
Inverse Kinematics for a Point-Foot Quadruped
Robot with Dynamic Redundancy Resolution

Alexander Shkolnik and Russ Tedrake
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology, Cambridge, MA 02139
{shkolnik,russt}@mit.edu

Abstract— In this work we examine the control of center
of mass and swing leg trajectories in LittleDog, a point-foot
quadruped robot. It is not clear how to formulate a function
to compute forward kinematics of the center of mass of the
robot as a function of actuated joint angles because point-foot
walkers have no direct actuation between the feet and the ground.
Nevertheless, we show that a whole-body Jacobian exists and is
well defined when at least three of the feet are on the ground.
Also, the typical approach of work-space centering for redun-
dancy resolution causes destabilizing motions when executing fast
motions. An alternative redundancy resolution optimization is
proposed which projects single-leg inverse kinematic solutions
into the nullspace. This hybrid approach seems to minimize
1) unnecessary rotation of the body, 2) twisting of the stance
legs, and 3) whole-body involvement in achieving a step leg
trajectory. In simulation, this control allows the robot to perform
significantly more dynamic behaviors while maintaining stability.

I. INTRODUCTION

The Jacobian is a powerful tool to linearize the inverse
kinematics of a robot, and can be used to achieve velocity
commands in the direction of the correct kinematic solution.
In redundant systems, such as many quadruped and humanoid
robots, the nullspace of the Jacobian spans the infinite solu-
tions that define the gradient of the specified task. Redundancy
resolution is often attempted by trying to move the system
towards some desirable position, e.g. workspace-centering.
In this work we examine the inverse kinematics redundancy
resolution problem for LittleDog, a point-foot quadruped robot
developed by BostonDynamics (see Figure 1).

Typically, Jacobians are calculated by differentiating the
forward kinematics of the system. However, for a point-foot
walker, there is no actuation at the ankle, therefore no direct
control over the foot angle with the ground. It is not clear
how to specify the forward kinematics defining the center of
body (COB) position as a function of actuated joint angles.
The derivation for the whole-body Jacobian of the COB is
therefore not trivial. One approach to control the body position
is to treat each leg as a separate robotic arm, and move each
leg in the opposite direction of the desired body motion. This
single-leg inverse kinematic solution was found to perform
reasonably well in simulation, but the approach suffers from
a limited workspace as it does not take advantage of rotations
of the body that could extend reach. In this work we show that
the whole-body COB Jacobian does exist, and is well defined
when three or four of the feet are on the ground. Whole-body
Jacobians associated with the tasks of controlling 1) center
of mass (COM) trajectory and 2) swing foot trajectory are
derived based on the COB Jacobian.

A moving robot by definition violates the assumptions of
static stability. Using the usual method of work-space cen-

tering for redundancy resolution with a whole-body Jacobian
seems to compound the problem, as it utilizes all limbs to
execute any motion producing more joint movement than
necessary. In simulation, this caused the robot to fall over
fairly easily when executing fast movements. Projecting the
single-leg inverse kinematic solution into the nullspace of the
whole-body Jacobian produces a solution which improves the
dynamic stability of the system. We refer to this approach as
dynamic redundancy resolution. This hybrid approach seems
to minimize 1) unnecessary rotation of the body, 2) twisting of
the stance legs, and 3) whole-body involvement in achieving
a step leg trajectory. This offers a significant performance im-
provement over either approach taken separately, as measured
experimentally in simulation.

II. BACKGROUND

Achieving stable locomotion over irregular terrain has
proven to be a challenging problem. The main difficulty comes
from the fact that legged robots are inherently underactuated,
as there is limited control of the body position and orientation.
The DARPA Learning Locomotion project sponsors several
development teams with the intent of developing a robust
walking controller to enable a position controlled quadruped
robot, LittleDog, to traverse very rough terrain by applying
machine learning algorithms.

