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Abstract— In bipedal walking, a trajectory is acceptable
as long as it is repetitive and allows the foot to clear the
ground, while allowing the biped to move forward. Since the
actual trajectory followed by a biped is not as important, a
biped having more than one passive joints can also meet the
motion requirements. Due to physical constraints, a biped is
under-actuated at the ground contact with the feet. A biped
should exhibit limit cycles when moving continuously in an
environment. In general, it is difficult to prove existence of
limit cycles for nonlinear systems. In this work, we generate
limit cycles for a class of nonlinear under-actuated bipeds
using differential flatness. A specific inertia distribution renders
the biped design differentially flat. Differential Flatness allows
generation of a family of limit cycles amenable to numerical
optimization. The results are illustrated by two DOF biped.

I. INTRODUCTION

Bipedal locomotion is a problem that has been studied for
a couple of decades now, but still is far from being fully
solved. Bipedal robots are hard to control due to highly
nonlinear dynamics, under-actuation, impacts and change in
the structure of system across impacts. In biped walking,
strictly following a predefined trajectory is not critical.
Instead, criterion such as periodicity, ground clearance of the
swinging leg and the approximate shape of the trajectories
are important. Since a biped is not required to follow any
particular set of joint trajectories, it is not absolutely essential
to have an actuator at each joint. From natural constraints,
there can not be an actuator between the foot and the ground.
In the phase, where the foot is not flat on the ground, but is
rolling along the edge, it is under-actuated. These facts imply
that studying bipeds as nonlinear under-actuated systems can
add to the understanding of bipedal locomotion and control.

There can be three categories of a mechanical system
based on the number of actuators present compared to
the number of degrees-of-freedom: Fully actuated, Under-
actuated and completely Passive. One of the early attempts
for bipeds to walk purely under gravity, without actuation,
was by McGeer [1], who demonstrated that a planar robot
can walk down a shallow slope without any actuation. A
three dimensional analog of planar gravity powered robot has
also been demonstrated [2]. The fully actuated robots, such
as Honda humanoid robots [3] and Japanese HRP-2P [4]
are on the other extreme. Whereas passive robots require no
elaborate control system, actively controlled robots need very
complex controllers. On one hand, completely passive bipeds
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do not consume any energy but the modulation of motion
is limited. On the other hand, fully active bipeds control
elaborately the motion but at the expense of complexity and
energy. In between these two extremes is the class of under-
actuated bipeds. Previous works on under-actuated bipeds
include [5], [6], [7], [8]. The most critical requirement for
any system to be used as a biped is existence of limit cycles.
A fully actuated system can be made to go through any
trajectory but for a nonlinear under-actuated system it is
difficult to analytically prove the existence of limit cycles.

The technical approach adopted in this paper is to in-
vestigate the property of differential flatness [9], [10], [11]
for under-actuated planar bipeds. In general, for an under-
actuated system, not all outputs can be controlled arbitrarily.
The paradigm of differential flatness allows the determination
of those outputs that can be controlled arbitrarily for an
under-actuated system, called the flat outputs. The number of
these outputs equals the number of inputs. Also, differential
flatness provides a transformation between these flat outputs
and the system states and inputs, a diffeomorphism. Once
this property is established, trajectory between any two points
in its differentially flat output space is feasible and can be
shown to be consistent with the dynamics of the under-
actuated system. Input-state feedback linearizable systems
are a subclass of differentially flat systems. In this paper,
we show that certain choices of inertia distributions make an
under-actuated open-chain planar biped with revolute joints
feedback linearizable, i.e., also differentially flat. Hence,
cyclic trajectories can be guaranteed for these under-actuated
bipeds. A similar study for planar under-actuated open chain
linkages has been presented in [12].

The key contributions of this paper are as follows: (i)
Identification of a class of under-actuated nonlinear differen-
tially flat bipeds, (ii) Generation and tracking of limit-cycles
for the above-mentioned class of under-actuated bipeds (iii)
Presentation of a fabricated prototype of the biped.

The rest of the paper is organized as follows: Section II de-
scribes the class of differentially flat under-actuated bipeds.
The general procedure for the planning and tracking of limit-
cycles for these systems is presented in Section III. Specific
results for a two DOF biped are presented in sections IV.
Details of a fabricated prototype are presented in section V.
Finally, conclusions are presented in Section VI.

