
 
 

Abstract—Based on its simple structure, base-fixed actuators, 
high payload capacity, high accuracy, and high mechanical 
rigidity, the 3-RRR mechanism is a valuable planar parallel 
manipulator. However, the 3-RRR mechanism is known to have 
singular loci within its workspace affecting its use. In this paper, 
singularity avoidance of the 3-RRR mechanism using kinematic 
redundancy is presented. First, singularity analysis of the 
proposed 3-RPRR mechanism is described and a simple and 
effective redundancy resolution algorithm based on local 
optimization suitable for real-time control is developed. Here, the 
cost function in the optimization is designed to avoid the most 
problematic singularity configurations, where the end-effector 
can be locally moved even though all actuated joints are locked. 
Results from simulation show that the resultant 3-RPRR 
mechanism can be used to avoid singularities associated with the 
3-RRR mechanism, and enlarges the usable workspace. 

I. INTRODUCTION 
T is well known that the 3-RRR mechanism is a practical 

planar parallel manipulator since its structure is simple and 
the actuators are fixed at the base, which reduces the inertia 
of the moving body. Also, as a parallel mechanism, it has 
high payload capacity, high accuracy, and high mechanical 
rigidity. However, the 3-RRR mechanism has a serious 
disadvantage to overcome: singular loci of the mechanism 
exist within its workspace. Obviously, singular 
configurations of a mechanism may result in serious 
problems, and those configurations must be avoided. 

Gosselin and Angeles [1] described a general 
classification of singularities for closed-loop kinematic 
chains, and provided the singularity analysis of the 3-RRR 
mechanism as an example. According to Bonev and 
Gosselin [2], for constant payload orientation, the singularity 
loci of the 3-RRR mechanism within its workspace can be 
represented by curves of degree 42. The most feasible 
methods for dealing with singularity avoidance of the 3-
RRR mechanism are to utilize actuator redundancy [3-13] or 
kinematic redundancy [14-17]. Actuator redundancy means 
that the mobility of a manipulator is less than the number of 
actuated joints. 
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In order to reduce singular configurations, Firmani and 
Podhorodeski [10] used actuator redundancy by replacing 
some passive revolute joints of the 3-RRR mechanism with 
actuated ones. However, actuator redundancy results in 
challenging internal force problems, which means that a 
mechanism cannot be controlled with only position control 
scheme. 

A manipulator has kinematic redundancy when its 
mobility is larger than the number of degrees of freedom 
(DOF) needed to set an arbitrary position and orientation of 
its end-effector. In an attempt to avoid singularities inside 
the 3-RRR mechanism's workspace, this paper proposes 
implementation of kinematic redundancy. Obviously, using 
the introduced extra DOF, the redundant mechanism can 
execute the primary task while concurrently avoiding 
singularities. However, detailed algorithms for kinematic 
redundancy resolution related to the 3-RRR mechanism have 
not been published. In this paper, a new redundant planar 
mechanism is proposed and a kinematic redundancy 
resolution algorithm for the proposed mechanism is 
developed based on local optimization techniques suitable 
for real-time control. 

II. INTRODUCTION OF ADDITIONAL MOBILITY 
TO THE 3-RRR MECHANISM 

Fig. 1 shows the schematic diagram of the proposed 
planar 3-RPRR mechanism, which is the same architecture 
as the 3-RRR mechanism except with added redundant 
active prismatic joints. The mechanism consists of an 
equilateral triangular moving platform 321 BBB , and three 
legs iii BAO  for 3,2,1=i . Each leg is fixed at the base 
(point iO ) by an actuated revolute joint and connected to the 
moving platform at point iB  by a passive revolute joint. 
Point iO  is located on the vertices of an equilateral triangle 

.321 OOO  Link ii AO  consists of two sub-links which are 
connected by an actuated prismatic joint. Links ii AO  and 

ii BA  are connected with a passive revolute joint. A 
Cartesian coordinate system xy  is attached to the base at 
point 1O . It is assumed that the position of point P  (the 
centroid of the moving platform) with respect to the 
reference frame represents the position of the moving 
platform 321 BBB  and the orientation of the moving platform 

is described by the angle α  between 21OO  ( x -axis) and 

21BB . 
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Fig. 1.  Schematic diagram of the 3-RPRR mechanism. 

