
 

 

Abstract— This paper presents implementation details of a 
model-based sensor fault detection and isolation system 
(SFDIS) applied to unmanned ground vehicles (UGVs). 
Structural analysis, applied to the nonlinear model of the 
UGV, is followed to build the residual generation module, 
followed by a residual evaluation module capable of detecting 
single and multiple sensor faults, as detailed in part I [1]. The 
overall proposed sensor fault detection and isolation system 
has been tested in real-time on the ATRV-Jr mobile robot 
when following different trajectories in an outdoors 
environment. The robot sensor suite includes a Global 
Positioning System (GPS) antenna, an Inertial Measurement 
Unit (IMU), and two incremental optical encoders. 

I. INTRODUCTION 
HIS paper has been motivated by the challenge to 
implement on an unmanned ground vehicle (UGV) and 

test in real-time a model-based sensor fault detection and 
isolation (FDI) system by integrating a residual generation 
module with a residual evaluation module. Experimental 
validation of the proposed system and exhaustive tests are 
presented here in real-time considering single and multiple 
sensor faults. The UGV, in this case a differential drive 
ATRV-Jr, is equipped with a sensor suite that includes a 
Global Positioning System (GPS) antenna measuring 
absolute position in the geodetic coordinates, an Inertial 
Measurement Unit (IMU) measuring robot linear 
accelerations and angular velocities, and incremental 
optical encoders mounted on motors measuring motor 
rotation. 

Given a UGV (or any system), faults may be overcome by 
using robust “model-based fault diagnosis”. A model-based 
fault diagnosis system consists in principle of a residual 
generation module and a residual evaluation module [2]-[9]  
that evaluates residuals deciding about the likelihood and/or 
presence of a fault. The decision process/rule applied to 
determine if any faults have occurred may be a threshold 
test on the instantaneous values or moving averages of the 
residuals, or it may follow statistical decision theory 
techniques. A drawback of the model-based techniques, 
especially those applied to the nonlinear systems, is that 

these may be very sensitive to measurement noise, as it is 
the case with UGVs. Therefore, noise filtering of the sensor 
measurements has been introduced. A Kalman filter (KF) 
based error model has been derived for the vehicle IMU 
sensor to estimate true values of robot orientation, angular 
rate, linear acceleration, velocity, position and related 
errors; filtered values are then considered in the residual 
generation module as shown in Figure 1 of the first part of 
this work [1] (see also [10]). Note that the KF may be 
enhanced to include GPS and encoder data, but since 
experiments have been performed in a limited geographic 
area, filtered GPS data do not offer any substantial 
improvement of the performance of the developed fault 
detection and isolation system. 

In this work, additive and abrupt sensor faults have been 
considered, describing changes in the system states 
interpreted as sensor faults. The residual generator module 
[11], generates specific residuals to detect sensor faults 
following structural analysis [12]-[15] of the UGV 
nonlinear model, determining existing redundancies in 
sensors. 

The residual evaluation module reduces to the problem of 
detecting a change in the mean of a random sequence. 
Several approaches have been proposed to detect changes in 
signals or systems. They include likelihood ratio based 
approaches such as the Generalized Likelihood Ratio (GLR) 
test [16] or the marginal likelihood ratio test [17], both 
effective whenever an accurate and tractable signal model 
exists and can be implemented. On-line versions based on 
statistical filtering have also shown good performance [16], 
[18] while other model-based approaches performing 
efficient off-line Bayesian segmentation include [19] and 
[20]. Other general and ad-hoc model-free methods have 
been designed to detect changes in signals with typical 
examples being time-frequency approaches [21] and wavelet 
approaches [22], [23]. Two different methods have been 
proposed in this paper. The first is a novel “ad hoc solution” 
consisting of an adaptive/moving threshold test on the 
instantaneous values of the obtained residuals. The second 
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is a “particle filtering-based likelihood ratio decision 
solution”.  

