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Abstract— In this work a proposal to model the activity
at vehicular intersections with the aim of detecting unusual
events is presented. Using the particular constraints that this
kind of scenarios provide, we develop methods to detect, track,
and model the activity of moving objects. Our description of
activity is based on the local definition, at each pixel, of a
multimodal model for the direction of motion. During operation,
a particular observation is compared with the learned model.
Our experiments give clear indication that the proposed scheme
has a good performance in detecting such unusual events as
vehicles running on red light and making forbidden turns.

I. INTRODUCTION

According to[2]about 30% of the total road crashes occurs
at vehicular intersections. Therefore the development of
detection and warning technology for this kind of locations is
likely to produce valuable safety benefits in terms of accident
prevention. Due to the amount of information they provide,
and despite some concerns about privacy[1], machine-vision
systems have been seen as an appealing technology to quan-
tify flow, measure speed, and in general to detect activity.
Some algorithms based on visual info have already been
developed to detect collisions at intersections [11], [3]. It
has been found that detecting such events and others like
bumping, passing, and jamming is quite challenging because
examples of unusual events are extremely different from each
other and most of the times not too frequent. Although the
use of a posteriori video sequences may provide relevant
evidence, an important aspect of the problem, as some
researchers have proposed[21], is to actively use the images
to detect situations that may lead to accidents.

In this work, we propose a pixel-based strategy for the de-
tection of unusual activities. A dual layer background model
is adaptively generated and updated to capture both the
appearance and motion of an object. We define background
modeling as the problem of separate the different elements in
the scene depending on how fast they change in an image se-
quence. A first layer is made out from the pixel intensity level
variations throughout time. To reduce the computing time
we developed the method for gray scale images, although
color images may offer advantages to characterize distinctive
features[9] and to identify shadows[6]. In the second layer,
our algorithm represents the movement orientations that may
be present at each pixel using a multimodal probabilistic
function. In general, an unusual activity is declared when
the current direction of motion cannot be resolved under the
existing model.
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The detection of unusual events can be defined as a
problem where one wants to classify between what is normal
or common and what is not. In this sense, it has received
much attention from research community. Toyama et al.[20]
made an extensive review of the functional parts of an ideal
background maintenance system while Piccardi[14] made
a review of some of the main methods for background
substraction.

Detecting unusual activity becomes difficult because un-
usual events by definition rarely occur, they may be unex-
pected as Zhang et al.[22] suggest, but at the same time
they are relevant for the task. This difficulties become more
significative during training.

Frequently, unusual events are modeled using Hidden
Markov Models (HMMs)[5]. HMMs are perhaps the most
successful framework in perceptual computing for modeling
and classifying dynamic behaviors because they offer dy-
namic time warping, a training algorithm, and clear Bayesian
semantics. Nonetheless, other possibilities that have been
explored include the representation of the tracked trajectory
into a binary tree structure that is used for classification[17],
or the characterization of the video input as temporal
templates[23].

Vehicular intersections offer a unique set of constraints,
including regularity of the trajectories and predictability of
the vehicular flow. Long term observation of video sequences
can be used to learn the typical trajectories[10]. These trajec-
tories can be represented with a multidimensional Gaussian
distribution as in [15]. In our case, we introduce a strategy
that does not require to maintain a history of all prior data
points, thus making it suitable for streaming video applica-
tions. The paper is organized as follows: In §II it is presented
the appearance-motion double layer used to model the scene
background. Then, in §III a model to describe activity based
on a probabilistic approach is introduced. Finally, in §IV we
present results of the algorithm implementation on a real
crossroads and conclude the paper.

II. BACKGROUND MODEL

The background model is made out of two layers, one for
appearance and another one for motion. The appearance is
computed from the light intensity variations. The motion is
estimated from the displacement of objects in the scene.

