

Abstract— This paper presents implementation details of a
model-based sensor fault detection and isolation system
(SFDIS) applied to unmanned ground vehicles (UGVs).
Structural analysis, applied to the nonlinear model of the
UGV, is followed to build the residual generation module,
followed by a residual evaluation module capable of detecting
single and multiple sensor faults, as detailed in part I [1]. The
overall proposed sensor fault detection and isolation system
has been tested in real-time on the ATRV-Jr mobile robot
when following different trajectories in an outdoors
environment. The robot sensor suite includes a Global
Positioning System (GPS) antenna, an Inertial Measurement
Unit (IMU), and two incremental optical encoders.

I. INTRODUCTION
HIS paper has been motivated by the challenge to
implement on an unmanned ground vehicle (UGV) and

test in real-time a model-based sensor fault detection and
isolation (FDI) system by integrating a residual generation
module with a residual evaluation module. Experimental
validation of the proposed system and exhaustive tests are
presented here in real-time considering single and multiple
sensor faults. The UGV, in this case a differential drive
ATRV-Jr, is equipped with a sensor suite that includes a
Global Positioning System (GPS) antenna measuring
absolute position in the geodetic coordinates, an Inertial
Measurement Unit (IMU) measuring robot linear
accelerations and angular velocities, and incremental
optical encoders mounted on motors measuring motor
rotation.

Given a UGV (or any system), faults may be overcome by
using robust “model-based fault diagnosis”. A model-based
fault diagnosis system consists in principle of a residual
generation module and a residual evaluation module [2]-[9]
that evaluates residuals deciding about the likelihood and/or
presence of a fault. The decision process/rule applied to
determine if any faults have occurred may be a threshold
test on the instantaneous values or moving averages of the
residuals, or it may follow statistical decision theory
techniques. A drawback of the model-based techniques,
especially those applied to the nonlinear systems, is that

these may be very sensitive to measurement noise, as it is
the case with UGVs. Therefore, noise filtering of the sensor
measurements has been introduced. A Kalman filter (KF)
based error model has been derived for the vehicle IMU
sensor to estimate true values of robot orientation, angular
rate, linear acceleration, velocity, position and related
errors; filtered values are then considered in the residual
generation module as shown in Figure 1 of the first part of
this work [1] (see also [10]). Note that the KF may be
enhanced to include GPS and encoder data, but since
experiments have been performed in a limited geographic
area, filtered GPS data do not offer any substantial
improvement of the performance of the developed fault
detection and isolation system.

In this work, additive and abrupt sensor faults have been
considered, describing changes in the system states
interpreted as sensor faults. The residual generator module
[11], generates specific residuals to detect sensor faults
following structural analysis [12]-[15] of the UGV
nonlinear model, determining existing redundancies in
sensors.

The residual evaluation module reduces to the problem of
detecting a change in the mean of a random sequence.
Several approaches have been proposed to detect changes in
signals or systems. They include likelihood ratio based
approaches such as the Generalized Likelihood Ratio (GLR)
test [16] or the marginal likelihood ratio test [17], both
effective whenever an accurate and tractable signal model
exists and can be implemented. On-line versions based on
statistical filtering have also shown good performance [16],
[18] while other model-based approaches performing
efficient off-line Bayesian segmentation include [19] and
[20]. Other general and ad-hoc model-free methods have
been designed to detect changes in signals with typical
examples being time-frequency approaches [21] and wavelet
approaches [22], [23]. Two different methods have been
proposed in this paper. The first is a novel “ad hoc solution”
consisting of an adaptive/moving threshold test on the
instantaneous values of the obtained residuals. The second

Andrea Monteriù*‡, Prateek Asthan*, Kimon Valavanis* and Sauro Longhi‡

*Department of Computer Science and Engineering

University of South Florida – Tampa, FL 33620

‡Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione
Università Politecnica delle Marche – 60131 Ancona, Italy

Model-Based Sensor Fault Detection and Isolation System for
Unmanned Ground Vehicles: Experimental Validation (part II)

T

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC11.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2744

is a “particle filtering-based likelihood ratio decision
solution”.