Point-foot walkers, such as LittleDog, have the advantages
that it is easier to select placements for feet contacts on the
terrain, and significantly simplifies simulation, as one does

Fig. 1. Littledog Robot A picture of the littledog robot, executing the task
of keeping its center of mass over the centroid of its support polygon, while
moving the front-left foot in a fast Figure-8 trajectory. The robot has a 6 axis
IMU and encoders at its 12 actuated joints as well as Vicon motion capture
system for body position / orientation. The body weighs 1.8kg, and each leg
weighs .25kg; The body is 20cm in length, while the upper arm is 8cm, and
the lower arm is 10cm.
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not have to worry about ground contacts along the surface of
the foot. However, point-foot walkers exemplify the underac-
tuation problem. In addition, LittleDog has many redundant
degrees of freedom (DOF); each leg can act to push the body
in different directions, so care must be taken to coordinate the
actuators of all legs. Foot planning and maintaining stability
margins are crucial for the success of a walking vehicle,
but lower level inverse kinematics algorithms must do the
necessary work of coordinating available actuators while also
maximizing stability. Further, the lower level control can be
useful for reducing the dimensionality of the system. LittleDog
has 18 DOF, including six unactuated degrees specifying body
position and orientation, a two DOF universal joint at each hip
and a hinge joint at each knee. The sheer number of DOF in
this system can be prohibitive for many learning tools. To
achieve a crawl gait, one may attempt to control the robot
whole-body center of mass and the position of a foot. This
cuts the controlled degrees of freedom to six, or potentially
even fewer1, and makes learning algorithms more plausible.

Walking and even standing-humanoid controllers typically
take into account some metric of stability. The notion of
true stability for locomotion is difficult to quantify precisely
(see [1]), so heuristics are often utilized for this purpose.
These often include: maximizing the static stability margin
[2], maximizing the Zero-Moment Point (ZMP) margin [3],
Resolved Momentum Control (RMC) [4], and Zero Spin
Center of Pressure (ZSCP) Control [5], etc (see [6] for review).
Essentially all of these approaches try to control the center
of mass of the entire robot, so we pay particular attention
to this issue in this work. This is true even for ZMP, where
a COM trajectory can be computed to implement a desired
ZMP trajectory [7].

The RMC framework for humanoid robots attempts to
control a humanoid robot’s whole-body linear and angular
momentum (or components of these), using a framework
similar to the whole-body Jacobian, while constraining feet
movement to specified trajectories [4]. Linear momentum
divided by mass of the system translates to COM velocity,
so the high level objective of RMC is similar to this work.
However, RMC assumes actuated ankles, and is primarily
concerned with how to utilize free DOFs of a humanoid, for
example the arms and torso, to help keep the robot stable.
The quadruped robot does not have such flexibility. Further,
the work developed here allows for hierarchical control with
priority given to the COM velocity rather than to the feet
velocities, whereas RMC does not allow for this.

This paper is organized as follows: 1) Background 2)
Derivations of the partial inverse kinematics control of the
COB; 3) Derivations of the whole-body Jacobians associated
with the tasks COM control and swing foot control; 4) Re-
sults are presented from running three resulting controllers in
simulation, and limited results are presented from experiments
on the actual robot.

III. SINGLE-LEG INVERSE KINEMATICS CONTROL

A first approach to developing a walking controller for
the position controlled walking robot might be to treat all

1Note, in this framework it is intuitive to further reduce dimensionality in
higher level controllers, for example by constraining the height of the COB or
COM. The swing leg may also be constrained to operate in a plane, reducing
the system to only 4 DOF.

of the legs separately, and control the center of body and
the orientation of the body by moving the legs appropriately.
When considering each leg separately, we utilize the relation:

PG = XBn + RB · PL (1)

where PG ∈ R
3×n contains the feet positions in the global

frame; PL ∈ R
3×n contains the feet positions in the robot

relative frame; XB ∈ R
3 is the center of body position and

XBn
∈ R

3×n is the XB vector repeated n times: [XB ... XB ];
RB ∈ R

3×3 is the rotation matrix of the body; n is the number
of feet being considered (usually 3 or 4). Differentiating and
solving for the feet velocities in the relative frame we obtain:

ṖL = RT
B · (ṖG − ẊBn

− ṘB · PL) (2)

Note that ṖG is assumed to be zero for stance feet, and is
otherwise the velocity command of the swing foot. ẊB and
ṘB are the commanded COB and orientation velocities.