A. Fist layer: Appearance Model

Vehicle behavior is different inside and outside the ROI
crossroads area. Inside, vehicles are always moving, while
outside vehicles may be waiting for the appropriate green
light. We choose the area delimited by crosswalks as our
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(a) ROI (b) Foreground objects extracted from a video frame
Fig. 1. The moving objects can be detected by subtracting the current image from the background model. The result is segmented into groups of connected
pixels. This procedure is useful to both detect moving objects in a region of interest (ROI) and to update the background model considering only those
regions where the variations are small.

region of interest (ROI) which can be defined as follows. Let
P = {p1,p2, . . . ,pn,pn+1} be the set of vertex points of a
polygonal shaped ROI numbered counter-clockwise, where
p1 = pn+1 and pk = (xk, yk). Using these corner points, n
regions can be defined such that

Ck(x) = (y−yk−1)(xk−xk−1)−(x−xk−1)(yk−yk−1) > 0,
(1)

for k = 2, . . . , n + 1, is a logical predicate that divides the
plane in two regions. This way, the ROI can be defined as
the intersection between these regions

R(x) =
n+1⋂

k=2

Ck(x). (2)

R(x) is a boolean variable that is true whenever x = (x, y)
is inside the ROI and false otherwise.

An important processing stage includes how to obtain the
initial background model[8]. The strategy that we use is
computing the median of certain number of images as in
[18].

Let I(x, t) be an image description, where x is a spatial
position and t is a time stamp. In general, what is perceived
as an image is J(x, t), a noisy version of I(x, t) given by
J(x, t) = I(x, t) + δ(x, t), where δ(x, t) is assumed to be
a random Gaussian variable with zero mean (i.e. Gaussian
noise). We assumed that changes in illumination conditions
came from smooth variations due to daylight characteristics.
This assumption leaves out scenarios where illumination
changes drastically from one moment to the next. In the
present application, the background is supposed to be free
from moving objects. Thus a single Gaussian curve can
model the perceived changes in intensity. Let a Gaussian
process be modeled as

gs(x; µk, σk) =
1√

2πσk

exp

[
−1

2

(
I(x)− µk

σk

)2
]

, (3)

where µk and σk are respectively the mean and the standard
deviation of the set of initial images. When a new observation
I(x, t) is available, it is compared against the the parameters
of the Gaussian model. If

|| I(x)− µk ||≤ ασk, (4)

then it is assumed that the observation is likely to be
produced by a perturbation of the true value similar to the
one expressed by the model. Typically, α is chosen to be
3, meaning that I(x) is within 99.73% of the cases occur-
ring under this model. The parameters of the Gaussian are
adapted as time passes by following the on-line Estimation
Maximization (EM) strategy first introduced in [16]. That is,

µt+1 = ρµt + (1− ρ)I(x, t), (5)
σ2

t+1 = ρσ2
t + (1− ρ)(I(x, t)− µt+1)2, (6)

where ρ ∈ [0, 1] is the learning rate.

B. Second layer: Motion Model

A second layer of the background is made out from the
regular trajectories that describe moving objects in the scene.
The problem of detecting where a feature A moves from
one image frame to the next has many interesting facets
that include objects undergoing partial or total occlusion,
or being subject to complex appearance transformations. In
our case, the objects are assumed to be rigid and hence,
although there are some effects due to perspective and scene
location, the transformations observed involves primarily
rotations and translations. Furthermore, we are assuming
that we can achieve a sufficiently high frame processing
rate so that effectively vehicles’ appearance is quite similar
from frame to frame. Lucas and Kanade[12] proposed, in
a milestone paper, an strategy for additive image alignment
based on a Newton-Raphson type of iterative formulation.
The translation of a feature between frames was computed
with a steepest descend minimization strategy. In principle, a
more general transformation including affine wrapping and
translation could be sought. However, in practice, Shi and
Tomasi[19] showed that this procedure could be numerically
unstable. The procedure uses the optical flow invariant as a
constraint that assumes that a gray level of an object remains
equal from frame to frame. That is, let I(x) and G(x) be
two consecutive images. It has been shown[12], [19] that the
displacement d of a feature F can be computed using the
recursive equation

dk+1 = dk + Z−1e, (7)
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(a) (b) (c)
Fig. 2. Usual Activity Space. In (a), (b), and (c), we illustrate the number of Gaussians defined at each pixel location for the three different states in the
studied scenario.