III. SINGULARITY ANALYSIS OF THE 
3-RPRR MECHANISM 

For singularity analysis of a parallel mechanism, 
assuming that p  is the ( )1×n  task space vector and q  is the 
( )1×m  active joint space vector, the kinematic relationship 
between p  and q  can be described as 

 ( ) 0qpf =, , (1) 

where f  is an n-dimensional function of p and q . 
Differentiating (1) with respect to time gives 

 0qBpA =+ && , (2) 

where pfA ∂∂=  and qfB ∂∂=  are ( )nn×  and ( )mn×  
matrices, respectively. According to singularity analysis for 
a non-redundant parallel mechanism ( )mn =  by Gosselin 
and Angeles [1], there are three types of singularities. The 
first type arises when .0)det( =B  These singularities 
correspond to the mechanism configurations in which the 
end-effector is located on a boundary of the workspace. The 
second type of singularity occurs when .0)det( =A  In the 
case of the 3-RRR mechanism, when the lines aligned with 
link ii BA  for 3,2,1=i  intersect at a single point or are all 
parallel, the second type of singularity occurs. The third type 
of singularity occurs when both A  and B  are singular. It is 
noted that the most problematic singularity is the second 
type of singularity, since at this type of singularity 
configuration located inside of the workspace, the end-
effector can move even though all the actuated joints are 
locked. Thus, this paper focuses on avoidance of only the 
second type of singularity. 

Now, consider the kinematic constraints of the 3-RRR 
mechanism. In Fig. 1, ( )3,2,1and 21 =iii θθ  represent the 
angular positions of links ii AO  and ii BA  with respect to the 
x -axis of the reference frame, respectively. Then, the 
kinematic constraints for the legs can be obtained as follows: 

For leg 1, 

 ( )βαθθ +++= coscoscos 1312121111 lllx , (3) 

 ( )βαθθ +++= sinsinsin 1312121111 llly . (4) 

For leg 2, 

 ( )αβθθ −−++= coscoscos 2322222121 lllLx , (5) 

 ( )αβθθ −++= sinsinsin 2322222121 llly . (6) 

For leg 3, 

 ( )βαθθ 3coscoscos2/ 3332323131 +−++= lllLx , (7) 

 ( )βαθθ 3sinsinsin2/3 3332323131 +−++= lllLy . (8) 

Here, 1il  and 2il  denote the lengths of link ii AO  and ,ii BA  

respectively, while 3il  and L  represent the lengths of PBi  

and 21OO , respectively (both constant). 
For leg 1, to eliminate the terms which include the passive 

joint variable 12θ , (3) and (4) can be rewritten as 

 ( ) 1212131111 coscoscos θβαθ lllx =+−− , (9) 

 ( ) 1212131111 sinsinsin θβαθ llly =+−− . (10) 

Summing the squares of (9) and (10) gives 

( )[ ] ++−− 2
131111 coscos βαθ llx  

                          ( )[ ] 2
12

2
131111 sinsin llly =+−− βαθ . (11) 

A similar derivation for (5) - (8) yields 

( )[ ] +−+−− 2
232121 coscos αβθ llLx  

                          ( )[ ] 2
22

2
232121 sinsin llly =−−− αβθ , (12) 

( )[ ] +++−− 2
333131 3coscos2/ βαθ llLx  

         ( )[ ] 2
32

2
333131 3sinsin2/3 lllLy =++−− βαθ . (13) 

Differentiating (11)-(13) with respect to time, the 
kinematic relationship of (2) between p  and q  is obtained 
with 

 [ ] Tyx α=p , (14) 

 [ ] Tlll 313121211111 θθθ=q , (15) 
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where 

 121213111111 cos)cos(cos θβαθ lllxa =+−−= , (18) 

 121213111112 sin)sin(sin θβαθ lllya =+−−= , (19) 

 [ ])cos()sin( 12111313 βαβα +−+= aala , (20) 

 222223212121 cos)cos(cos θαβθ lllLxa =−+−−= , (21) 

 222223212122 sin)sin(sin θαβθ lllya =−−−= , (22) 

 [ ])cos()sin( 22212323 αβαβ −+−= aala , (23) 

 =++−−= )3cos(cos2/ 33313131 βαθ llLxa  

                                                               3232 cosθl , (24) 

 =++−−= )3sin(sin2/3 33313132 βαθ llLya  

                                                               3232 sinθl , (25) 

 [ ])3cos()3sin( 32313333 βαβα +−+−= aala , (26) 

and for 3,2,1=i  and ( ) ,112 +−= ij  

 ( )1211 sincos iiiiji aab θθ +−= , (27) 

 ( )12111)1( cossin iiiiiji aalb θθ −=+ . (28) 

Similarly to the case for non-redundant parallel 
manipulators, when the determinant of A  in (16) is equal to 
zero, the second type of singularity of the 3-RPRR 
mechanism occurs. 