II. DYNAMIC DESIGN OF DIFFERENTIALLY FLAT
BIPEDS

A planar biped having arbitrary number of segments in
each of its leg is shown in Fig. 1. It does not have feet
and the ground contact is considered to be revolute. The
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Fig. 1. An n-DOF planar biped robot. Each leg is identical having (n −
1) links, making a total of 2(n − 1) links. All joints in stance leg are
locked reducing the effective number of links at any given time instant to
n, furthermore, some or all joints in the swing can get locked after impacts,
like the knee impact to avoid hyper-extension.

walking cycle consists of single support phases separated
by instantaneous impacts. It is assumed that both legs are
identical and all the joints in the stance leg are locked.
This general structure resembles an n degree-of-freedom
planar open chain manipulator, with the stance leg as the
first link and all other moving links present in the swing
leg. For an n degree-of-freedom open-chain robot described
by the coordinates q1,q2,...,qn, the structure of the dynamic
equations [13] is given by

A(q)q̈ + b(q, q̇) + g(q) = u, (1)

where q = (q1, q2, ..., qn)T , A(q) is an (n×n) positive defi-
nite inertia matrix, b(q, q̇) is a vector of nonlinear centripetal
terms, g(q) is the vector for gravity terms, and u is the vector
of joint actuator inputs, usually torques for revolute joints.

We are interested in studying this system for the under-
actuated case with a specific arrangement of actuators and
torsion springs at the joints. The properties of controllability
and feedback linearizability are difficult to establish for an
under-actuated system if the mass distribution within the
system is arbitrary [14]. In our recent work [12], we had
shown that certain choices of inertia distributions make an
under-actuated open-chain planar robot with revolute joints
feedback linearizable, i.e., also differentially flat. On similar
lines, we choose the mass distribution in the following
recursive way: (i) the center of mass of the last link n is
on joint axis n, (ii) the center of mass of the last two links
n and n− 1 lies on the joint axis n− 1, (iii) this procedure
repeats until the center of mass of the last n − 1 links, i.e.,
center of mass of links n, n−1,..,2 is on the second joint axis.
One of the ways by which such an inertia distribution can
be achieved is through counterbalancing. Since the inertially
fixed joint represents the foot contact with ground, it is left
passive. Last j joints such that j ≤ n − 1 are actuated and
rest of the joints i.e. joint 1 to joint (n− j) are passive with
torsional springs. The equations of motion of this system,
with the given special inertia distribution in each leg, has
the structure shown in (2), the superscript j signifies that in

each leg, j terminal joints are actuated. For the assumed
inertia distribution, it can be shown [12] that the inertia
matrix becomes a constant n × n matrix and assumes a
special reflected ’L’ pattern. Since, inertia matrix becomes
a constant, the coriolis terms go away. The n dimensional
vector g(q), corresponding to potential terms, is left with
only one nonlinear term shown in (4).

Aj q̈ + gj(q1) = u, (2)
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


. (4)

Here, m is the mass of each leg as a whole.

A. Feedback Linearizability of the Class of Bipeds

If the system is fully actuated, all joint trajectories q(t) are
feasible. However, if the system is under-actuated, only those
joint trajectories are valid that do not require inputs where
the actuators are missing. The objective of this section is to
investigate the property of feedback linearizability of bipeds,
whose equations of motion have the structure of (2). The
linearizing outputs are such that all output trajectories are
feasible i.e. they satisfy the dynamics of the system.

The open-chain system described in Section II has 2n
states, and potentially up to n inputs, if there is an actuator at
every joint. For a fully actuated system, one can choose the n
output functions simply as yi = qi, i = 1, ...n. Each of these
output functions qi can be shown to have relative degree 2
[9], [14]. As a result, the vector relative degree with these
n output functions qi is 2n. This equals the dimension of
the states 2n and the feedback linearizability of the fully-
actuated system is established. However, if the system is
under-actuated and has m inputs (m < n), we are only
allowed to choose m output functions that make up the vector
relative degree 2n.

In this paper, we study a particular choice of under-
actuation for this system with special mass distribution in
its last j bodies: A total of j joints starting from joint
n − j + 1 to joint n have actuators, while the remaining
n − j joints are passive but have torsional springs. With
this choice, the vector u in (2) takes the special form
u = [0, ..., , un−j+1, .., un]T . This system is under-actuated
by n − j, where j ≤ n − 1. Note that j takes values from
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1 to n − 1. This covers a broad range of designs with the
degree of under-actuation varying from 1 to n − 1.