Experimental validation of the proposed scheme has been 
performed on a differential drive mobile robot, the ATRV-Jr 
manufactured by iRobot. The robot model has been derived 
using the inertial navigation system (INS) [24] and 
odometer equations [25]. Different faults have been 
investigated and analyzed for different trajectories and 
tasks. Experimental tests include both single sensor faults 
and multiple sensor faults. In all cases, the proposed scheme 
detected and isolated occurred faults within one sample 
time. Performed experiments have also contributed to a very 
thorough understanding of occurring time lags between 
sensor data recordings and residual and change detector 
calculation that unless taken into consideration, the sensor 
FDI system will not function properly; this is an additional 
contribution of this paper. Further, most published papers 
studying the FDI problem using model-based techniques 
and structural analysis do not present experimental 
validation, while simulation results do not consider the 
residual evaluation problem. Last, but not least, an 
additional contribution is that the developed sensor FDI 
system has been integrated with a background distributed 
architecture that supports heterogeneous robot systems as 
detailed in [26]. 

Section II of this paper describes implementation details 
of the proposed real-time sensor fault detection and 
isolation system. Significant experimental results are shown 
in Section III, while in Section IV concluding remarks end 
this paper. 

II. REAL-TIME IMPLEMENTATION OF THE SFDS 

A. Background information 
The proposed FDI system has been implemented and 

tested experimentally on a differential drive ATRV-Jr 
mobile robot platform shown in Fig. 1. The objective of the 
sensor FDI system is to detect and isolate occurred fault(s) 
(and inform the user/ground control station if needed). All 
experiments have been performed outdoors in an 
environment with several tall buildings (affecting GPS 
readings), vegetation and palm trees. 

 
Fig. 1 ATVR-Jr mobile robot. 

The robot sensor suite includes a color camera mounted 
on a pan/tilt mechanism, Sick planar laser range finder, 
electronic compass, Garmin 16A GPS, odometers, wireless 
Ethernet connectivity and Crossbow's IMU 400CC-200, all 
connected to and integrated with the ATRV-Jr on-board 
computer (Pentium IV, 3.2GHz, 2GB Memory) through a 
Rocketport multi serial port card. Three sensors are used to 
evaluate the FDI system: Garmin 16A GPS, internal 
odometry and Crossbow's IMU 400CC-200, with measured 
resolutions as shown in TABLE I [27], [28]. 

TABLE I 
SENSOR RESOLUTION 

SENSOR RESOLUTION 
IMU 400C-200 gyroscope < 0.05 °/s 
IMU 400C-200 accelerometer < 1.25 mg 
Garmin 16A GPS < 3 m 

GPS, IMU and Odometry data are recorded in real-time 
as the robot follows the test trajectories shown in Fig. 2 and 
Fig. 3. Recorded sensor data are then used as input to 
generate the five residuals on-line and the change detectors 
following the block diagram steps shown in Fig. 1 of [1]. 

Fig. 2 Trajectory #1 NE-plane. 

Fig. 3 Trajectory #2 NE-plane. 
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Additive sensor abrupt faults are considered; they are 
introduced as “user imposed/software generated step faults” 
added to the recorded sensor data at different times as the 
robot moves along a trajectory. In essence, after a fixed 
number of recorded “faultless” sensor data samples, an 
additive error is introduced into one or more of the sensors.  

The magnitude of the step faults is shown in TABLE II; 
values have been calculated by considering sensor resolution 
and the signal to noise ratio of each residual. 

 
TABLE II 

MAGNITUDE OF THE EXPERIMENTAL STEP FAULTS 

PARAMETER FAULT 
MAGNITUDE 

GPS latitude and longitude 12.75 m 
forward acceleration 1.25 mg 
yaw angular rate 0.17 °/s 
left wheel angular velocity 2.85 °/s 
rigth wheel angular velocity 2.85 °/s 

 
An advantage of the overall system in its current 

configuration is that it may function in “actual” real-time 
and “pseudo” real-time. The former is obvious, the latter 
refers to collecting sensor data in real-time as the robot 
moves, but using them off-line to test and evaluate the 
sensor FDI system by generating residuals and change 
detectors. 

The sensor FDI system has been integrated with the 
already existing Distributed Field Robot Architecture 
(DFRA) [26], suitable for navigation and control of teams of 
heterogeneous ground robot vehicles. Since the integration 
is rather involved and complicated and has resulted in 
several interesting observations, details are provided next. 

