
 

 

Abstract— This paper presents theoretical details of a 
model-based sensor fault detection and isolation system 
(SFDIS) applied to unmanned ground vehicles (UGVs). 
Structural analysis is applied to the nonlinear model of the 
vehicle for residual generation. Two different solutions have 
been proposed for developing the residual evaluation module. 
The vehicle sensor suite includes a Global Positioning System 
(GPS) antenna, an Inertial Measurement Unit (IMU), and two 
incremental optical encoders. 

I. INTRODUCTION 
HIS paper has been motivated by the challenge to derive 
a model-based sensor fault detection and isolation (FDI) 

system for an unmanned ground vehicle (UGV). A complete 
theoretical study is presented here. The UGV, in this case, 
is supposed to be equipped with a sensor suite that includes 
a Global Positioning System (GPS) antenna measuring 
absolute position in the geodetic coordinates, an Inertial 
Measurement Unit (IMU) measuring robot linear 
accelerations and angular velocities, and incremental 
optical encoders mounted on motors measuring motor 
rotation. 

Given a UGV (or any system), faults may be overcome by 
using robust “model-based fault diagnosis” defined as [1] 
“...the determination of faults of a system from the 
comparison of available system measurements with a priori 
information represented by the mathematical model of the 
system through generation of residual quantities and their 
analysis”. Residuals are zero when no faults occur and non-
zero otherwise, detecting the presence of a fault (faults). 
Residual quantities differ for each fault, allowing detection 
of the specific occurred fault (faults). From the actual 
implementation and testing point of view, model-based 
approaches do not require additional hardware components 
to realize an FDI algorithm since the algorithm may be 
implemented and tested in real-time via software (analytical 
redundancy). 

A model-based fault diagnosis system consists in 
principle of a residual generation module and a residual 
evaluation module [2] that evaluates residuals deciding 

about the likelihood and/or presence of a fault. The decision 
process/rule applied to determine if any faults have occurred 
may be a threshold test on the instantaneous values or 
moving averages of the residuals, or it may follow statistical 
decision theory techniques. 

The FDI problem has been widely investigated, and there 
exist many publications on the subject. Classification of 
fault types is presented in [3]. FDI approaches include 
diagnostic observers [4], parity equations [5], parameter 
estimation [6], [7] and state estimation [8], while surveys 
are provided in [3], [9] and [10]. Structural analysis based 
techniques are the topic of research presented in [11], [12], 
while [13] discusses how structural analysis may be used to 
find a minimal set of additional sensors to achieve full 
single fault isolation capability. In [14] a structural 
approach is investigated for complex systems, and applied 
to a ship propulsion benchmark that is presented in [15]. A 
structural analysis based method is also used in [16], [17] to 
extract system's inherent redundant information. Several 
approaches have been proposed to detect changes in signals 
or systems. They include likelihood ratio based approaches 
such as the Generalized Likelihood Ratio (GLR) test [18] or 
the marginalized likelihood ratio test [19], both effective 
whenever an accurate and tractable signal model exists and 
can be implemented. On-line versions based on statistical 
filtering have also shown good performance [18], [20] while 
other model-based approaches performing efficient off-line 
Bayesian segmentation include [21] and [22]. Other general 
and ad-hoc model-free methods have been designed to 
detect changes in signals with typical examples being time-
frequency approaches [23] and wavelet approaches [24], 
[25]. 

In this work, additive and abrupt sensor faults have been 
considered describing changes in the system states 
interpreted as sensor faults. The residual generator module 
[14] generates the specific residuals to detect sensor faults 
following structural analysis [11], [12], [26], [27] of the 
(system) UGV nonlinear model, determining existing 
redundancies in sensors. Structural analysis depends not on 
analytical relations, but on relations between a variable and 
a constraint, allowing exploration of fundamental system 
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properties using structure graphs. This is essentially a way 
to indicate which equations (or constraints) in a system 
(UGV in this case) are needed to find a solution for its 
variables. If there are more equations than needed, excess 
equations may be used to check the validity of observations. 
If such excess equation is not valid, the unmatched 
constraint called residual indicates the presence of a fault in 
the system (UGV) [28]. 