IV. FORMULATION OF THE 
KINEMATIC REDUNDANCY RESOLUTION ALGORITHM 

For a given position and orientation of the moving 
platform, infinite feasible configurations can be found due to 
the kinematic redundancy of the 3-RPRR mechanism. Here, 
to resolve the redundancy, i.e. to choose one among the set 
of possible mechanism configurations, local optimization 
suitable for real-time control is applied. As described in the 
previous section, the most problematic singularity is the 
second type of singularity, since in these configurations the 
end-effector can be locally moved even though all actuated 
joints are locked. Therefore, the local optimization criterion 
in the proposed algorithm is to avoid .0)det( =A  

Assuming that a desired task space variable vector kp  is 
given at time index k  (for a sampled data system with 
sample period ),T the proposed kinematic redundancy 
resolution algorithm can be summarized as follows. When 
the value of )det(A  at the initial configuration is negative 
(positive), minimizing (maximizing) the cost function 

 )det( kH A= , (29) 

subject to the increment limitation 

 3,2,1,11,1,111,1 =Δ+≤≤Δ− −− illlll ikikiiki , (30) 

where 1ilΔ  is determined based on the feasible maximum 
velocity iv  of the prismatic joints, i.e. .1 Tvl ii =Δ  

As shown in (18)-(26), )det(A  is a function of six active 
joint variables 1il  and 1iθ  for 3,2,1=i . However, 
supposing 1il  is known, 1iθ  can be written as a function of 

1il  as follows. For leg i, from (18) and (19), (21) and (22), or 
(24) and (25), 

 iiiii Cll =+ 2211 coscos θθ , (31) 

 iiiii Dll =+ 2211 sinsin θθ , (32) 

where 

 )cos(131 βα +−= lxC , (33) 

 )sin(131 βα +−= lyD , (34) 

 )cos(232 αβ −+−= lLxC , (35) 

 )sin(232 αβ −−= lyD , (36) 

 )3cos(2/ 333 βα ++−= lLxC , (37) 

 )3sin(2/3 333 βα ++−= lLyD , (38) 

and, obviously, iC  and iD  are constants for a given 
configuration of the mechanism. 

From (31) and (32), 1iθ  can be computed as 

 ( ) ( )iiii ECD 11
1 cos/tan −− +=θ , (39) 

where 
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Here, it is assumed that the 3-RPRR mechanism will operate 
in one working mode or branch, as shown in Fig. 1. 

Thus, the cost function H  for optimization is given by a 
function of 1il ( )3,2,1=i . Fig. 2 provides a flowchart for 
the kinematic redundancy resolution algorithm based on 
local optimization for singularity avoidance. In Fig. 2, δ  
represents an input variable which determines the time to 
start to control the prismatic joints of the 3-RPRR 
mechanism. This value is related to measures of proximity 
of a configuration to a singularity [18]. Since these measures 
are not the subject of this paper, δ  is herein assumed 
constant. 
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Fig. 2.  Flowchart of the proposed kinematic redundancy 
resolution algorithm. 

V. SIMULATION 
In this section, a simulation example is shown to verify 

the proposed algorithm. The same desired trajectory is used 
for comparison of the 3-RPRR mechanism with the 3-RRR 

mechanism. To match one of the 3-RRR mechanisms 
presented in Bonev and Gosselin [2], the geometric 
parameters of the 3-RRR mechanism are assumed as (for 

3,2,1=i ) 

 m513.0,1 321 === iii lll ,  (41) 

and 

 m714.1=L .  (42) 

The geometric parameters of the 3-RPRR mechanism are: 
(for 3,2,1=i ) 

 m513.0,1,5.175.0 321 ==≤≤ iii lll , (43) 

and 

 m714.1=L . (44) 

For the example, the desired trajectory is an arc given by 

 ( ) ( )ms1and3900,2,1rad,/ === TkkTRVk Lθ , (45) 

 mcos2/ kk RRLx θ+−= , (46) 

 msin6/3 kk RLy θ+= , (47) 

where V  denotes the desired speed of the end-effector and 
R  represents the radius of the arc. In this example, V  and 
R  are assumed to be 0.3 m/s and 0.75 m, respectively. Also, 

kα  is fixed at rad.12/π  Fig. 3 shows the desired trajectory 
and the initial configuration for both mechanisms' 
simulation. 