B. Implementation and integration issues 
DFRA extends the SFX managerial architecture [29] and 

it is implemented in Java/Jini using modular services to 
implement robot capabilities, including sensors, effectors, 
and behaviours. Modules are exported to a distributed run-
time system as services with certain attributes and types. 
Services can then be searched for (using a distributed-object 
lookup service) based on functional attributes rather than 
details of actual implementation or physical location. This 
architecture allows a decoupling of client and server, 
providing an interface (proxy) to the requesting process in a 
modular fashion regardless of where the requested service 
physically resides or how it is implemented at the local level 
[30]. DFRA implements ‘Sensing Manager’ module that is 
responsible for error classification and handling. 

The operating system used is Red Hat Linux 9 (RH9), 
kernel version 2.6.7, a non real time operating system. 
DFRA uses the standard Java Virtual Machine (JVM) 
thread scheduling mechanism to handle various service 
threads within a JVM. The specific low level DFRA 
services utilized in this research are: GPS service to provide 
the latitude and longitude of the UGV; IMU service to 

provide the acceleration and angular rate of the UGV; 
Odometry Service to provide UGV position; Drive Motor 
effector service to drive the UGV along a specific trajectory. 

All ATRV-Jr controller designs and navigation routines 
have been derived using MATLAB/Simulink as well as 
Java. The MATLAB workspace environment is wrapped 
with JMatLink in conjunction with the Jini distributed 
object platform allowing modules and services implemented 
as native interpreted MATLAB code to be accessed as 
remote and distributed objects and be directly incorporated 
into behavioral architectures. This configuration, perhaps 
redundant but very useful, provides also a complete 
MATLAB based simulation environment that may be used 
to test and validate off-line the sensor FDI system using real 
sensor data (collected in real-time but processed off-line).  

However, since the backbone architecture is in Java/Jini, 
complete integration, verification and validation of residual 
and change detector correctness required derivation of two 
modules developed in Java, called ‘ResidualCalcOffline’ 
and ‘ResidualCalcOnline’.  

The purpose of the Java based ‘ResidualCalcOffline’ 
module is to receive real-time GPS, IMU and Odometry 
data and generate residuals and change detectors off-line 
duplicating in reality what the MATLAB/Simulink module 
does. This validates in an indirect way that Java based 
modules and MATLAB/Simulink based modules function 
identically. The Java based ‘ResidualCalcOffline’ module is 
also being converted to a Java based ‘ResidualCalcOnline’ 
one that generates on-line residuals and change detectors 
during actual experiments, validating again identical 
operation in real-time of Java based and 
MATLAB/Simulink based modules. ‘ResidualCalcOnline’ 
updates the ‘Sensing Manager’ with the sensor status. 
‘Sensing Manager’ passes on the sensor status to a client 
GUI. Whenever a sensor fault occurs, the ‘Sensing 
Manager’ updates the services that are using the faulty 
sensor and disables the faulty sensor. ‘Sensing Manager’ 
enables the faulty sensors when they recover from the 
failure. 

C. Residual and change detector calculations – 
observations 

One data sample of ‘ResidualCalcOnline’ consists of an 
IMU, odometry and GPS readings recorded at the same 
time. ResidualCalcOnline includes two threads: i) ‘Data 
collection’ thread that records continuously readings from 
GPS, odometry and IMU at a (best effort) sampling rate of 
200 msec; this sample time interval is chosen because of the 
GPS sensor update rate - the slowest of all three sensors; ii) 
‘Residual calculation’ thread that calculates residuals and 
change detectors on-line by retrieving data stored by the 
‘Data collection’ thread. However, close observation of 
sensor readings reveals that the 200 msec sample time is not 
accurately achieved and that for each data sample there is a 
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small time lag between the three sensor readings. This 
happens because: i) the three sensor readings cannot be 
recorded at the same time; instead, the order is IMU, 
odometry and GPS, introducing a small time lag between 
the IMU–odometry and odometry–GPS readings. ii) The 
Java garbage collector obstructs DFRA from gaining 
complete control over the CPU scheduling time. Therefore, 
hard real-time guarantees cannot be achieved. Performed 
experiments have resulted in the sequence diagram and 
variations shown in Fig. 4, while  

Fig. 5 illustrates actual varying sample time when the 
robot follows the arc trajectory shown in Fig. 3. Fig. 6 and 
Fig. 7 illustrate observed measured time lags between IMU-
odometry and odometry-GPS readings when the robot 
follows the arc trajectory. 