Experimental validation of the proposed scheme has been
performed on a differential drive mobile robot, the ATRV-Jr
manufactured by iRobot. The robot model has been derived
using the inertial navigation system (INS) [24] and
odometer equations [25]. Different faults have been
investigated and analyzed for different trajectories and
tasks. Experimental tests include both single sensor faults
and multiple sensor faults. In all cases, the proposed scheme
detected and isolated occurred faults within one sample
time. Performed experiments have also contributed to a very
thorough understanding of occurring time lags between
sensor data recordings and residual and change detector
calculation that unless taken into consideration, the sensor
FDI system will not function properly; this is an additional
contribution of this paper. Further, most published papers
studying the FDI problem using model-based techniques
and structural analysis do not present experimental
validation, while simulation results do not consider the
residual evaluation problem. Last, but not least, an
additional contribution is that the developed sensor FDI
system has been integrated with a background distributed
architecture that supports heterogeneous robot systems as
detailed in [26].

Section II of this paper describes implementation details
of the proposed real-time sensor fault detection and
isolation system. Significant experimental results are shown
in Section III, while in Section IV concluding remarks end
this paper.

II. REAL-TIME IMPLEMENTATION OF THE SFDS

A. Background information
The proposed FDI system has been implemented and

tested experimentally on a differential drive ATRV-Jr
mobile robot platform shown in Fig. 1. The objective of the
sensor FDI system is to detect and isolate occurred fault(s)
(and inform the user/ground control station if needed). All
experiments have been performed outdoors in an
environment with several tall buildings (affecting GPS
readings), vegetation and palm trees.

Fig. 1 ATVR-Jr mobile robot.

The robot sensor suite includes a color camera mounted
on a pan/tilt mechanism, Sick planar laser range finder,
electronic compass, Garmin 16A GPS, odometers, wireless
Ethernet connectivity and Crossbow's IMU 400CC-200, all
connected to and integrated with the ATRV-Jr on-board
computer (Pentium IV, 3.2GHz, 2GB Memory) through a
Rocketport multi serial port card. Three sensors are used to
evaluate the FDI system: Garmin 16A GPS, internal
odometry and Crossbow's IMU 400CC-200, with measured
resolutions as shown in TABLE I [27], [28].

TABLE I
SENSOR RESOLUTION

SENSOR RESOLUTION
IMU 400C-200 gyroscope < 0.05 °/s
IMU 400C-200 accelerometer < 1.25 mg
Garmin 16A GPS < 3 m

GPS, IMU and Odometry data are recorded in real-time
as the robot follows the test trajectories shown in Fig. 2 and
Fig. 3. Recorded sensor data are then used as input to
generate the five residuals on-line and the change detectors
following the block diagram steps shown in Fig. 1 of [1].

Fig. 2 Trajectory #1 NE-plane.

Fig. 3 Trajectory #2 NE-plane.

ThC11.4

2745

Additive sensor abrupt faults are considered; they are
introduced as “user imposed/software generated step faults”
added to the recorded sensor data at different times as the
robot moves along a trajectory. In essence, after a fixed
number of recorded “faultless” sensor data samples, an
additive error is introduced into one or more of the sensors.

The magnitude of the step faults is shown in TABLE II;
values have been calculated by considering sensor resolution
and the signal to noise ratio of each residual.

TABLE II

MAGNITUDE OF THE EXPERIMENTAL STEP FAULTS

PARAMETER FAULT
MAGNITUDE

GPS latitude and longitude 12.75 m
forward acceleration 1.25 mg
yaw angular rate 0.17 °/s
left wheel angular velocity 2.85 °/s
rigth wheel angular velocity 2.85 °/s

An advantage of the overall system in its current

configuration is that it may function in “actual” real-time
and “pseudo” real-time. The former is obvious, the latter
refers to collecting sensor data in real-time as the robot
moves, but using them off-line to test and evaluate the
sensor FDI system by generating residuals and change
detectors.

The sensor FDI system has been integrated with the
already existing Distributed Field Robot Architecture
(DFRA) [26], suitable for navigation and control of teams of
heterogeneous ground robot vehicles. Since the integration
is rather involved and complicated and has resulted in
several interesting observations, details are provided next.

B. Implementation and integration issues
DFRA extends the SFX managerial architecture [29] and

it is implemented in Java/Jini using modular services to
implement robot capabilities, including sensors, effectors,
and behaviours. Modules are exported to a distributed run-
time system as services with certain attributes and types.
Services can then be searched for (using a distributed-object
lookup service) based on functional attributes rather than
details of actual implementation or physical location. This
architecture allows a decoupling of client and server,
providing an interface (proxy) to the requesting process in a
modular fashion regardless of where the requested service
physically resides or how it is implemented at the local level
[30]. DFRA implements ‘Sensing Manager’ module that is
responsible for error classification and handling.