12πα =

 
Fig. 3.  Desired trajectory and initial configuration 

Figs. 4 and 5 show the simulation results of the 3-RRR 
mechanism. In Fig. 4, when t = 1.56 sec, 0)det( =A , i.e. the 

WeD6.3

1198



 
 

configuration of the mechanism is singular. The singular 
configuration at t = 1.56 sec is illustrated in Fig. 5. Because 
the lines along links ( )3,2,1=iBA ii  intersect at a point, the 
second type of singularity occurs. 

 
Fig. 4.  Variation of )det(A  for the two mechanisms. 
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Fig. 5.  Singular configuration of the 3-RRR mechanism at 
t = 1.56 sec. 

Assume the prismatic joints of the 3-RPRR mechanism 
consist of a motor and a ball-screw mechanism. Based on a 
practical system configuration, it is assumed that the 
maximum motor speed is 2500 rpm and the screw lead is 
0.008 m. Then, 1ilΔ  for 3,2,1=i  is computed as 

m103.3 4−× . Based on the flowchart in Fig. 2, 1,1il  is given 
as 1 m. Also, δ  is assumed to be 0.5. 

The simulation results of the 3-RPRR mechanism are 
shown in Figs. 4, 6, and 7. In Fig. 4, 0)det( =A  at t = 3.5 
sec. In Fig. 6, since the lines aligned with link 

( )3,2,1=iBA ii  intersect at a point, the second type of 
singularity occurs. Because of the moving ranges of the 
prismatic joints, the singularity configuration in Fig. 6 
cannot be avoided. However, comparing the results in Fig. 4, 
it is evident that the end-effector of the 3-RPRR mechanism 
moved farther without meeting a singularity than for the 3-
RRR mechanism. Fig. 7 shows the variation of 

( )3,2,11 =ili . Here, for optimization, the fmincon routine  
from the MATLAB optimization toolbox is used on a PC with 

1.7 GHz CPU. The maximum and mean computation times 
are about 41 ms and 15 ms, respectively. 
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Fig. 6.  Singular configuration of the 3-RPRR mechanism at 
t = 3.5 sec. 
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Fig. 7.  Link-length variation for the 3-RPRR mechanism. 

Due to kinematic redundancy, the singularity-free 
workspace of the 3-RPRR mechanism can be identified only 
when desired trajectories of the end-effector are given. For 
example, consider the identical 3-RPRR mechanism used in 
the previous example. When desired trajectories are given as 
lines with ,rad4πα =k  the singularity-free workspace of 
the 3-RPRR mechanism can be approximately obtained as 
shown in Fig. 8. Here, between line samples, linear 
interpolation is applied. Fig. 9 shows a comparison of the 
two mechanisms' singularity-free workspaces. With denser 
sampling, the workspace borders will be almost continuous. 
Although compactness of the singularity-free workspaces 
has not been proven, it is apparent that kinematic 
redundancy introduced to the 3-RRR mechanism can be 
used to increase its singularity-free workspace.  

VI. CONCLUSIONS 
In this paper, singularity avoidance of the 3-RRR 

mechanism using kinematic redundancy was presented. A 
simple and effective redundancy resolution algorithm was 
developed based on local optimization. Here, the cost 
function in the optimization was designed to avoid the most 
problematic singularity configurations, where the end-
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effector can be moved locally even though all actuated joints 
are locked. The comparison results with the 3-RRR 
mechanism show the kinematic redundancy of the 3-RPRR 
mechanism can be used to avoid singularities. In other 
words, this approach can effectively increase the singularity-
free workspace. In addition, due to its relatively light 
computational cost, this approach provides an alternative to 
methods that use actuator redundancy for singularity 
avoidance, and is well-suited for real-time applications. In 
future work, the authors are evaluating performance for 
singularity avoidance of kinematically redundant planar 
parallel mechanisms (for example, the 3-RRPR or 3-RPRPR 
mechanisms), theoretical compactness of workspaces, and 
issues of global vs. local optimization. 
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Fig. 8.  Approximate singularity-free workspace of the 3-
RPRR mechanism. 
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Fig. 9.  Comparison of the two mechanisms' singularity-free 
workspaces. 

REFERENCES 
[1] C. Gosselin and J. Angeles, “Singularity Analysis of Closed-Loop 

Kinematic Chains,” IEEE Transactions on Robotics and Automation, 
vol. 6, no. 3, pp. 281-290, 1990. 