where Z =
∑

x∈F

(
g2

x gxgy

gxgy g2
y

)
is the structural tensor,

and e =
∑

x∈F (I(x)−G(x))g is a scaled version of g =
(gx, gy)T = ∇I(x), the gradient. The value of Z is a good
reference about how easy it is to track a feature. That is,
when its eigenvalues are small the displacement is large and
convergence may be difficult.

Occlusion seems to be the prime problem for robust track-
ing. Strategies to deal with it include the use of sub-features
[4], high-level reasoning modules [21], bounding box models
[3], temporal templates produced with interframe differences
[13], active models [10], or multiple hypothesis[17]. In the
case of this study, we do not deal explicitly with occlusion
because experimentally we have made two observations.
First, as it is shown in §IV, it accounts for a small portion
of the problems; and second, it is common that unusual
maneuvers are performed by isolated vehicles, and when it is
not the case, the event is likely to be detected as an unusual
activity for all the vehicles in the group.

III. ACTIVITY SPACE

In this work, observed activity at each pixel location is
modeled with a Mixture of Gaussians (MOG) whose modes
describe the main motion direction. During operation, a prob-
abilistic measure can be assigned to a particular observation,
this measure says how usual an event is. This is contrary
to other approaches[10], [5] where once the trajectory of
many vehicles has been accounted for, it is possible to give
a unusual or usual qualification to a particular event.

A Mixture of Gaussians is calculated for each of the three
possible states generated by the traffic lights. These states
are next described, in one of the states (lets call it the first
state) vehicles running from west to east (left to right in the
images shown along the paper) and also turning to the left
when driving in the same direction have the green light. In
the second state the green light is for vehicles running from
east to west and turning to the left when driving in the same
direction. Finally the third state is when vehicles running
north to south and south to north simultaneously (up-down
and down-up in the images) have green light, no left turns
are permitted in this state. After the third, states begin again.

A. Mixture of Gaussians

We aim to use MOG to describe the activity present
at a particular pixel location as perceived from a fixed
camera by a set of Gaussians. Given a set of n angular
directions, θ1, . . . , θn ∈ [0, 2π], and a family F of probability
density functions on R, the problem is to find the probability
density f(θ) ∈ F that is most likely to have generated the
given directions. In this method, each member of the family
F has the same general Gaussian form. Each member is
distinguished by different values of a set of parameters Γ.
That is[7]

f(θ; Γ) =
K∑

k=1

pkgs(θ;µk, σk), (8)

where gs(θ; µk, σk) is a 1-dimensional Gaussian function,
as in Eq. (3), and Γ = (γ1, . . . , γK) = ((p1, µ1, σ1),-
. . . , (pK , µK , σK)), is a 3K-dimensional vector containing
the mixing probabilities pk as well as the means µk and
standard deviations σk of the k Gaussian functions in the
mixture. When a new observation θt is available, it is
compared against the parameters of the Gaussian models.
Classification, and learning can be done as indicated in Eq.
(4) through (6) respectively. After a considerable number of
processed frames the MOG consists on a set of Gaussians
along with the number of samples that were used to define
each of them. The MOG is then pruned to eliminate Gaus-
sians that have small support.

