the same type as the type of loc.

In this test run the localization module believes that
the robot is either in r1 or r2 i.e. P (loc = r1) =
P (loc = r2) = 1/2. Pippi then observes a sink; as seeing a
sink is an evidence of being either in a kitchen or a bathroom,
and given that the prior probability of being in bathroom is
zero, the monitoring module concluded that the robot was in
fact in the kitchen. Therefore, the posterior probability was
set as P (loc = r1) = 0; P (loc = r2) = 1.

FrB6.3

3697

D. Self-Localization

The aim of this experiment is to show that the robot can
use semantic information to determine in which location(s)
it might be in. In this run, Pippi did not know which room
it was located in, but it saw a bed in front of it. The
Monitoring module told LOOM about this observation and
asked LOOM about the types of the room where Pippi is.
LOOM answered that the room was classified as a bedroom.
Since there are two bedrooms in the house i.e. r3 and r4,
Pippi’s belief about its location was set to being either in r3
or r4 with equal probability i.e. P(robot-in = r3) =
P(robot-in = r4) = 0.5.

V. RELATED WORK

Although there is a considerable amount of work related
to plan execution monitoring in mobile robotics, to the best
of our knowledge, no research work has used semantic
information to monitor plan execution. In the following we
review some of the work done in the area, the reader is
referred to [12] for a recent survey of the topic.

Reactive planning architectures, such as PRS [13] use
hand-coded procedures to monitor the events that might
affect the execution of plan actions. Consequently, expecta-
tions are explicitly coded in the monitoring procedure, which
makes monitoring not flexible. In plan-based mobile-robotic
architectures, such as Shakey [1], the LAAS architecture
[14], and the work in [2], monitoring amounts to looking for
discrepancies between the predicted state based on the ex-
plicit effects of actions, and the real world state as computed
by the on-board sensing modalities. Other works include
monitoring plan invariants [15] i.e environment conditions
that have to be true during the execution of a plan.

The work presented in [7] focuses on connecting spatial
information in maps to semantic information. Navigation
tasks use semantic information to respond to human requests
by inferring which spatial information of the map the robot
should employ to achieve the task. The authors also briefly
illustrate the use of semantic knowledge to detect some
failures in navigation tasks, but they do not explore plan
execution monitoring.

As the experiments presented in this paper concern the
verification of expectations regarding the robot’s location,
one could, therefore think that our approach is related to
the fundamental problem of self-localization. The relation
is only coincidental, due to the use of navigation actions.
Our approach could be used to monitor the execution of
other types of actions (e.g. manipulation, and sensing) whose
effects are not related to location.

VI. CONCLUSIONS

We have presented in this paper an intelligent plan-
execution monitoring approach based on using semantic
domain information to derive expectations that the robot can
use to check the correct execution of its plan actions.

Our work has been implemented and validated using a real
mobile robot. We would like to mention that the proposed

approach is not dependent on any particular assumptions
concerning the robotic architecture.

Finally, we want to emphasize that what is presented here
is a first version of semantic monitoring and there is substan-
tial potential to develop the method further, e.g. by working
with other knowledge representation formalisms (including
probabilistic ones). Unfortunately there is no workable de-
scription logic system which supports probabilistic reasoning
(although some attempts have been made in that direction
[16]). Therefore, we were restricted to encode only certain
knowledge in our semantic knowledge base. Admittedly,
that does limit the potential of the approach somewhat.
But semantic knowledge can still add significant value to
the monitoring process, as it has been demonstrated in this
paper. In fact, we are currently investigating more elaborate
strategies to combine semantic knowledge and uncertainty.

REFERENCES

[1] R. E. Fikes, P. Hart, and N. J. Nilsson, “Learning and executing
generalized robot plans,” Artificial Intelligence, vol. 3, no. 4, pp. 251–
288, 1972.

[2] M. Fichtner, A. Großmann, and M. Thielscher, “Intelligent execution
monitoring in dynamic environments,” in Proc. of the 18th Int. Conf.
on Artificial Intelligence, Workshop on Issues in Designing Physical
Agents for Dynamic Real-Time Environments: World modeling, plan-
ning, learning, and communicating, 2003.

[3] K. Z. Haigh and M. M. Veloso, “High-level planning and low-level
execution: Towards a complete robotic agent,” in Proc. of the 1st Int.
Conf. on Autonomous Agents, 1997, pp. 363–370.

[4] “The description logic handbook: Theory, implementation, and appli-
cations,” in Description Logic Handbook, F. Baader, D. Calvanese,
D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, Eds. Cam-
bridge University Press, 2003.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, May, 2001.

[6] C. Theobalt, J. Bos, T. Chapman, A. Espinosa-Romero, M. Fraser,
G. Hayes, E. Klein, T. Oka, and R. Reeve, “Talking to godot: Dialogue
with a mobile robot,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, 2002, pp. 1338–1343.

[7] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka, J. Fernández-
Madrigal, and J. González, “Multi-hierarchical semantic maps for
mobile robotics,” in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, 2005, pp. 3492–3497.

[8] A. Chella, M. Cossentino, R. Pirrone, and A. Ruisi, “Modeling
ontologies for robotic environments,” in Proc. of the 14th Int. Conf. on
Software Engineering and Knowledge Engineering, 2002, pp. 77–80.

[9] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and
H. Surmann, “3d mapping with semantic knowledge.” in RoboCup
International Symposium, 2005, pp. 335–346.

[10] R. MacGregor, “Retrospective on loom,” Information Sciences Insti-
tute, University of Southern California, Tech. Rep., 1999.

[11] A. Saffiotti, K. Konolige, and E. H. Ruspini, “A multivalued logic
approach to integrating planning and control,” Artif. Intell., vol. 76,
no. 1-2, pp. 481–526, 1995.

[12] O. Pettersson, “Execution monitoring in robotics: A survey.” Robotics
and Autonomous Systems, vol. 53, no. 2, pp. 73–88, 2005.

[13] F. F. Ingrand, M. P. Georgeff, and A. S. Rao, “An architecture for real-
time reasoning and system control,” IEEE Expert: Intelligent Systems
and Their Applications, vol. 7, no. 6, pp. 34–44, 1992.

[14] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An ar-
chitecture for autonomy,” International Journal of Robotics Research,
vol. 17, no. 4, pp. 315–337, 1998.

[15] G. Fraser, G. Steinbauer, and F. Wotawa, “Plan execution in dynamic
environments.” in Proc of the 18th Int. Conf. on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems,
2005, pp. 208–217.

[16] D. Koller, A. Y. Levy, and A. Pfeffer, “P-classic: A tractable probab-
listic description logic,” in Proc. of the AAAI, 1997, pp. 390–397.

FrB6.3

3698