 

 
Fig. 4 Sequence diagram for service interaction. The times (in milli 

seconds) above reflect the observed time delays. 
 

Fig. 5 Sample time for different samples of an arc trajectory experiment. 

Fig. 6 Time lag between IMU and Odometer readings for different samples of 
an arc trajectory experiment. 

 
 

 
Fig. 7 Time lag between Odometer and GPS readings for different samples of 

an arc trajectory experiment. 
 

 

 
 
Fig. 8 The various states of the ‘Data collection’ and ‘Residual calculation’ 

threads. 
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In order to gain further insight to involved delays that 
may impact the sensor FDI system reliability, Fig. 8 shows 
the three states of the ‘Data collection’ and ‘Residual 
calculation’ threads for three sequential data samples; that 
is, the Figure displays the time interval between recording a 
data sample and its corresponding residual and change 
detector generation. 

 

Fig. 9 Time interval between a data sample getting recorded and its 
corresponding residual and change detector generation for different data 

samples of an arc trajectory experiment. 
 
For ‘Data collection’ the states are: Executing - the 

thread collects and records sensor readings; Waiting - the 
thread sleeps for the 200 ms time interval; Ready - the 
thread is ready to collect sensor data and waits for CPU 
allocation. 

For ‘Residual collection’ the corresponding states are: 
Executing - the thread calculates residuals and change 
detectors for a particular data sample (requires <30 msec for 
each data sample); Waiting - the thread is waiting for new 
data samples to be recorded (this happens after the thread 
has calculated residuals and change detectors for all data 
samples collected by the ‘Data collection’ thus far); Ready - 
the thread is ready to calculate residuals and change 
detectors for the new data samples and is waiting for CPU 
allocation. 

Fig. 9 shows the time interval between a recorded data 
sample and its corresponding residual and change detector 
for different data samples of the arc trajectory experiment. 

III. EXPERIMENTAL RESULTS 
Sensor data are collected and residuals are generated on-

line. For cases with one sensor fault, after a fixed number of 
data samples, an additive error is introduced into one of the 
sensors. Experiments consider single and multiple faults per 
trial following the same principle of introducing additive 
errors. 

The implemented SFDIS is able to detect every 
single/multiple faults of the considered sensor equipment. 

Moreover, sensor faults are detected and isolated in all 
situations where a single sensor fault is occurred at a time. 
The situation is slightly different when multiple sensor 
faults occur simultaneously. In this case, fault isolability 
cannot be guaranteed in all situations, as it is resumed in 
the fault signature table, Table III 

TABLE III 
EFFECTS OF THE SENSOR FAULTS ON THE RESIDUALS 

 GPSf  ACCf  GYROf  ELf  ERf  

1r  ×  0 0 0 0 

2r  0 ×  0 0 0 

3r  0 0 ×  0 0 

4r  0 0 ×  ×  ×  

5r  0 ×  0 0 ×  

 
where GPSf , ACCf , GYROf , ELf  and ERf  denote "GPS antenna 
fault", "accelerometer fault", "gyroscope fault", "left optical 
encoder fault" and "right optical encoder fault", 
respectively, while " × " ("0") indicates that the fault in the 
corresponding column affects (does not affect) the residual 
of the corresponding row (for further details, see [9]). 

Exhaustive and detailed experiments have been 
conducted in different environment conditions, mobile tasks 
and trajectories. For brevity, only a few selected results are 
presented here which are related solely to a straight line 
trajectory. 

 
Fig. 10 Comparison between the two proposed residual evaluation modules. 

 
Two different residual evaluation solutions have been 

considered and experimented in real-time: a novel solution 
based on adaptive/moving threshold test, and a particle 
filtering-based likelihood ratio decision solution (as detailed 
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in [1]). Performance of both proposed residual evaluation 
modules has been analyzed and compared. It has been 
observed that the two proposed decision modules have 
shown the same fault detection performances. For example, 
in Figure 10, the GPS fault has been detected at the same 
time; the same observation holds for all other experiments. 
However, the decision module based on the particle filter 
implementation requires more computational time, 
therefore, the novel adaptive/moving thresholds decision 
module may be preferable to use. 