The operating system used is Red Hat Linux 9 (RH9),
kernel version 2.6.7, a non real time operating system.
DFRA uses the standard Java Virtual Machine (JVM)
thread scheduling mechanism to handle various service
threads within a JVM. The specific low level DFRA
services utilized in this research are: GPS service to provide
the latitude and longitude of the UGV; IMU service to

provide the acceleration and angular rate of the UGV;
Odometry Service to provide UGV position; Drive Motor
effector service to drive the UGV along a specific trajectory.

All ATRV-Jr controller designs and navigation routines
have been derived using MATLAB/Simulink as well as
Java. The MATLAB workspace environment is wrapped
with JMatLink in conjunction with the Jini distributed
object platform allowing modules and services implemented
as native interpreted MATLAB code to be accessed as
remote and distributed objects and be directly incorporated
into behavioral architectures. This configuration, perhaps
redundant but very useful, provides also a complete
MATLAB based simulation environment that may be used
to test and validate off-line the sensor FDI system using real
sensor data (collected in real-time but processed off-line).

However, since the backbone architecture is in Java/Jini,
complete integration, verification and validation of residual
and change detector correctness required derivation of two
modules developed in Java, called ‘ResidualCalcOffline’
and ‘ResidualCalcOnline’.

The purpose of the Java based ‘ResidualCalcOffline’
module is to receive real-time GPS, IMU and Odometry
data and generate residuals and change detectors off-line
duplicating in reality what the MATLAB/Simulink module
does. This validates in an indirect way that Java based
modules and MATLAB/Simulink based modules function
identically. The Java based ‘ResidualCalcOffline’ module is
also being converted to a Java based ‘ResidualCalcOnline’
one that generates on-line residuals and change detectors
during actual experiments, validating again identical
operation in real-time of Java based and
MATLAB/Simulink based modules. ‘ResidualCalcOnline’
updates the ‘Sensing Manager’ with the sensor status.
‘Sensing Manager’ passes on the sensor status to a client
GUI. Whenever a sensor fault occurs, the ‘Sensing
Manager’ updates the services that are using the faulty
sensor and disables the faulty sensor. ‘Sensing Manager’
enables the faulty sensors when they recover from the
failure.

C. Residual and change detector calculations –
observations

One data sample of ‘ResidualCalcOnline’ consists of an
IMU, odometry and GPS readings recorded at the same
time. ResidualCalcOnline includes two threads: i) ‘Data
collection’ thread that records continuously readings from
GPS, odometry and IMU at a (best effort) sampling rate of
200 msec; this sample time interval is chosen because of the
GPS sensor update rate - the slowest of all three sensors; ii)
‘Residual calculation’ thread that calculates residuals and
change detectors on-line by retrieving data stored by the
‘Data collection’ thread. However, close observation of
sensor readings reveals that the 200 msec sample time is not
accurately achieved and that for each data sample there is a

ThC11.4

2746

small time lag between the three sensor readings. This
happens because: i) the three sensor readings cannot be
recorded at the same time; instead, the order is IMU,
odometry and GPS, introducing a small time lag between
the IMU–odometry and odometry–GPS readings. ii) The
Java garbage collector obstructs DFRA from gaining
complete control over the CPU scheduling time. Therefore,
hard real-time guarantees cannot be achieved. Performed
experiments have resulted in the sequence diagram and
variations shown in Fig. 4, while

Fig. 5 illustrates actual varying sample time when the
robot follows the arc trajectory shown in Fig. 3. Fig. 6 and
Fig. 7 illustrate observed measured time lags between IMU-
odometry and odometry-GPS readings when the robot
follows the arc trajectory.

Fig. 4 Sequence diagram for service interaction. The times (in milli

seconds) above reflect the observed time delays.

Fig. 5 Sample time for different samples of an arc trajectory experiment.

Fig. 6 Time lag between IMU and Odometer readings for different samples of
an arc trajectory experiment.

Fig. 7 Time lag between Odometer and GPS readings for different samples of

an arc trajectory experiment.

Fig. 8 The various states of the ‘Data collection’ and ‘Residual calculation’

threads.