For each leg, i, we compute the single-leg Jacobians, Jlegi
∈

R
3×3, of the foot position w.r.t. the robot frame. The joint

velocities corresponding to each leg are then:

q̇legi = J−1
legi

· ṖLi (3)

The result is a control for COB, not COM. Further, it may
be useful to allow the body rotation to be left unspecified. This
increases the workspace of the system by allowing the robot
to rotate the body to help reach places that would otherwise be
kinematically infeasible. To deal with these issues, we utilize
whole-body Resolved Motion Rate Control [8].

IV. WHOLE-BODY JACOBIAN CONTROL

In general, forward kinematics, transforming joint angles
q ∈ R

n into some task space x ∈ R
m, and the differentiation

of this relation is given by:

x = f(q) (4)

ẋ = J(q) · q̇ (5)

where J(q) ∈ R
m×n is the whole-body Jacobian associated

with the task space of x. The inverse kinematics with nullspace
optimization for redundancy resolution can be solved as in [9]:

q̇ = J+ · ẋ + α(I − J+ · J) · q̇ref (6)

where J+ = (JT J)−1·JT is the Moore-Penrose pseudoinverse
of J, α is a scalar weighting, and q̇ref ∈ R

n is a low priority
command in joint space. For the redundant case where m < n,
the solution, q̇ should achieve the commanded ẋ while also
minimizing ‖q̇ − q̇ref‖.

We may have multiple tasks, and control them in a hierar-
chical manner [10], for example:

q̇1 = J+
low · ẋlow + α1(I − J+

low · Jlow) · q̇ref

q̇ = J+
high · ẋhigh + α2(I − J+

high · Jhigh) · q̇1 (7)

where xhigh represents a “high priority task” with associated
Jhigh Jacobian, and conversely xlow is a “lower priority task”
with associated Jlow Jacobian. q̇1 is the joint level command
that would be assigned by the low priority task, and is passed
on as a “suggested” command to the high priority task.

Typically, the lowest priority task in joint space consists of
specifying q̇ref to move down a potential to bring the posture
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to some standard “favored” position, as in [11]. Note that it is
possible to differentiate (5), which would allow for control at
the acceleration or force level (for review see [12]). Because
the LittleDog robot is position and velocity controlled, we will
limit our discussion here to controllers that resolve kinematic
redundancies at the velocity level.

A. Jacobian of Center of Body
Here we attempt to compute the Jacobian, JXB

(q) = ∂XB

∂qa
,

of the center of body, XB ∈ R
3, where q ∈ R

18 describes all
18 degrees of freedom, and qa ∈ R

12 is the actuated subset
of q, not including the 6 unactuated degrees of freedom of the
body position and orientation.

The typical approach for computing the Jacobian would
be to define forward kinematics and then differentiate w.r.t.
actuated joint angles. It is not obvious how to do this for the
center of body of the robot, and some assumptions must be
made. First, note that given q, we may compute the position of
all feet in both relative and absolute coordinate systems. Given
absolute positions of three feet, and three leg lengths, we may
compute the position of the center of body by performing
trilateration, e.g. by finding the intersection of three spheres,
centered at the feet positions with radii corresponding the
distance between the foot and COB. However, this derivation
is bulky and, is not well defined for cases with four feet.