B. Usual Activity Space

The traffic light control at a crossroads may be seen as a
deterministic machine that cycles around a number of states
S1 → S2 → · · · → Sn → S1. At each specific state
Si, certain routes are present and others may be considered
abnormal. Thus, passing on red light or making a forbidden
turn may be considered abnormal because either they are
happening in the wrong moment or because there were not
training samples for them. Each state has a usual activity
space, which is defined by an specific MOG at each pixel
location. When a new state arrives the usual activity space
changes in accordance. It is assumed that there is a way
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(a) Running on red light. (b) Forbidden turn (too wide). (c) Forbidden turn (too wide).
Fig. 3. Some unusual events detected with our method.

to let the vision system know that a new state has arrived.
This can be done by using a direct connection from the
traffic light automatic controller box, for instance. Fig. 2
shows a description of the normal activity space for the
three states composing the scenario studied. In Fig. 2 it is
represented the number of MOG per pixel which describe the
usual motion direction, the gray level indicates the number of
MOG for that pixel, i.e. white zones indicate that there are no
movement descriptors there, no vehicles usually pass through
that image zone. A black pixel indicates a high number of
MOG (movement descriptor) for that image part, i.e. a usual
event. One can see that for the first state (Fig. 2, (a) vehicles
running from right to left) there is a great number of MOG
in the trajectory of the left turn, an appreciable but less dense
number of MOG is present in the forward direction and
something similar happens with right turns in the corners
which are always permitted, no matter which way has green
light. In the second state (Fig. 2 (b)), in which vehicles are
driving from left to right, something similar happens, here
the density of MOG is clearly low compared to the first state
this is an indication that for example less vehicles usually
take a left turn when going in this movement direction. A
white area is also observable in which no vehicles passed.
Finally for the third state (Fig. 2 (c)) the most interesting
observation is that there is no MOG for left turns in any of
the two movement directions which is coherent with the fact
that no left turns are permitted by law in this state.

C. Unusual Activity Detection

Once with a model about the normal behavior of vehicles
in the crossroads, it is possible to start identifying unusual
events. At each pixel position, we have a MOG describing
the usual directions of motions present in the training se-
quence. During operation, the centroid, x, corresponding to
a particular moving object give us the location to examine.
The displacement computed from tracking the vehicle give
us the direction of motion that is compared against the MOG.

Let X = {x1, . . . ,xn} be the ordered set of pixel points
in the vehicle’s trajectory. The probability of observing this

particular trajectory is

p(x1, . . . ,xn) = p(xn|xn−1, . . . ,x1)
p(xn−1|xn−2, . . . ,x1)
...
p(x2|x1)p(x1). (9)

Assuming a Markovian condition, where each observation
depends solely on the last one, the expression can be rewrit-
ten as

p(x1, . . . ,xn) = p(xn|xn−1)p(xn−1|xn−2) . . .

. . . p(x2|x1)p(x1). (10)

Since, xi and xi−1 are dependent because the new position
is the previous position plus a displacement. That is, xi =
xi−1 + ai−1ui−1, where a is a constant, related to the
vehicle’s speed, and ui−1 a unitary vector, then p(xi|xi−1)
can be written as p(xi|xi−1) = p(ai−1ui−1|xi−1). This way
a possible measure for the likelihood of the trajectory X
could be

L(x1, . . . ,xn) = p(un−1|xn−1)p(un−2|xn−2) . . .

. . . p(u1|x1)

=
n−1∏

i=1

p(ui|xi). (11)

The previous condition express temporal and spatial coher-
ence of motion and can be part of the information carried
out by the blob being tracked.