ThC11.4

2747

In order to gain further insight to involved delays that
may impact the sensor FDI system reliability, Fig. 8 shows
the three states of the ‘Data collection’ and ‘Residual
calculation’ threads for three sequential data samples; that
is, the Figure displays the time interval between recording a
data sample and its corresponding residual and change
detector generation.

Fig. 9 Time interval between a data sample getting recorded and its
corresponding residual and change detector generation for different data

samples of an arc trajectory experiment.

For ‘Data collection’ the states are: Executing - the

thread collects and records sensor readings; Waiting - the
thread sleeps for the 200 ms time interval; Ready - the
thread is ready to collect sensor data and waits for CPU
allocation.

For ‘Residual collection’ the corresponding states are:
Executing - the thread calculates residuals and change
detectors for a particular data sample (requires <30 msec for
each data sample); Waiting - the thread is waiting for new
data samples to be recorded (this happens after the thread
has calculated residuals and change detectors for all data
samples collected by the ‘Data collection’ thus far); Ready -
the thread is ready to calculate residuals and change
detectors for the new data samples and is waiting for CPU
allocation.

Fig. 9 shows the time interval between a recorded data
sample and its corresponding residual and change detector
for different data samples of the arc trajectory experiment.

III. EXPERIMENTAL RESULTS
Sensor data are collected and residuals are generated on-

line. For cases with one sensor fault, after a fixed number of
data samples, an additive error is introduced into one of the
sensors. Experiments consider single and multiple faults per
trial following the same principle of introducing additive
errors.

The implemented SFDIS is able to detect every
single/multiple faults of the considered sensor equipment.

Moreover, sensor faults are detected and isolated in all
situations where a single sensor fault is occurred at a time.
The situation is slightly different when multiple sensor
faults occur simultaneously. In this case, fault isolability
cannot be guaranteed in all situations, as it is resumed in
the fault signature table, Table III

TABLE III
EFFECTS OF THE SENSOR FAULTS ON THE RESIDUALS

 GPSf ACCf GYROf ELf ERf

1r × 0 0 0 0

2r 0 × 0 0 0

3r 0 0 × 0 0

4r 0 0 × × ×

5r 0 × 0 0 ×

where GPSf , ACCf , GYROf , ELf and ERf denote "GPS antenna
fault", "accelerometer fault", "gyroscope fault", "left optical
encoder fault" and "right optical encoder fault",
respectively, while " × " ("0") indicates that the fault in the
corresponding column affects (does not affect) the residual
of the corresponding row (for further details, see [9]).

Exhaustive and detailed experiments have been
conducted in different environment conditions, mobile tasks
and trajectories. For brevity, only a few selected results are
presented here which are related solely to a straight line
trajectory.

Fig. 10 Comparison between the two proposed residual evaluation modules.

Two different residual evaluation solutions have been

considered and experimented in real-time: a novel solution
based on adaptive/moving threshold test, and a particle
filtering-based likelihood ratio decision solution (as detailed

ThC11.4

2748

in [1]). Performance of both proposed residual evaluation
modules has been analyzed and compared. It has been
observed that the two proposed decision modules have
shown the same fault detection performances. For example,
in Figure 10, the GPS fault has been detected at the same
time; the same observation holds for all other experiments.
However, the decision module based on the particle filter
implementation requires more computational time,
therefore, the novel adaptive/moving thresholds decision
module may be preferable to use.

Following a series of significant experimental figures
which reflect in sequence: “faultless case”; “GPS fault
case”; “acceloremeter fault case”; “GPS fault plus
accelerometer fault plus gyroscope fault simultaneously
occurring” and “accelerometer fault plus gyroscope fault
plus right optical encoder fault simultaneously occurring”.

 In Fig. 11, the faultless case is presented. It can be
seen that all five residuals deviate from zero only due to the
measurement noise.

A fault on GPS antenna affects only residual 1r . This can
be seen on Table III and it is confirmed by the experimental
results reported in Fig. 12. In this experiment, the sensor
fault has been generated at 350-th time sample, and the
fault is detected and isolated at 351-th.

Table III shows that accelerometer fault affects both
residuals 2r and 5r and this is also validated by
experimental results shown in Fig. 13. In this case, the
accelerometer fault has been generated at 380-th time
sample and the change detector of the residual issues an
alarm after a sample time, which is the minimum possible
detection time for the considered system architecture.