B. Flat Outputs with Full Relative Degree

In order to prove the feedback linearizability of this
system, we choose j output functions and find their relative
degrees. These output functions are selected as,

y =




n∑
i=1

aj
iiqi

aj
n−j+2 n−j+2(

n−j+2∑
i=1

qi) +
n∑

i=n−j+3

aj
iiqi

...

aj
nn(

n∑
i=1

qi)




, (5)

where y ∈ Rj . It should be noted that each flat output is a
dot-product of a particular row of the inertia matrix in (3)
with the configuration variable vector, q = [q1, q2, ..., qn]T .
y1 is a dot product of the first row of mass matrix with q, y2

through yj are dot products of q with rows n−j+2 through n
of the inertia matrix, respectively. In order to find the relative
degree of a particular output function, we differentiate this
output until one or more inputs appear in the higher deriva-

tive of the output. For example, ÿj = aj
nn(

n∑
i=1

q̈i). From the

last equation in (2)-(4), for j ≤ n−1, ÿj = aj
nn(

n∑
i=1

q̈i) = un.

Hence, the relative degree of jth output is 2. Similarly, using
the last j−1 of the dynamic equations (2)-(4), all flat outputs
except the first have a relative degree of 2 making up a total
relative degree of 2(j − 1). For the system to be feedback
linearizable/differentially flat, we need a total relative degree
of 2n, therefore, the first output y1 has to have a relative

degree of 2(n − j + 1). On differentiating, ÿ1 =
n∑

i=1

aj
iiq̈i.

From the structure of the first equation in (2)-(4),

ÿ1 =
n∑

i=1

aj
iiq̈i = 2mgl sin(q1). (6)

Hence, the inputs do not appear in the second derivative ÿ1

and it must be differentiated further. On differentiating ÿ1

another two times, we get:

y
(4)
1 = −2mgl(sin(q1)q̇2

1 − cos(q1)q̈1). (7)

For j ≥ n−2, using the dynamical equations (2)-(4), q̈1 can
be solved explictly by subtracting the second equation from
the first equation,

q̈1 = [
2mgl sin(q1) + k2q2

aj
11 − aj

22

]. (8)

and,

y
(4)
1 = −2mgl

(
sin(q1)q̇2

1 − cos(q1)[
2mgl sin(q1) + k2q2

aj
11 − aj

22

]

)
.

(9)

As a result, the inputs do not appear in the fourth derivative
y
(4)
1 . If j = n − 1, using the above steps again, we get

y
(4)
1 = −2mgl

(
sin(q1)q̇2

1 − cos(q1)[
2mgl sin(q1) + u2

aj
11 − aj

22

]

)
.

(10)
Hence, for j = n − 1, as required the relative degree of y1

is 2(n − (n − 1) + 1) = 4.
For the case with j ≥ n − 2, we differentiate (9) twice

more and after substituting q̈1 from (8) we find that y
(6)
1 has

the following functional dependence:

y
(6)
1 = f6(q1, q̇1, q2, q̇2, q̈2). (11)

Two cases arise: (a) j = n − 2, (b) j ≥ n − 3. For each
of the two cases, q̈2 can be obtained from the Dynamical
Equations (2)-(4) by subtracting the third equation from the
second equation and substituting q̈1 from (8). For j = n−2,
we get,

q̈2 = [
k2q2 + u3

aj
33 − aj

22

] − [
2mgl sin(q1) + k2q2

aj
11 − aj

22

]. (12)

Substituting this in (13) we get,

y
(6)
1 = fu3

6 (q1, q̇1, q2, q̇2, u3). (13)

Input u3 has explicitly appeared in y
(6)
1 . Hence, the relative

degree of y1 is 6 = 2(n− j + 1) for j = n− 2, i.e. we have
met the relative degree condition. For j ≥ n − 3, we get:

q̈2 = [
k3q3 − k2q2

aj
22 − aj

33

] − [
2mgl sin(q1) + k2q2

aj
11 − aj

22

]. (14)

From (13) and (14), we can see that input has not appeared
explicitly in y

(6)
1 . We can continue this process until the input

un−j+1 appears in the highest derivative y
2(n−j+1)
1 . Hence,

it can be shown that the relative degree of the output function
y1 is 2(n− j + 1). We have already shown in the beginning
of this sub-section that each of the other output functions
yi, i = 2, ..., j have a relative degree 2. As a result, the
vector relative degree of the outputs y in (5) turns out to
be [2(n − j + 1), 2, ...,2, 2] and their sum equals the total
number of states 2n.