Following a series of significant experimental figures 
which reflect in sequence: “faultless case”; “GPS fault 
case”; “acceloremeter fault case”; “GPS fault plus 
accelerometer fault plus gyroscope fault simultaneously 
occurring” and “accelerometer fault plus gyroscope fault 
plus right optical encoder fault simultaneously occurring”. 

    In Fig. 11, the faultless case is presented. It can be 
seen that all five residuals deviate from zero only due to the 
measurement noise. 

A fault on GPS antenna affects only residual 1r . This can 
be seen on Table III and it is confirmed by the experimental 
results reported in Fig. 12. In this experiment, the sensor 
fault has been generated at 350-th time sample, and the 
fault is detected and isolated at 351-th. 

Table III shows that accelerometer fault affects both 
residuals 2r  and 5r  and this is also validated by 
experimental results shown in Fig. 13. In this case, the 
accelerometer fault has been generated at 380-th time 
sample and the change detector of the residual issues an 
alarm after a sample time, which is the minimum possible 
detection time for the considered system architecture. 

Experimental results of multiple sensor faults are 
presented in Fig. 14, Fig. 15, Fig. 16 and Fig. 17,  where 
Fig. 14 and Fig. 16 shown the residuals, while Fig. 15 and 
Fig. 17 shown the correspondent decision functions. In the 
first experiment (see Fig. 14 and Fig. 15), the GPS antenna, 
the accelerometer and gyroscope fail simultaneously 
affecting all five residuals. Note that although it is possible 
to assert that GPS antenna, accelerometer and gyroscope 
fail for sure ( 1r , 2r  and 3r  deviate from zero), nothing it can 
be said about left/right optical encoder fault. This limitation 
can be overcame, for instance, adding new sensors so that 
the redundancy increases. From Fig. 15, it is possible to see 
how the developed decision module is able to detect the 
presence of all occurred faults; in fact, 1g , 2g , 3g , 4g  and 

5g  issue an alarm only after a time sample. 
In the second experiment (see Fig. 16 and Fig. 17), 

accelerometer, gyroscope and the right optical encoder fail 
at the same time affecting residuals 2r , 3r , 4r  and 5r , as 
described in Table III. Fig. 17 shows how the decision 
function 2g , 3g , 4g  and 5g  issue an alarm, while 1g  does 

not; in fact, 1g  issue an alarm only when GPS antenna 
fails, as described in Table III. 

IV. CONCLUSIONS 
The paper presents experimental results of a real-time 

model-based Sensor Fault Detection Isolation System that 
has been implemented and tested on a mobile robot 
platform. Implementation details of the residual generation 
and evaluation modules have been presented, obtaining a 
decision function for each residual.  

One of the most important aspects and contributions of 
this paper is the on-line experimentation of the FDI system 
and its “dual” validation in actual real-time and pseudo 
real-time through MATLAB and JAVA development 
environments. All sensor faults have been detected and 
isolated with a maximum detection delay of one sample 
time. 

Experimentation and obtained results suggest that the 
FDI system is reliable and robust and easily applicable to 
different mobile robot platforms. An improved experimental 
architecture is under developing for further research 
activities. 

 
Fig. 11 Faultless case: (a), (b), (c), (d), (e) are residuals 1r , 2r , 3r , 4r  and 5r , 

respectively. 
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Fig. 12 GPS fault: (a), (b), (c), (d), (e) are residuals 1r , 2r , 3r , 4r  and 5r , 

respectively. 
 
 
 

 
Fig. 13 Accelerometer fault: (a), (b), (c), (d), (e) are residuals 1r , 2r , 3r , 4r   

and 5r , respectively. 
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Fig. 14 GPS plus ACC plus GYRO fault: (a), (b), (c), (d), (e) are 

residuals 1r , 2r , 3r , 4r  and 5r , respectively. 

 
 

 
Fig. 15 GPS plus ACC plus GYRO fault: (a), (b), (c), (d), (e) are decision 

functions 1g , 2g , 3g , 4g  and 5g , respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16 ACC plus GYRO plus right encoder fault: (a), (b), (c), (d), (e) are 

residuals 1r , 2r , 3r , 4r  and 5r , respectively. 

 

 
Fig. 17 ACC plus GYRO plus right encoder fault: (a), (b), (c), (d), (e) are 

decision functions 1g , 2g , 3g , 4g  and 5g , respectively. 
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