Experimental results of multiple sensor faults are
presented in Fig. 14, Fig. 15, Fig. 16 and Fig. 17, where
Fig. 14 and Fig. 16 shown the residuals, while Fig. 15 and
Fig. 17 shown the correspondent decision functions. In the
first experiment (see Fig. 14 and Fig. 15), the GPS antenna,
the accelerometer and gyroscope fail simultaneously
affecting all five residuals. Note that although it is possible
to assert that GPS antenna, accelerometer and gyroscope
fail for sure (1r , 2r and 3r deviate from zero), nothing it can
be said about left/right optical encoder fault. This limitation
can be overcame, for instance, adding new sensors so that
the redundancy increases. From Fig. 15, it is possible to see
how the developed decision module is able to detect the
presence of all occurred faults; in fact, 1g , 2g , 3g , 4g and

5g issue an alarm only after a time sample.
In the second experiment (see Fig. 16 and Fig. 17),

accelerometer, gyroscope and the right optical encoder fail
at the same time affecting residuals 2r , 3r , 4r and 5r , as
described in Table III. Fig. 17 shows how the decision
function 2g , 3g , 4g and 5g issue an alarm, while 1g does

not; in fact, 1g issue an alarm only when GPS antenna
fails, as described in Table III.

IV. CONCLUSIONS
The paper presents experimental results of a real-time

model-based Sensor Fault Detection Isolation System that
has been implemented and tested on a mobile robot
platform. Implementation details of the residual generation
and evaluation modules have been presented, obtaining a
decision function for each residual.

One of the most important aspects and contributions of
this paper is the on-line experimentation of the FDI system
and its “dual” validation in actual real-time and pseudo
real-time through MATLAB and JAVA development
environments. All sensor faults have been detected and
isolated with a maximum detection delay of one sample
time.

Experimentation and obtained results suggest that the
FDI system is reliable and robust and easily applicable to
different mobile robot platforms. An improved experimental
architecture is under developing for further research
activities.

Fig. 11 Faultless case: (a), (b), (c), (d), (e) are residuals 1r , 2r , 3r , 4r and 5r ,

respectively.

REFERENCES
[1] A. Monteriù, P. Asthana, K. Valavanis, and S. Longhi, “Model-based

sensor fault detection and isolation system for unmanned ground
vehicles: theoretical aspects (part I)”, IEEE International Conference
on Robotics and Automation (ICRA'07), Rome, Italy, April 2007.

[2] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for
Dynamic Systems. Boston, MA USA: Kluwer Academic Pub., 1998.

[3] E. Y. Chow and A. S. Willsky, “Issues in the development of a general
design algorithm for reliable failure detection,” in Proc. 19-th IEEE
Conf. Decis. and Contr., Albuquerque, 1980, pp. 1006–1012.

ThC11.4

2749

[4] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy - a survey and some new results,”
Automatica, vol. 26, no. 3, pp. 459–474, 1990.

[5] R. J. Patton and J. Chen, “A review of parity space approaches to fault
diagnosis,” in IFAC Safeprocess symposium, Baden-Baden, 1991.

[6] R. Isermann, “Supervision, fault-detection and fault-diagnosis methods
an introduction,” Control Eng. Practice, vol. 5, pp. 639–652, 1997.

[7] R. J. Patton, P. M. Frank, and R. N. Clark, Eds., Issues of fault
diagnosis for dynamic systems. New York: Springer-Verlag, May
2000.

[8] R. Izadi-Zamanabadi, “Structural analysis approach to fault diagnosis
with application to fixed-wing aircraft motion,” in American Control
Conference, USA, 2002.

[9] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
Fault-Tolerant Control, ser. Heidelberg. Springer-Verlag, 2003.

[10] A. Monteriù, P. Asthana, K. Valavanis, and S. Longhi, “Experimental
validation of a real-time model-based sensor fault detection and isolation
system for unmanned ground vehicles”, in Proc. of the 14th
Mediterranean Conference on Control Automation (MED 2006),
Ancona, Italy, June 2006.

[11] M. Blanke, V. Cocquempot, R. I. Zamanabadi, and M. Staroswiecki,
“Residual generation for the ship benchmark using structural approach,”
in Proc. of Int. Conference on CONTROL’98, Swansea, UK, Sep 1998.

[12] M. Staroswiecki and P. Declerck, “Analytical redundancy in non linear
interconnected systems by means of structural analysis,” IFAC
Advanced Information Processing in Automatic Control, 1989.