In order to get around the problem of underactuation, we
specify that feet on the ground do not move. Consider what
happens when changing the leg lengths; first note that the
lengths, L ∈ R

4, are simply the distance from center of body
to the feet. This is defined in either the global coordinate
frame, or the robot coordinate frame for each foot, i:

Li = ‖PLi‖
= ‖XB − PGi

‖ (8)

Let us assume that all feet are on the ground (otherwise
use the subset of three feet which are on the ground), and

the feet are not moving:
∂PGi

∂qa
= 0. We can obtain ∂L

∂qa
∈

R
4×12 by differentiatiating for each leg length individually,

corresponding to each row i:

∂Li

∂qa
=

∂Li

∂PLi

∂PLi

∂qa

=
∂Li

∂XB

∂XB

∂qa
(9)

These derivatives are well defined, and have geometrically
understandable meanings. For example, ∂L

∂XB
∈ R

4×3 is the
change of leg lengths given a movement of the body (imagine
a table with springs for legs; the springs change length in a
well defined way if the table is moved or rotated). We can
now solve for ∂XB

∂qa
using the Moore-Penrose pseudoinverse:

∂XB

∂qa
=

[
∂L

∂XB

]+
∂L

∂PL

∂PL

∂qa
(10)

where each row i of ∂L
∂XB

∈ R
4×3 is:

∂Li

∂XB
=

∂||PGi − XB ||
∂XB

=
[XB − PGi ]

T

||XB − PGi
||

and, if we treat PL as a vector ∈ R
12, and define PLi

as
a vector ∈ R

12 containing all zeros except the 3 elements
corresponding to leg i, then each row i of ∂L

∂PL
∈ R

4×12 is:

∂Li

∂PL
=

∂||PLi
||

∂PL
=

[PLi
]T

||PLi ||

∂PL

∂qa
=




Jleg1 0 0 0
0 Jleg2 0 0
0 0 Jleg3 0
0 0 0 Jleg4


 ∈ R

12×12

B. Jacobian of Body Rotation
By Differentiating (1) w.r.t. qaj

, for each joint, j, and

assuming that stance feet are not slipping so that
∂PGi

∂qa
= 0

for each stance foot i, we find that:

∂RB

∂qaj

· PL = −∂XBn

∂qaj

− RB · ∂PL

∂qaj

(11)

The Moore-Penrose pseudoinverse is applied to solve for
JRBj

= ∂RB

∂qaj
∈ R

3×3 for each joint j:

JRBj
= −

(
∂XBn

∂qaj

+ RB · ∂PL

∂qaj

)
· (PL)+ (12)

C. Center of Mass Jacobian
The conversion from local frame (L) to global frame (G)

for the center of mass, XM ∈ R
3 is specified by:

XMG
= XB + RB · XML

(13)

Then solve for JXM G
= ∂XMG

∂qa
, where each column j is:

JXM Gj
=

∂XB

∂qaj

+ RB · ∂XML

∂qaj

+
∂RB

∂qaj

· XML
(14)

D. Swing Foot Jacobian
The conversion from relative to global coordinates for the

position of a specific foot, XSW ∈ R
3, is specified by:

XSWG
= XB + RB · XSWL

(15)

Then solve for JXSW G
= ∂XSW G

∂qa
, where each column j is:

JXSWGj
=

∂XB

∂qaj

+ RB · ∂XSWL

∂qaj

+
∂RB

∂qaj

· XSWL
(16)

E. Hierarchical Controller
As shown in (7), the Jacobians and associated nullspaces

can be “stacked” in a hierarchical manner. Given the goal
of stable walking over rough terrain, it is logical to give the
control of ẊMG

the highest priority. Of second priority, then,

is ẊSW G
. The final step in developing the full control law

is choosing an appropriate q̇ref to plug into (7). Workspace
centering is established by choosing q̇ref along the gradient of
the potential: ‖qa −q0‖ for some favored position, q0 ∈ R

12.
A proposed alternative to workspace centering is to compute

the partial IK solution, as in section III; for each leg, i, the
corresponding elements of q̇ref are:

q̇refi = J−1
legi

ṖLi (17)
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Using the single-leg inverse kinematics represents a dy-
namic redundancy resolution method, as opposed to workspace
centering which always tries to move the robot back to the
static q0 position. The final control is specified by:

q̇1 = J+
SW G

· ẋSW G
+ (I − J+

SW G
· JSW G

) · q̇ref

q̇ = J+
MG

· ẋMG
+ (I − J+

MG
· JMG

) · q̇1 (18)

Kinematic joint limits can also be included as a task. This
control is only activated when joints are close to their limits,
and is thus not included here for clarity.