The residual evaluation module reduces to the problem of 
detecting a change in the mean of a random sequence. In 
this paper, two different solutions are also proposed for the 
residual evaluation module. The first solution includes a 
threshold test based on the minimum and maximum values 
of the generated residuals to decide if a fault has occurred or 
not. Thresholds are updated using a sliding window of a 
fixed number of sequential sample readings (the window 
size may vary). The second one is a particle filtering-based 
likelihood ratio decision solution. 

Experimental validation of the proposed scheme has been 
performed on a differential drive mobile robot, the ATRV-Jr 
manufactured by iRobot, and it is presented in the second 
part of this work [29] (previous experimental results are 
also reported in [30]). 

 

 
 

Fig. 1 Developed fault detection and isolation 
 
Section II of this paper provides formulation of the 

problem and mathematical model of the considered UGV. 
Pre-filtering technique of the inertial sensors is described in 
Section III. Section IV presents the developed model-based 
fault detection and isolation system, explaining theoretical 
aspects of the proposed residual generation module and the 
residual evaluation module. In Section V, several remarks 
conclude this paper. 

II. PROBLEM FORMULATION 
Due to their navigation capabilities, unmanned ground 

vehicles are becoming every day more important for a wide 
variety of applications; for instance, they are able to 
autonomously navigate for long time and in different 
environment situations. The full development of a 
navigation system for UGVs requires solving a number of 
difficult technical challenges. Different and heterogeneous 
sensors have to be fused together to permit an accurate 
positioning of the vehicle, and a sensor fault detection and 
isolation system is needed to monitor the operation status of 
the navigation sensors. 

This paper presents theoretical aspects for developing a 
sensor fault detection and isolation system (SFDIS) applied 
to unmanned ground vehicles. The considered vehicle is 
equipped with a Global Positioning System (GPS) antenna, 
an Inertial Measurement Unit (IMU), and two incremental 
optical encoders. The SFDIS has to be able to detect every 
single and multiple sensor fault in the presence of noise-
corrupted measurements, and when possible to isolate them. 
Model-based FDI techniques are a feasible solution to this 
problem. In order to successfully apply these techniques, 
mathematical modeling of the system is required. In the 
following, the mathematical model of the vehicle is 
introduced. 

The differential drive UGV is assumed to move in an area 
devoid of slopes (here the altitude ( )h t  is considered 
constant) and without wheel slippage. 

For such a vehicle, the NE tangent plane is considered 
with the X-direction coincident with N-direction and, the E-
direction with Y-direction, respectively [31]. In this frame 

( )tψ  describes the angle between the main axis of the 
robot and the X-direction. The kinematics equations have 
the following forms [31]: 

 ( ) ( ) ( )cosx t f t tψ= &&  (1) 

 ( ) ( ) ( )siny t f t tψ= &&  (2) 

 ( ) ( )t r tψ =&  (3) 

where ( )f t&  and ( )r t  are, respectively, the forward and 
angular velocities of the robot, expressed by: 

 ( ) ( ) ( )( )
2 R Lt
d

t t
L

ψ ω ω= −&  (4) 

 ( ) ( ) ( )( )
4 R L

d
f t t tω ω= +&  (5) 

where ( )R tω  and ( )L tω  are the angular velocities of the 

right and left wheels, respectively, d  is the wheel diameter 
and L  is the distance between the wheels. Localization of 
the UGV in a two-dimensional space requires knowledge of 
coordinates x  and y  of the midpoint between the two 

driving wheels and of angle ( )tψ . 
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The set of measurement devices, used for the robot 
localization, consists of: two incremental optical encoders 
mounted on wheel motors which provide right and left 
wheel angle velocities ( )R tω  and ( )L tω , respectively; an 
Inertial Measurement Unit which provides the forward 
linear acceleration ( )f t&&  and the angular velocity ( )tr  of 
the vehicle; a Global Positioning System antenna measuring 
the latitude ( )tλ , the longitude ( )tΦ  and altitude ( )h t  
with respect to the Earth-Centered-Earth-Fixed (ECEF) 
frame. The last set of measurements is related to the vehicle 
variables by the set of following equations: 