IV. EXPERIMENTAL RESULTS

We have programmed the algorithms to execute the
method previously described using Matlab (TM). For our
experiments, we used a sequence of 20,000 images, with
a 320 × 240 resolution, the camera is located on a 28 m
height tower in one of the corners of a vehicular crossroads.
The traffic lights have the three states described before.
The experimental image sequence comprehends 12 complete
cycles through these three states. We used the first 6 cycles
for training and the rest for testing. Each training cycle
sequence was divided into subsequences corresponding to
each one of the three different states.
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TABLE I
EXPERIMENT RESULTS. 1) SUCCESS OF VEHICLE’S TRACKING. RESULTS HAVE BEEN HAND COMPUTED AND COMPARED WITH THE ALGORITHM

RESULTS. 2) THE PERCENTAGE OF UNUSUAL EVENTS DETECTED REFERRED TO TRACKED VEHICLES ONLY; THESE HAVE BEEN DIVIDED IN TWO

POSSIBLE CASES: RED LIGHT RUNNING (COLUMN 1) AND FORBIDDEN TURN (COLUMN 2); PERCENTAGES ARE SHOWN IN PARENTHESIS.

1) 2)
State #Vehicles Untracked % Error

1 262 40 15.3
2 286 33 11.5
3 176 18 10.2

Total 724 91 12.6

State #Red Light(%) # Forbidden (%) Total(%)
1 2(3.4) 9(0.8) 11(4.2)
2 5(1.8) 2(0.7) 7(2.5)
3 16(0) 0(0) 16(9.1)

Total 30(4.1) 4(0.6) 34(4.7)

Next, the subsequences corresponding to the same state
were processed to obtain the usual event space for each
particular state. So as a result of the training phase we
have (a) a region of interest, (b) an initial model of the
background, and (c) a description of the usual event space
for each of the individual states that are part of the cycle.

The first cycle, in both the training and testing sequence,
was used for background initialization. We computed the
most frequent gray level for each pixel in the image. Then,
a Gaussian model was used to try to adjust the gray level
variations observed along the cycle. When the variations
could be interpreted by the Gaussian model, the sample was
used for learning and assigned to the background. Otherwise,
it was assumed that a foreground object was occluding the
background.

During operation, the usual event space is loaded si-
multaneously with the image that contains a traffic light
change (change of state). The appropriate event space is then
accesible and the execution continued. Next, the observed
events are compared to what is considered normal for that
particular state. The probabilities along the trajectory are
evaluated and those with low probability value are considered
unusual events.

Results are summarized in Table I. During testing, we
manually counted 724 vehicles. About 87.4% of them were
successfully tracked as individual vehicles. In most cases,
untracked vehicles were so close together that one of them
occluded the other or the moving extraction module returned
them as a single connected blob. For unusual event detection
that number is significant because in such a situation, as we
previously noticed, vehicles tend to be isolated and were
successfully tracked in all cases. The percentage of vehicle
maneuvers that were classified as unusual was considerably
high, about 4.7% of them all. It is interesting to notice
that most of the unusual events detected are running on red
light, 4.1%. Also, in this particular experiment, the third state
accounts for almost half the observed unusual events.

CONCLUSION

In this paper, it was presented a reliable method for
detecting such unusual events as red-light infringements and
forbidden turns. Our model is based on a dual background
layer. The first one deals with appearance at the intensity
level. The second one with the different moving directions
present on an image sequence. The model adapts to different

illumination conditions and to the states caused by the traffic-
light controller. The method does not require a high-level
modeling of the vehicles’ trajectories since the decisions are
taken at pixel level. For this particular problem, the occlusion
does not represent a big problem because most of the vehicles
taking part in an unusual event tend to be isolated. When they
are not, the statistics may be slightly affected and the type of
activity (usual or unusual) that the group of vehicles develops
is going to be detected. We have exploited some constraints
involving the scene own conditions, including the simplicity
of the background in the region of interest, the rigidity of
the objects being observed, and the regularity of the usual
trajectories.

Future directions of research include the detection of
speedy vehicles. This could be possible done by modeling
during training the different displacements present in a given
pixel location, in the same way direction of motion is rep-
resented. Also, although the algorithm is highly parallel, its
computing demands does not exceed standard desktop PCs
capabilities for real-time implementation. Finally, the dual
layer background seems suitable for dynamic background
representation and extendable to other monitoring domains
such as people walking on corridors.
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