[13] P. Declerck and M. Staroswiecki, “Characterization of the canonical
components of a structural graph for fault detection in large scale
industrial plants,” ECC91, pp. 298–303, 1991.

[14] M. Blanke, H. Niemann, and T. Lorentzen, “Structural analysis – a case
study of the Rømer satellite,” in Proc. of IFAC Safeprocess 2003,
Washington, DC, USA, 2003.

[15] A. Monteriù, “Fault-tolerant methods for sensor fusion,” Master’s thesis,
Universit`a Politecnica delle Marche, Ancona, Italy—Technical
University of Denmark, Kongens Lyngby, Denmark, 2003.

[16] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes:
Theory and Application. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
Apr 1993.

[17] F. Gustafsson, “The marginalized likelihood ratio test for detecting
abrupt changes,” IEEE Trans. on Automatic Control, vol. 41, pp. 66–
78, 1996.

[18] V. Kadirkamanathan, P. Li, M. Jaward, and S. Fabri, “Particle
filteringbased fault detection in non-linear stochastic systems,”
International Journal of Systems Science, vol. 33, no. 4, pp. 259–265,
March 2002.

[19] E. Punskaya, C. Andrieu, A. Doucet, and W. J. Fitzgerald, “Bayesian
curve fitting with applications to signal segmentation,” IEEE trans. on
Signal Processing, vol. 50, no. 3, pp. 747–758, 2002.

[20] J. Y. Tourneret, M. Doisy, and M. Lavielle, “Bayesian retrospective
detection of multiple changepoints corrupted by multiplicative noise.
application to sar image edge detection,” IEEE trans. on Signal
Processing, vol. 83, no. 9, pp. 1871–1887, September 2003.

[21] H. Laurent and C. Doncarli, “Stationarity index for abrupt changes
detection in the time-frequency plane,” IEEE Signal Processing Letters,
vol. 5, no. 2, pp. 43–45, February 1998.

[22] M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet-based statistical
signal processing using hidden markov models,” IEEE trans. On Signal
Processing, vol. 46, no. 4, pp. 886–902, April 1998.

[23] E. Hitti and M. F. Lucas, “Wavelet-packet basis selection for abrupt
changes detection in multicomponent signals,” EUSIPCO-98, 1998.

[24] J. A. Farrell and M. Barth, The Global Positioning System & Inertial
Navigation. McGraw-Hill, 1998.

[25] J. Borenstein, H. R. Everett, L. Feng, S. W. Lee, and R. H. Byrne,
“Where am I? sensors and methods for mobile robot positioning,” The
University of Michigan, Tech. Rep., 1996.

[26] M. Long, “Creating a distributed field robot architecture for multiple
robots,” Master’s thesis, University of South Florida, November 2004.

[27] [Online]. Available: http://www.xbow.com/index.aspx
[28] [Online]. Available: http://www.garmin.com/manuals/GPS17N GPS16

17NSeriesTechnicalSpecification.pdf
[29] R. Murphy, Intro to AI Robotics. MIT Press, 2000.
[30] M. Long, A. Gage, R. Murphy, and K. Valavanis, “Application of the

distributed field robot architecture to a simulated demining task,” IEEE
International Conference on Robotics and Automation (ICRA), 2005.

Fig. 12 GPS fault: (a), (b), (c), (d), (e) are residuals 1r , 2r , 3r , 4r and 5r ,

respectively.

Fig. 13 Accelerometer fault: (a), (b), (c), (d), (e) are residuals 1r , 2r , 3r , 4r

and 5r , respectively.

ThC11.4

2750

Fig. 14 GPS plus ACC plus GYRO fault: (a), (b), (c), (d), (e) are

residuals 1r , 2r , 3r , 4r and 5r , respectively.

Fig. 15 GPS plus ACC plus GYRO fault: (a), (b), (c), (d), (e) are decision

functions 1g , 2g , 3g , 4g and 5g , respectively.

Fig. 16 ACC plus GYRO plus right encoder fault: (a), (b), (c), (d), (e) are

residuals 1r , 2r , 3r , 4r and 5r , respectively.

Fig. 17 ACC plus GYRO plus right encoder fault: (a), (b), (c), (d), (e) are

decision functions 1g , 2g , 3g , 4g and 5g , respectively.

ThC11.4

2751