 ( ) ( )
0

x t t R
λ

λ= &&  (6) 

 ( ) ( ) ( )
0
cosy t t R tλ

Φ
= Φ&&  (7) 

and the constants 
0

R
λ

 and 
0

R
Φ

 depend on the altitude 

( )h t , on the radius of curvature and on the transverse 
radius of curvature [31], which are all assumed constant for 
the developed experiments without loss of generality. 

III. FILTERING OF INERTIAL SENSORS 
Any sensor system is affected by errors, thus a pre-

filtering of sensor measurements is required. In particular, 
an inertial system is characterized by position errors that 
increase with time and distance [33]. Thus, the motivation 
to build error models for inertial sensors is to reduce the 
effect of unbounded position and orientation errors. On the 
UGV under consideration, only one gyroscope is used for 
yaw rate measurements, and one accelerometer is used for 
forward acceleration measurements.  

A Kalman filter (KF) is derived to estimate the true 
values of orientation, angular rate, linear acceleration, 
velocity, position and errors associated with them. The error 
model has been derived using the Levenberg-Marquardt 
iterative least squares fit method [33], [34] to fit data from 
the gyroscope and the accelerometer. 

The yaw rate readings ( )1z k  of the gyro and the forward 

acceleration readings ( )2z k  have the following forms: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

2 2f

z k k k v k

z k f k k v k
ψ

ψ ε

ε

= + +

= + +

&

&&

&

&&  (8) 

where f&&  is the acceleration of the robot in the robot 
coordinate frame, ψ  is the Euler angle around z -axis, 

( )kψε & , ( )f kε &&  are additive drifts and ( )1 kv , ( )2 kv  are 

additive zero-mean white noise. Defining 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

:
T

f

k k k k k

k k f k f k f k kψ ψ

ψ ψ ψ ψ

ε ε ε

= 



x

&&&

& && &&&

& &&
 

and ( ) ( ) ( )1 2:
T

z k z k z k=    , ( ) ( ) ( )1 2:
T

v k v k v k=     the 

output readings model (8) has the following form: 
 ( ) ( ) ( )k k k= +z Cx v  (9) 

where 
 

 
0 1 0 0 0 1 0 0 0 0

:=
0 0 0 0 0 0 0 0 1 1

 
  

C  

 
Making use of Levenberg-Marquardt iterative least squares 
fit method for deducing a linear parametric model to fit data 
from the gyroscope and the accelerometer [33], [34], the 
following linear model can be derived: 

 ( ) ( ) ( ) ( )1k k k k+ = + +x Fx u w  (10) 

with zero-mean white noise ( )kw  and 
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 ( ) ( ) ( )1 2 1 2: 0 0 0 0 0 0 0 0s s f f

s f s

TT C C T C C

T T T Tk ψ ψ

ψ

+ +

+ +
=   u && &&& &

&&&
 

where sT  is the sampling interval and 1C ψ& , 2C ψ& , Tψ& , 1 fC && , 

2 fC && , fT&&  are the drift model parameters deduced by the 

Levenberg-Marquardt iterative least squares fit method as 
reported in TABLE I. 