V. RESULTS

A. Simulation
The result of the preceeding analysis distinguishes three po-

tential controllers: 1) control by single-leg inverse-kinematics,
where body orientation must also be commanded (in the case
of the simulations below, we use zero pitch and roll, and keep
yaw constant); 2) Whole-body Jacobian RMRC based control
using static redundancy resolution which chooses trajectories
that stay as close as possible to a standing pose (static
redundancy resolution); and 3) A hybrid approach, based on
whole-body Jacobian control which chooses trajectories that
are as close as possible to the single-leg IK solutions (dynamic
redundancy resolution).

In this section we explore the performance of these three
controllers by looking at a simulation of a quadruped robot
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Fig. 2. Simulation Results: Case 1. COM figure-8 Trajectory with four
legs. Left: Partial IK. Performance is reasonably good. Center: Whole-body
Jacobian with Work centering. The centering appears to interfere with this
task. Note, it is possible to reduce gains on the centering, but this results
in worse performance in other tests. Right: Hybrid approach. The trajectory
following appears very good, and results in the lowest RMS Error. Bottom: red
line is the commanded trajectory (2 seconds), blue line is the actual trajectory.

with parameters similar to the LittleDog robot. The physics
based dynamics simulation was constructed with SDFast,
and the controller was implemented in Matlab. A spring-
damper ground model is utilized with point-feet contacts, with
reasonable ground reaction forces (drawn in small blue lines
in the figures). The simulation has 4 test-cases to illustrate the
performance in sample COM and swing foot trajectory tasks.

• CASE 1: Figure 8 trajectory for COM, with 4 feet on
ground. In this case, a figure 8 desired trajectory is
tracked with the whole-robot center of mass (see Figure
2). Four feet remain on the ground.

• CASE 2: Figure 8 trajectory for COM, with 3 feet on
ground. In this case, a figure 8 desired trajectory is
tracked with the whole robot center of mass (see Figure
3). Three feet remain on the ground, and one foot is raised
in the air.
Figure 4 shows the ZMP and center of mass, comparing
the work-centering and hybrid approaches. The whole-
body Jacobian with work-centering utilizes more drastic
motions, with the involvement of all limbs, which results
in the ZMP straying far from the COM projection. This
undermines the static stability assumption that we made
when selecting the figure 8 COM trajectory to follow, and
results in the robot eventually toppling over. On the other
hand, the ZMP corresponds fairly well with the COM
projection in the hybrid controller, as this controller min-
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Fig. 3. Simulation Results: Case 2. The red leg designates the swing foot in
the air. Left: Partial IK. The robot is unable to follow the specified trajectory
at the speed given.Center: Whole-body Jacobian with Work centering. The
robot can not finish the task as he rotates forward and eventually flips over.
Right: Hybrid approach. This is the only approach that is able to follow
the trajectory even somewhat closely. Bottom: red line is the commanded
trajectory (3 seconds), blue line is the actual trajectory.
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imizes drastic movements. Thus, even though the robot
is moving fairly quickly (executing the figure 8 motion
in 3 seconds), the static stability margin is reasonable
to use with the controller using the dynamic redundancy
resolution. This illustrates why the hybrid controller is
more stable when executing fast movements.

• CASE 3: Small, fast, figure 8 trajectory for swing leg.
In this case, a small figure 8 is to be tracked by the front
right leg, while the COM is to remain over the centroid
of the support polygon (see Figure 5). In this test, the
entire figure 8 trajectory is completed quickly (in 1 sec.).

• CASE 4: Very large, slower, figure 8 trajectory for swing
leg. In this case, a very large figure 8, requiring the robot
to pitch its body up and down to complete it accurately,
is to be tracked by the front right leg, while the center
of mass is to remain over the centroid of the support
polygon (see Figure 6). In this test, the figure 8 trajectory
is completed fairly slowly, over a period of 15 seconds.