C. Existence of a Diffeomorphism

An additional property that must be shown with this
feedback linearization is the existence of a diffeomorphism
between the 2n states, j inputs and the j output functions and
their derivatives. From (6), we see that q1 = arcsin( ÿ1

2mgl ),
so ÿ1 trajectory has to be chosen such that the argument of
it arcsin(·) is always less than unity. Differentiating (6) once

and solving for q̇1 we get q̇1 = y
(3)
1

2mgl cos(q1)
, we can substitute

for q1 here to get an explicit relationship. For j = n − 1,
subtracting the definitions of y1 and y2 from each other we
get,

(a11 − a33)q1 + (a22 − a33)q2 = y1 − y2. (15)

From here, q2 can be computed by substituting for q1. We
can differentiate (15) and substitute [q1, q̇1] and compute q̇2.
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Similarly we need to compute y1 − y3 for [q3, q̇3], ...., y1 −
yn−1 for [qn−1, q̇n−1]. Finally, we can use [q1, ..., qn−1],
[q̇1, ..., q̇n−1] along with the definition of y1 and its first
derivative to compute [qn, q̇n]. u2 can be computed from
(10) and ui = ÿi−1, i = 3, ..., n from the last n− 2 dynamic
equations (2)-(4).

For j = n − 2, expressions for [q1, q̇1] remain the same.
[q2, q̇2] can be computed from (9) and its derivative by
substituting for [q1, q̇1]. Once [q1, q2] and the corresponding
rates are in place, [qi, q̇i] can be solved using expressions
for y1 − yi−2 and its derivative. Again, [qn, q̇n] can be
solved using the definition of [y1, ẏ1] and expressions for
[q1, ..., qn−1] and [q̇1, ..., q̇n−1]. u3 can be computed from
(13) and ui = ÿi−2, i = 4, ..., n from the last n− 3 dynamic
equations (2)-(4). These results can be generalized for cases
with j ≤ n − 1.

III. PLANNING AND CONTROL

A system can follow any flat output trajectory because the
state trajectories corresponding to any flat output trajectory,
by definition, already satisfy the dynamic equations. Once the
flat output and its diffeomorphism is established, any state of
the system can be converted into a flat output space. A user
can specify a set of such states that should be traversed by the
robot. Using methods of collocation, flat output trajectories
can be made to pass through a finite set of flat output
states, making point to point manoeuvres possible. The
nature of trajectories in between the specified states can be
modulated to satisfy constraints, e.g. positive ground normal
reaction for a biped robot. Numerical optimization has been
used to select a trajectory from amongst a parameterized
family of trajectories that satisfy all the motion constraints
while optimizing a criterion. Following steps are followed to
generate the family of trajectories: (i) First, we select a set of
states and corresponding time instants and transform these
states into flat outputs and their derivatives, (ii) Then, we
form a polynomial function of time (p1(t)) for flat outputs
such that it goes through the required set of flat output states
at given time instants. This set of states and time instants
are also treated as parameters of optimization, (iii) Then, we
form another polynomial p2(t) such that it gives zero flat
output states at the specified time instant, (iv) Using these
two polynomial functions we form the parameterized family
of flat output trajectories as follows:

y(t) = p1(t) +

p2(t)(
n∑

i=0

{
ai cos(

2iπt

T
) + bi sin(

2iπt

T
)
}

), (16)

where T is the time separation between the first and last state
in the chosen set of states. The coefficients (ai, bi), the set
of states and corresponding time instants are all parameters
of optimization. An objective function minimizing the sum
of squares of torques integrated over the entire period of the
gait is selected, (18). Once we have a feasible plan for the flat
outputs, we design a tracker in the flat output space. First,
we define a new set of states given by vi = y

(ri )
i , where

Fig. 2. (Left) A two DOF planar biped robot with no knee joint with only
hip joint actuated. (Right) The gait of the two DOF biped. The stance leg
and swing leg interchange their roles at the ground impact with a small foot
scuffing near the vertical configuration of the biped.