TABLE I 
DRIFT MODEL PARAMETERS FOR THE INERTIAL SENSORS 

 1C  2C  T  

ψ&  -0.00826 °/s 0.0594 °/s 121.1276 s 

f&&  0.001 m/s2 0.0083 m/s2 128.8318 s 

 
Under the assumption that accelerometer and gyroscope 

are independent sensors, the covariance matrix Q  of the 

zero-mean white noise ( )kw  has the form [35], [36]: 

 ( ) ( ){ } 1

2

TE k k= =
 
  

Q 0
Q w w

0 Q
 

with 
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and 

 

5 4 3

4 3 2

3 2

2 2 2

3 3 320 8 6

2 2 2

3 3 38 6 2
2

2 2 2

3 3 36 2

2

4

0

0
:

0

0 0 0

s s s

s s s

s s

T T T

T T T

T T

s

s

T

T

σ σ σ

σ σ σ

σ σ σ

σ

=

 
 
 
 
 
  

Q  

where 1σ , 2σ , 3σ  and 4σ  being the experimentally 
determined standard deviations of the residuals of the fitted 
models (for further details, see [33]). 

The state vector estimated by the Kalman filter is given 
by the standard recursive estimator [35]: 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ1 1 1 1k k k k k k k+ + = + + + +x Fx u G ν  

where ( )ˆ 1 1k k+ +x  is the estimate of the state vector at 

time ( )1 sk T+  based on all observations up to this time, 

( )1k +G  is the filter gain, and 

( ) ( ) ( )ˆ1 1 1k k k k+ = + − +ν z Cx  is the innovation vector 

provided by the new observations at time ( )1 sk T+ . All 
states, including drift parameters, are estimated at every 
sample time. The KF has been implemented in real-time on 
the UGV with a sampling interval of 200 mssT = (for 
details, see the second part of this work [29]). Initial 
estimates of the bias errors initialize the filter by averaging 
the output of each inertial sensor over a large number of 
samples when the robot is not in motion. As data is 
collected by the inertial sensors, the parallel running KF 
filters the measurements and provides estimates of the 
quantities of interest for the mobile robot. 

IV. PROPOSED SENSOR FDI SYSTEM 
A model-based fault diagnosis system consists of a 

residual generation module and a residual evaluation 
module. As mentioned, residuals are signals that, in the 
absence of faults deviate from zero only due to modeling 
uncertainties, with nominal value being zero, or close to 
zero under actual working conditions. If a fault occurs, 
residuals deviate from zero and the faulty conditions can be 
distinguished from the fault free ones. This section 
describes the theoretical aspects for developing of the 

proposed residual generation module and residual 
evaluation module. 

A. The residual generation module 
In the past, the residual generation problem has attracted 

a good deal of attention, mainly focused on linear systems 
[1]-[3], [8]-[10]. Recently, the residual generation problem 
for nonlinear systems is becoming an active research topic 
[37], [38]. Structural analysis is a feasible solution [11], 
[27] to this problem and here it is applied to the UGV 
nonlinear model. 

The UGV nonlinear model is considered as a set of 
constraints { }1 2 9, , ,C c c c= …  applied to a set of variables 

Z X K= ∪ , where X  denotes the subset of the unknown 
variables, K  denotes the subset of the known ones (sensor 
measurements, variables with known values), and reference 
variables. The set of unknown variables is: 

{ }, , , ,X fψ λ ψ= Φ& && &  and the set of known variables is 

{ }, , , , ,L RK f rλ ω ω= Φ &&  where the time dependency has 
been omitted for simplicity. The set of constraints for the 
UGV is: 

 
0

1
cos: fc
Rλ

ψλ =
&&  (11) 

 
0

2
sin:
cos

fc
R

ψ
λΦ

Φ =
&&  (12) 

 3 :c rψ =&  (13) 

 4 : dc
dt
λλ =&  (14) 

 

 5 : dc
dt
Φ

Φ =&  (15) 

 6 : dfc f
dt

=
&&&  (16) 

 7 : dc
dt
ψψ =&  (17) 

 8
2:

2L
Lc f r

D
ω  = − 

 
&  (18) 

 9
2:

2R
Lc f r

D
ω  = + 

 
&  (19) 

The structure is described by the following binary 
relation: 

 

 

{ }

( )
( )
( )