[2] I.A. Bonev and C. Gosselin, “Singularity Loci of Planar Parallel 
Manipulators With Revolute Joints,” in 2nd Workshop on 
Computational Kinematics, Seoul, Korea, 2001, pp. 291-299. 

[3] M.A. Nahon and J. Angeles, “Reducing the Effect of Shocks Using 
Redundant Actuation,” in IEEE Conference on Robotics and 
Automation, Sacramento, CA, 1991, pp. 238-243. 

[4] R. Kurtz and V. Hayward, “Multiple-Goal Kinematic Optimization of 
Parallel Spherical Mechanism with Actuator Redundancy,” IEEE 
Transactions on Robotics and Automation, vol. 8, no. 5, pp. 644-651, 
1992. 

[5] B. Dasgupta and T.S. Mruthyunjaya, “Force Redundancy in Parallel 
Manipulators: Theoretical and Practical Issues,” Mechanism and 
Machine Theory, vol. 33, no. 6, pp. 727-742, 1998. 

[6] J.F. O'Brien and J.T. Wen, “Redundant Actuation for Improving 
Kinematic Manipulability,” in IEEE Conference on Robotics and 
Automation, Detroit, MI, 1999, pp. 1520-1525. 

[7] S. Kock and W. Schumacher, “Control of a Fast Parallel Robot with a 
Redundant Chain and Gear Boxes: Experimental Results,” in IEEE 
Conference on Robotics and Automation, San Francisco, CA, 2000, pp. 
1924-1929. 

[8] S.H. Lee, B.-J. Yi, S.H. Kim, and Y.K. Kwak, “Control of Impact 
Disturbance by a Redundantly Actuated Mechanism,” in IEEE 
Conference on Robotics and Automation, Seoul, Korea, 2001, pp. 3734 - 
3741. 

[9] H. Cheng, Y.-K. Yiu, and Z. Li, “Dynamics and Control of Redundantly 
Actuated Parallel Manipulators,” IEEE/ASME Transactions on 
Mechatronics, vol. 8, no. 4, pp. 483-491, 2003. 

[10] F. Firmani and R.P. Podhorodeski, “Force-Unconstrained Poses for a 
Redundantly-Actuated Planar Parallel Manipulator,” Mechanism and 
Machine Theory, vol. 39, no. 5, pp. 459-476, 2004. 

[11] S. Krut, O. Company, and F. Pierrot, “Velocity Performance Indices for 
Parallel Mechanisms with Actuation Redundancy,” Robotica, vol. 22, 
no. 2, pp. 129-139, 2004. 

[12] A. Muller, “Internal Preload Control of Redundantly Actuated Parallel 
Manipulators-Its Application to Backlash Avoiding Control,” IEEE 
Transactions on Robotics, vol. 21, no. 4, pp. 668-677, 2005. 

[13] S.B. Nokleby, R. Fisher, R.P. Podhorodeski, and F. Firmani, “Force 
Capabilities of Redundantly-Actuated Parallel Manipulators,” 
Mechanism and Machine Theory, vol. 40, no. 5, pp. 578-599, 2005. 

[14] K.E. Zanganeh and J. Angeles, “Mobility and Position Analyses of a 
Novel Redundant Parallel Manipulator,” in IEEE Conference on 
Robotics and Automation, San Diego, CA, 1994, pp. 3049-3054. 

[15] J. Wang and C. Gosselin, “Kinematic Analysis and Design of 
Kinematically Redundant Parallel Mechanisms,” Journal of Mechanical 
Design, vol. 126, no. 1, pp. 109-118, 2004. 

[16] M.G. Mohamed and C. Gosselin, “Design and Analysis of 
Kinematically Redundant Parallel Manipulators with Configurable 
Platforms,” IEEE Transactions on Mechatronics, vol. 21, no. 3, pp. 277-
287, 2005. 

[17] S.-H. Cha, T.A. Lasky, and S.A. Velinsky, “Kinematic Redundancy 
Resolution for Serial-Parallel Manipulators via Local Optimization 
Including Joint Constraints,” Mechanics Based Design of Structures and 
Machines, vol. 34, no. 2, pp. 213-239, 2006. 

[18] P.A. Voglewede and I. Eber-Uphoff, “Overarching Framework for 
Measuring Closeness to Singularities of Parallel Manipulators,” IEEE 
Transactions on Mechatronics, vol. 21, no. 6, pp. 1037-1045, 2005. 

 

WeD6.3

1200