i = 1, ..., j and ri denotes the relative degree of the ith flat
output. Each of the new control inputs are computed using
(18).

f =

T∫

0

u · u dt. (17)

vi = y
(ri)
d + ki

1(y
(ri−1)
d − y(ri−1)) + ... + ki

ri
(yd − y). (18)

The subscript d in (18) denotes the planned tra-
jectories. The actual inputs can be computed using
the diffeomorphism having the functional form, ui =
gi(y1, ..., y

r1
1 , y2, ..., y

(r1)
2 , ..., yj, ..., y

(r1)
j ), i = 1, ..., j.

IV. TWO DOF BIPED

In this section, the methodology proposed is illustrated
with a simple example of a two degree-of-freedom biped
shown in Fig. 2. Both the legs are identical with the center-
of-mass of each leg at the hip joint. This biped is under-
actuated with only the hip joint actuated. At any given
instance one of the legs (stance leg) is in contact with the
ground and the other leg (swing leg) is swinging freely in
air. The legs interchange their role instantenously when the
swing leg hits the ground (ground impact). Following the
terminology presented in the previous section, for this biped,
n = 2 and j = 1, hence, this biped is under-actuated by
n − j = 1.

A. Dynamic Model

The dynamical equations are derived using the Lagrangian
and non-dimensionalized to give the following form.

[
1 ε
ε ε

] [
q̈1

q̈2

]
=
[

sin(q1)
u

]
,

ε =
I

2(I + ml2)
, τ =

t√
I+ml2

mgl

, u =
u2

2mgl
, (19)

where the dots represent the derivative w.r.t to normalized
time τ , u is a normalized input, m is the mass of each leg, l is
the length of each leg, I is the moment of inertia of each leg
about its center-of-mass, g is the acceleration due to gravity
and u2 is the input torque at the hip joint. The ground impact
happens when the swing leg hits the ground, it happens
when 2q1 + q2 = π. The impact is instantaneous, during
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which the angular velocities change but the configuration
is invariant. The impact model can be derived by using
conserving angular momentum or energy methods with a
standard procedure used in most of the walking literature
[1].

B. Flat Outputs and Diffeomorphism

As described in Section II-A, flat output is chosen to be
y = y1 + εy2. The diffeomorphism and input-output relation
are given in (20). Clearly, for the diffeomorphism to be
meaningful |ÿ| ≤ 1.

q1 = arcsin ÿ, q2 =
1
ε
(y − arcsin(ÿ)),

q̇1 =
y(3)

√
1 − ÿ2

, q̇2 =
1
ε
(ẏ − y(3)

√
1 − ÿ2

),

u = ÿ − 1 − ε√
1 − ÿ

[
y(4) +

y(3)2ÿ

1 − ÿ2

]
. (20)

C. Planning and Control

The swing foot of the biped has to clear the ground at all
times. Since, this is a two DOF biped there will be a small
amount of foot scuffing near the vertical configuration of
both the legs. We can minimize the amount of foot scuffing
by constraining the state qm in Fig. 2 at the beginning of
foot scuffing to be as close to the vertical configuration as
possible. If q− represents the state of the system just before
the impact, then the state of the system right after the impact
q+ can be determined from the impact model. Starting from
a particlar q− at time t = 0, the system goes through qm(t =
tm) and finally the impact happens at q−(t = T ) where T
is gait period. To ensure a limit cycle, the state at the end
of the gait just before the impact q− should be such that
it transforms to the q+ that the biped started off with. As
described in Section III, we followed these steps to plan
a trajectory. (i) First, a suitable q− and a qm close to a
vertical position were selected, (ii) Then, using the impact
model, a q+ is generated using the chosen q−, (iii) Then,
all the three states [q+, qm, q−] were converted into the flat
output states [y+, ym, y−] using (20), (iv) A class of flat
output trajectories is generated in the form (16). p1(t) =
12∑

i=0

ait
i ensures that the flat output trajectories goes through

the three flat output states at their respective time instants.
p2(t) = (t−T )4(t−tm)4t4 is homogeneous at the three time
instants, ensuring that the Fourier series chosen to modulate
the trajectories does not affect the three flat output states.