: 0,1

, 1 iff  applies to 
,

, 0   otherwise

i j i j

i j

i j

S C Z

S c z c z
c z

S c z

× →

 =→ 
=

 

This system structure may be also represented by the 
incidence matrix illustrated in TABLE II. More details 
about structural analysis and the matching algorithm may 
be found in [27]. 
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TABLE II 
INCIDENCE MATRIX 

 KNOWN UNKNOWN 
 λ  Φ  f&&  r  Lω  Rω  ψ  λ&  Φ&  f&  ψ&  

1c        1 1  1  

2c  1      1  1 1  

3c    1        1 

4c  1       1    

5c   1       1   

6c    1       1  

7c        ×     1 

8c     1 1     1  

9c     1  1    1  

 
The matching algorithm identifies the over-determined 

parts of the system [14], [27], resulting in the corresponding 
lists of matched and unmatched constraints. The matched 
constraints are { }2 3 4 5 9, , , ,M c c c c c=  while the unmatched 

constraints are { }1 6 7 8, , ,U c c c c= . Each of the unmatched 
constraints gives a parity equation. In this way, the 
detection equations are derived by back tracing the 
matching of the unknown variables involved in the 
unmatched constraints until only known variables are part 
of the expression. The resulting parity equations are: 

 ( )1 , , 0c f ψ λ =& &  (20) 

 ( )6 , 0c f f =& &&  (21) 

 ( )7 , 0c ψ ψ =&  (22) 

 ( )8 , , 0Lc f r ω =&  (23) 

Back tracing unknown variables to known variables gives 
the following five residuals 1r , 2r , 3r , 4r  and 5r : 

 
0

0

0

1

1

2 2

2 cos
cos arcsin

R

R

d d L
r R r

dt R

Rd

dt d Lr

λ

λ

λ
ω

λ

ω
Φ

= − − ⋅

Φ
⋅ ⋅

−

  
 
 

  
  
  

 (24) 

 2 2 2R
d d L

r f r
dt

ω= − − 
 
 

&&  (25) 

 0

3

2 cos
arcsin

R

Rd d
r r

dt dt d Lr

λ

ω
ΦΦ

= − ⋅
−

  
  
  

 (26) 

 4

2
L R

L
r r

d
ω ω= − +  (27) 

 5 0 2 2

t d d L
r f r d

Rdt
ω τ= − −  

  
  ∫ &&  (28) 

It is essential to clarify that re-running the matching 
algorithm may result in different residuals, but they do not 
add any information to the FDI task. Further, the first 

residual has been multiplied by 
0

R
λ

 to avoid computational 

rounding errors and, in order to have a strong detectability 
of the faults and thus more isolability, it has been 
integrated. For the same reason, the second residual has 
been also integrated and it has been added to the residual set 
as an extra one (the fifth one). After this, all residuals have 
been discretized for on-line implementation. Because of 
each measure is affected by sensor noise, numeric 
integrations have been re-initialized in each time-window, 
such that to avoid increasing of computational errors. 

B. The residual evaluation module 
The residual evaluation module detects a change in the 

mean of an observed and distributed random sequence 
achieved by sequential change detection algorithms. 

Two different solutions have been developed and 
analysed: the first is an “ad hoc solution” consisting of an 
adaptive/moving threshold test on the instantaneous values 
of the obtained residuals; the second is a “particle filtering-
based likelihood ratio decision solution”. 

B.1 Adaptive/moving threshold test solution 
An ad-hoc decision method developed and tested is 

presented in this subsection. 
Let ( ) ( )( )[ ]{ }: 1 1 ,i sr kT k j n j n∈ − ⋅ + ⋅  be an 

observed sequence (randomly distributed) of the i-th 
residual ( )sir kT  in a generic j-th sliding window of size n 
(number of readings in the sliding window), with 
conditional density ( ) ( )( ) ( )( )1 , ,i s i s i sp r kT r k T r Tθ − … . 