B. Real Robot
The tests were attempted on the actual robot, with results

for the first three cases of the hybrid controller (with feedback)
shown in Figure 7. A photo of the robot executing the
small figure 8 task is in Figure 1. We found that the gains
on this feedback controller were difficult to tune, with a
trade off between oscillations and significant foot slippage vs
tracking performance. Performance was deteriorated compared
to simulation because feet were slipping, which violated our
Jacobian assumptions that grounded feet were not moving.
This was enhanced by oscillations due to feedback latencies.

Fig. 4. ZMP (red) vs COM (blue) for Case 2 with work-centering (bottom)
and hybrid control (top). The triangle depicts the support polygon. This figure
illustrates that ZMP more closely follows the COM trajectory in the hybrid
control, which is the reason why the hybrid control is less likely to fall when
executing fast motions under static stability assumptions.

Test case 4, large figure-8 with swing foot, could not be
achieved at all due to feet slipping.

In another approach, joint trajectories were generated by
using the simulator with the hybrid controller for the test cases
presented above. These trajectories were recorded, and passed
to the actual LittleDog robot as a feedforward command. The
performance was quite good, and resembled the performance
seen in the simulators. If feet did not slip, tracking looked
much better than the feedback control shown in Figure 7.

We are working on further developing the feedback con-
troller; for the purpose of walking, we are also working on
generating open-loop trajectories between each step, so that
feedback is incorporated between steps, while each step is
executed using the feedforward trajectory generated with the
hybrid controller.

VI. CONCLUSIONS

This work presents derivations for whole-body Jacobians
for center of mass and swing foot trajectory control of a
point-foot quadruped robot, despite the fact that the forward
kinematics for center of body are ill-defined. Three control
methods were explored, including 1) a partial IK solution;
whole-body solutions using either 2) work-space centering and
3) a hybrid controller which utilizes the partial IK solution for
dynamic redundancy resolution. The controllers were tested on
several test cases in simulation, designed to force the robot to
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Fig. 5. Simulation Results: Case 3. The red leg designates the swing foot,
which is executing a figure-8 trajectory. Left: Partial IK. Performance is poor
particularly because joint limits are reached. Center: Whole-body Jacobian
with Work centering. Rapid twisting (jerking) motions cause the robot to
loose footing and topple over; the trajectory at this speed can not be achieved
with this controller. Right: Hybrid approach. The robot seems to minimize
twisting and turning motions, and achieves reasonable trajectory following
performance. Bottom: red line is the commanded trajectory (1 second), blue
line is the actual trajectory.
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Fig. 6. Simulation Results: Case 4. The red leg designates the swing foot,
which is executing a figure-8 trajectory. Left: Partial IK. Performance is poor
particularly because joint limits are reached. Center: Whole-body Jacobian
with Work centering. Tracking of the figure 8 is good, but COM tracking
is affected here, and the robot goes though twisting motions. Right: Hybrid
approach. The robot seems to minimize twisting and turning motions, and
trajectory following has lowest RMS error. Bottom: red line is the commanded
trajectory (15 seconds), blue line is the actual trajectory.

move dynamically or to the edge of kinematic feasibility. The
hybrid controller minimized any violation of static stability
assumptions, while also following the commanded trajectories
with the least error on all four tests.

Future work will address the implementation issues
encountered when trying to run the hybrid control on
the real robot, as discussed above. Open loop trajectory
generation appears to be a good method to handle this
problem. Additionally we will explore using stability metrics
as potentials for the COM controller to follow, rather than
specifying exact trajectories. For example, one may define a
static stability potential which has a flat region over a portion
of the support polygon. This is in contrast to the typical
notion of the static support margin, the potential function of
which would look quadratic (and thus not have a flat region).
While the COM is in the flat region, the [x,y] coordinates
of the COM would essentially not be commanded, and thus
would be free to move. This could extend the workspace of

Fig. 7. Experiment Results Cases 1-3 shown (top to bottom)

the robot, and alleviates higher level controls from having to
control the body during a step.
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