Once we have the parameterized trajectory the plan-
ning problem can be formulated as an optimization prob-
lem to minimize (18). The parameters of optimization
ai, bi, q

−, qm, tm, T . q−, qm are chosen such that the condi-
tion 2q1+q2 = π for both feet on ground is satisfied and the
angular velocities have a correct direction. The constraints

Fig. 3. Planned trajectories and tracking results for the two DOF
biped. With initial errors the system eventually converges to the planned
trajectories.

Fig. 4. The planned and actual ground normal reaction (N) and heel height
(h). The qualifier ”actual” implies the quantities for the system with initial
errors. Both normal reaction and heel height have to be positive.

imposed during optimization are:

T ≤ Tmax, |ÿ| ≤ 1,

−pi

4
< q−1 < 0, q̇1 < 0,

N > 0, h > 0,

−0.08 < qm1 < 0.08. (21)

The first constraint keeps the gait period in bounded. The
second constraint is necessary for the diffeomorphism to
exist. The third constraint ensures a reasonable initial state
of the biped. The fourth constraint makes sure that the
biped always moves forward. The fifth and sixth inequalities
constrains the ground normal reaction N and heel height to
be positive, respectively.The last constraint makes sure that
the foot scuff happens in a nearly vertical configuration. As
described in section III, a new input is defined as v = y(4) .
The equations for the real input and the feedback control law
are as follows:

u = ÿ − 1 − ε√
1 − ÿ

[
v +

y(3)2ÿ

1 − ÿ2

]
. (22)

v = y
(4)
d + k1(y

(3)
d − y(3)) + ... + ki

4(yd − y). (23)

D. Simulation Results

Planning and simulations for control were carried out for
ε = 0.07 based on the parameters of a design presented
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Fig. 5. A four link biped having a shank and a thigh in each leg. The
knee joint has a stopper to avoid hyper-extension and there are latches (A)
that lock the knee joint after the knee impact. Maxon motors (B) are placed
at the hip and they drive the corresponding axis via a pulley (C) and belt
arrangement. Counterweights (D) are used to place the center of mass at
the respective joints.

in the next section. The feedback gains in (23) were taken
to be [k1, k2, k3, k4] = [18, 119, 400,500]. The constraints
presented in the previous section were imposed at fixed
number of time instants during the gait. Once a plan was gen-
erated by numerical optimization, the validity of constraints
was verified for the entire gait. The cost function was also
evaluated by summing the square of input at fixed number
of time instants. An SQP based numerical optimization
routine fmincon c© from Mathworks was employed for the
optimization. Fig. 3 presents the planning and tracking results
for the biped. We can see that even with errors in initial
conditions the system eventually converges to the planned
trajectories. The normal reaction and heel height in Fig. 4
stay positive over a period of the gait.

V. A DESIGN OF THE BIPED

A four link planar biped has been fabricated for exper-
iments, shown in Fig. (5). The lateral stability problem
is avoided by using a crutch type design, where each leg
comprises of two widely spaced chain of links constrained
to move rigidly. Each of the two legs has a shank and a thigh
with a revolute knee joint and the hip joint. The knee joints
have a rigid stopper that avoids hyper-extension and there
are latches at both knee joints that lock the knee joint in
place after the knee impact. The motors are placed near the
hip reducing the counterweights required for center of mass
placement. Inclinometers are used to measure the absolute
orientation of the legs. With the knee joints locked, this biped
can be controlled as two degree-of-freedom biped simulated
in the previous section. The foot scuffing with only two
degrees-of-freedom can be avoided by using a pattern of
alternate tiles on the ground. This biped is 54cms in height,
weighs around 9kg.

VI. CONCLUSIONS

The property of differential flatness for a class of an n-
DOF under-actuated planar bipeds and its dependence on
inertia distribution within the system has been studied. It
has been shown that certain choices of inertia distributions
make an under-actuated planar biped with revolute joints
feedback linearizable, i.e., also differentially flat. Once this
property is established, trajectory between any two points
in its differentially flat output space is feasible and can be
shown to be consistent with the dynamics of the under-
actuated system. This enables the under-actuated system to
follow both cyclic as well as point to point trajectories. The
entire methodology is illustrated by applying it to a two
DOF planar under-actuated bipeds. Planning and tracking
results from simulations were presented for the same. We
are currently in the process of setting up an experiment to
validate the ideas presented. In future, we will study issues
of energetics and robustness of the proposed design.
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