Before the unknown change time 0t , the conditional density 

parameter θ  is constant and equal to 0θ , after a positive 

change, the parameter is equal to 1θ , and after a negative 

change, it is equal to 2 1θ θ= − . The hypotheses are: 

 

( )( )
( )( )

( )( )

0 0

1 0 0

1 0

2 0 0

2 0

H : for   1 1

H : for   1 1 1

and   for   

H : for   1 1 1

and   for   

j n k j n

j n k t

t k j n

j n k t

t k j n

θ θ

θ θ

θ θ

θ θ

θ θ

= − ⋅ + ≤ ≤ ⋅

= − ⋅ + ≤ ≤ −

= ≤ ≤ ⋅

= − ⋅ + ≤ ≤ −

= ≤ ≤ ⋅

 

The on-line problem is to detect the occurrence of the 
change as soon as possible. 

The decision test is based on the following decisions: 
 

 

( ) ( )
( )

( ) ( )
( ) ( )

, , 0

, 1

, 2

if  or  accept H

     and set 0

if  accept H  and set 1

if  accept H  and set 1

i s i j i s i j

i s

i s i j i s

i s i j i s

r kT H r kT h

g kT

r kT H g kT

r kT h g kT

< >

=

≥ = +

≤ = −
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where ( )sig kT  is the decision function of the i-th residual, 

,i jH  and ,i jh  are upper and lower thresholds, respectively. 

This is useful to detect deviations from 0θ  in both 

directions, namely increases ( 1θ ) and decreases ( 2θ ). For 

each specific residual, ,i jH  and ,i jh  have been properly 

chosen. In particular, statistical investigation of fault free 
residuals has resulted in fixing the thresholds of the first 
and fifth residual as shown in TABLE III (different 
experimental tests have validated this choice). 
 

TABLE III 
THRESHOLD VALUES FOR THE FIRST AND LAST RESIDUAL 

RESIDUAL ,i jH  ,i jh  

( )1 sr kT  10 m/s -10 m/s 

( )5 sr kT  0.0042 m/s -0.0042 m/s 

 
Because of high noise, for the remaining three residuals, it 
is not possible to set constant values of the thresholds ,i jH  

and ,i jh . In order to set these threshold values, an ad-hoc 

algorithm has been applied to the i-th residual ( )sir kT  with 
i=2,3,4. The proposed algorithm may be summarized as 
follows: 

1) Let j=1. In the first sliding window j=1 of size n, 
assume that the system operates in a fault free working 
mode, that is, 0H  is accepted. Let determine the 

absolute minimum ,i jm  and absolute maximum ,i jM  

values of the observed sequence of the i-th residual 
( )sir kT . Set upper and lower thresholds for the next 

sliding window as follows: 
 , 1 , ,i j i j i jH M +

+
= + ∆  (a) 

 , 1 , ,i j i j i jh m −

+
= − ∆  (b) 

with ,i j
+∆  and ,i j

−∆  constant values resulting from 

statistical investigations of faultless operation 
residuals. 

2) Let j=j+1. In the sliding window j of size n at each 
sample time ( )( )[ ]1 1 ,k j n j n∈ − ⋅ + ⋅ , the decision 

test runs on-line and the decision function ( )sig kT  of 
the i-th residual is updated: 

 
( )
( )
( )

0

1

2

if H  is accepted, set 0

if H  is accepted, set 1

if H  is accepted, set 1

i s

i s

i s

g kT

g kT

g kT

=

= +

= −

 

If 0H  is accepted, determine the absolute minimum 

,i jm  and absolute maximum ,i jM  of the i-th residual 

( )sir kT  in the considered sliding window. Set the 
lower and upper thresholds for the next sliding window 
as in (a) and (b), respectively. Otherwise, if 1H  or 2H  
are accepted, also only in one sample time 

( )( )[ ]1 1 ,k j n j n∈ − ⋅ + ⋅ , then , 1i jH +  and , 1i jh +  

keep the predetermined values, i.e. , 1 ,i j i jH H+ = , 

, 1 ,i j i jh h+ = . 

3) Go to step 2). 
Experimentation resulted in ,i j

+∆  and ,i j
−∆  values as shown 

in TABLE IV. 
TABLE IV 

DELTA VALUES FOR THE SECOND, THIRD AND FOURTH 
RESIDUAL 

RESIDUAL ,i jH  ,i jh  

( )2 sr kT  2,5 jM  2,5 jm  

( )3 sr kT  3, 3, 2j jM m+  3, 3, 2j jM m+  

( )4 sr kT  4,2 jM  4,2 jm  

 
Note that, in the j-th sliding window, if 0H  is accepted, 

then upper and lower thresholds are based on maximum and 
minimum values of ( )sir kT  determined in the previous ((j-
1)-th) sliding window, otherwise they keep the previous 
values. This allows for updated thresholds in every new 
sliding window. However, if a fault occurs in a sliding 
window, the residual changes its mean and its maximum 
value, but the upper and lower thresholds do not change. 
Hence, the thresholds are independent from the occurrence 
of the faults, permitting to detect them. This has been 
validated through a large set of experimental tests, as shown 
in the part II of this work. 

B.2 Particle filtering-based likelihood ratio decision 
solution 
A particle filtering-based decision module is proposed to 

estimate the pdfs (probability density functions). As 
probabilistic method, is also integrated for analysing the 
performance of the developed SFDIS. 

Let ( )sir kT  be the i-th residual with pdf ( )ip rθ  
depending upon one scalar parameter θ , which is the mean 
value of the residual. Before an unknown change time, 

0 sk T , θ  is equal to 0θ . At time 0 sk T , it changes to 

1 0θ θ θ= ≠ . The hypotheses are: 

 0 0

1 0 0 1 0

H : for 
H : for -1 and for 

k
k k k k

θ θ
θ θ θ θ

= ∀
= ≤ = ≥
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Consider the logarithm of the likelihood ratio of an 
observation ( )sir kT , which is a function of random variable 

( )sir kT , defined by: 

 ( )( ) ( )( )
( )( )

1

0

ln i s
i s

i s

p r kT
s r kT

p r kT
θ

θ

=  (29) 

where ( )( ) ( )0,1
b i sp r kT bθ =  is a pdf parameterized by bθ . 

The key statistical property of this ratio [18] with 
0

Eθ  and 

1
Eθ  denoting the expectations of the random variables with 

distributions ( )
0 ip rθ  and ( )

1 ip rθ  respectively, is reflected 

through: 

 
( ) ( )

( ) ( )

0 0

1 1

0 ,

0 .

i i i

i i i

E s r p r dr

E s r p r dr

θ θ

θ θ

+∞

−∞

+∞

−∞

= <

= >

∫

∫
 

Therefore, any change in parameter θ  is reflected as a 
change in the sign of the mean value of the LLR [18]. 
Moreover, observations ( )sir kT  are independent of each 

other; the joint LLR for observations from ( )sir lT  to 

( )sir kT  may be expressed as: 

 
( )( )
( )( )

1

0

ln
k

i sk
l

j l i s

p r jT
S

p r jT
θ

θ=

= ∑  (30) 

This joint LLR 1
kS  shows a negative drift before change, 

and a positive drift after change. This behavior is used for 
detecting any change between two known pdfs ( )

0 ip rθ  and 

( )
1 ip rθ . Note that the pdfs ( )( )

0 i sp r jTθ  and ( )( )
1 i sp r jTθ  

are non-Gaussian and have to be estimated on-line ([18], 
[39], [40]). The particle filter based approach found in [41] 
and [42] is used to estimate both pdfs. 

Let's assume that the normal behavior and all possible 
sensor faults can be described by a given finite set of linear 
stochastic state space models indexed by 0,1, ,m M= …  

 
( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1m m
i s i s

m m m
i s i s i s

x k T x kT

r kT a x kT v kT

+ =

= +
 (31) 

where state ( ) ( )m
ix ⋅  is the normalized sensor fault 

magnitude, ( ) ( )m
iv ⋅  is the nominal residual without faults 

independent of past and present states and ( ) ( )m
ia ⋅  is the 

estimation of the sensor fault magnitude obtained from 
experimental results. 

The central idea of the proposed method is to compute 
the joint likelihood of the observations conditioned on each 
hypothesized model through Monte-Carlo estimation that 
uses the complete sample-based pdf information provided by 
the particle filter, and then activating in parallel M LLR 

tests for ( )mH 1,2, ,m M= …  versus 0H . Specifically, the 
joint LLR to be computed in this case is: 

 ( )
( )( )
( )( )

1

0

1

1

H ,
ln

H ,

k
i s m jk

l
j l i s m j

p r jT Z
S m

p r jT Z
θ

θ

−

= −

= ∑  (32) 

where the likelihood of the observation ( )i sr jT  gives its 

past values ( ) ( ) ( )( ){ }1 , 2 , , 1j i s i s i sZ r T r T r j T− = −… , i.e. 

( )( ) ( )1H , 0,1, ,i s m jp r jT Z m M− = …  is the one step output 

prediction density based on Hm  defined by the m-th 

measurement model and the known statistics of  ( ) ( )m
sv jT . 

Hence, the decision function ( )i sg kT  may be obtained as: 

 
( )( ) ( )
( )( ) ( )

1 0

1 1

if max 0, 0 accept H  and set 0

if max 0, 0 accept H  and set 1 .

k
i s

k
i s

S m g kT

S m g kT

= =

> = +
 

V. CONCLUDING REMARKS 
The paper presents a model-based Sensor Fault Detection 

Isolation System for a mobile robot platform. Theoretical 
aspects for developing both the residual generation module 
and evaluation module are detailed and analyzed. Structural 
Analysis is the key model-based technique for residual 
generation. Two different solutions have been proposed for 
developing the residual evaluation module. The first is an 
“ad hoc solution” consisting of an adaptive/moving 
threshold test on the instantaneous values of the obtained 
residuals; the second is a “particle filtering-based likelihood 
ratio decision solution”. The result is a SFDIS which is able 
to detect every single/multiple faults of the considered 
sensor equipment. Sensor faults are detected and isolated in 
all situations where a single sensor fault is occurred at a 
time. The situation is slightly different when multiple 
sensor faults occur simultaneously. In this case, fault 
isolability cannot be guaranteed in all situations, as it is 
resumed in the fault signature table (TABLE V) 

 
TABLE V 

EFFECTS OF THE SENSOR FAULTS ON THE RESIDUALS 

 GPSf  ACCf  GYROf  ELf  ERf  

1r  ×  0 0 0 0 

2r  0 ×  0 0 0 

3r  0 0 ×  0 0 

4r  0 0 ×  ×  ×  

5r  0 ×  0 0 ×  

 
where GPSf , ACCf , GYROf , ELf  and ERf  denote "GPS antenna 
fault", "accelerometer fault", "gyroscope fault", "left optical 
encoder fault" and "right optical encoder fault", 
respectively, while " × " ("0") indicates that the fault in the 
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corresponding column affects (does not affect) the residual 
of the corresponding row (for further details, see [27], [29]). 

In conclusion, the proposed sensor FDI system could be 
easily integrated with any UGV navigation system. If a 
sensor fault is detected, it is isolated and the faulty sensor is 
identified. The accuracy, reliability and robustness of a 
SFDIS is a challenge problem. A possible solution of this 
problem is to increase the sensitivity of the residuals as 
much as possible.  

Abrupt faults have been considered in this paper, but also 
incipient faults are important. Different residual generation 
and evaluation modules are under investigation to permit 
detection and isolation of this kind of faults. 
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