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Abstract— Robots operating in a workspace can localize
themselves by querying nodes of a sensor-network deployed
in the same workspace. This paper addresses the problem of
computing the minimum number and placement of sensors so
that the localization uncertainty at every point in the workspace
is less than a given threshold. We focus on triangulation based
state estimation where measurements from two sensors must
be combined for an estimate.

We show that the general problem for arbitrary uncertainty
models is computationally hard. For the general problem,
we present a solution framework based on integer linear
programming and demonstrate its practical feasibility with
simulations. Finally, we present an approximation algorithm
for a geometric uncertainty measure which simultaneously
addresses occlusions, angle and distance constraints.

I. INTRODUCTION

A sensor network is a network of small, cheap devices
equipped with sensing, communication and computation
capabilities. With concurrent advances in robotics, embed-
ded sensing, computation and communication technologies,
sensor networks are becoming increasingly popular in au-
tomation applications such as surveillance, inventory control
and traffic management.

The presence of a sensor-network in a robot’s workspace
can provide robust, scalable solutions to a number of funda-
mental robotics problems. For example, robots can localize
themselves by querying the nodes of a network. In addition
to localization, sensors can assist in other robot tasks such
as navigation and search.

In the present work, we address the problem of placing
sensors so that when a robot queries sensors to estimate its
own position, the uncertainty in the position estimation is
small. We focus on triangulation-based localization where
two sensors are needed for estimating the position of the
robot. A good example of this scenario is a robot localizing
itself in a camera network. As is well known, a robot
cannot localize itself with a single measurement from a
single camera. At least two different camera measurements
are required for triangulation. However, the quality of the
localization is a function of the robot-camera geometry. We
consider a scenario where the location of the cameras are
known apriori to the robot. To localize itself, the robot
queries two cameras and merges their measurements. The
problem we address is: given the workspace and an error
threshold, what is the minimum number, and placement of
cameras so that the error in localization is less than the
threshold at every point in the workspace?
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In this paper, we build up our previous work on sensor-
placement [1] where we focused on a specific uncertainty
function: If the robot, located at position x queries cameras
located at s1 and s2, the uncertainty in the estimation
is proportional to d(s1,x)×d(s2,x)

sin 6 c1xc2

. In our earlier work, we
presented an approximation algorithm for this uncertainty
model that deviates from the optimal solution only by a
constant factor both in the number of cameras used and
the uncertainty in localization. However, in our previous
work the issue of visual-occlusions in the workspace was
not addressed (Equivalently, it was assumed that there were
no obstacles in the workspace.). In this paper, we extend our
previous results in the following directions:

• We show, via a simple reduction, that the general
placement problem is NP-Complete.

• We present a general framework based on integer linear
programming (ILP) which can be used to solve the
placement problem for arbitrary uncertainty models
while incorporating sensing constraints such as occlu-
sions. We demonstrate the practical feasibility of this
approach through simulations.

• Given the difficulty of the general problem, we focus on
a restricted uncertainty function for cameras and present
an approximation algorithm which runs in polynomial
time, guarantees a bounded deviation from the optimal
solution and addresses occlusion constraints.

A. Related work

One of the most well-known placement problems is the
Art Gallery Problem [2] where a minimum number of
omnidirectional cameras is sought to guard every point in
a gallery represented by a polygon. Art gallery problems
emphasize visibility/occlusion issues and there is no explicit
representation of the quality of guarding – which is the focus
of this paper.

Coverage and placement problems received a lot of atten-
tion recently. The problem of relocating sensors to improve
coverage has been studied in [3]. In this formulation, the
sensors can individually estimate the positions of the targets.
However, the quality of coverage decreases with increasing
distance.

Our work here builds up on the previous work on placing
triangulation based sensors [4], [1]. As mentioned before,
in our previous work we presented an approximation al-
gorithm for minimizing the uncertainty metric given by
d(s1,x)×d(s2,x)

sin 6 c1xc2

. In [4], the authors present an approximation
algorithm which addreses visual occlusions and angle con-
straints. In the second part of this paper, we extend these
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Fig. 1. The uncertainty in estimating the position of the target at x is given
by: U(s1, s2, x) =

d(s1,x)×d(s2,x)
sin θ

previous results to simultaneously address visual occlusions,
angle and distance constraints.

Other related results include [5] where the problem of
controlling the configuration of a sensor team which employs
triangulation for estimation has been studied. The authors
present a numerical, particle-filter based framework. The
problem of choosing the best subset of cameras for a given
placement has been studied recently in [6]. In this work, the
focus is on selecting a small subset of cameras to minimize
a joint uncertainty measure. In the present work, we restrict
ourselves to stereo-pairs but focus on placement issues. A
recent related result was presented in [7] where the problem
of relocating a sensor team whose members are restricted
to lie on a circle and charged with jointly estimating the
location of the targets was studied.

II. THE PLACEMENT PROBLEM

In this section, we formalize the placement problem and
establish its hardness. We start with an overview of the error
model for triangulation based state estimation.

A. Error model

The term triangulation refers to inferring the state ~x of
a target (e.g.: a robot) by solving a system of simultaneous
equations ~z = h(~x) where ~z denotes the observation vector.
As an example consider the process of estimating the position
~x = [x y] of a target (or a robot) using measurements
from two cameras. We assume calibrated cameras, hence
their location are known with respect to a common reference
frame and their measurements can be interpreted as angles
with respect to the horizontal axis (see Figure 1).

In this case, we have observables θ1 and θ2 and solve for
the unknowns x and y in:

tan θ1 =
y1 − y

x1 − x
tan θ2 =

y2 − y

x2 − x

One way of establishing the accuracy of the estimation is
to study the effect of small variations in the observables on
the estimate. This effect can be established by studying the
determinant of the Jacobian H = δh

δ~x
which is commonly

referred to as the Geometric Dilution of Precision (GDOP).
In case of cameras, the GDOP is given by

U(s1, s2, x) =
d(s1, x) × d(s2, x)

| sin 6 s1xs2|
(1)

where d(x, y) denotes the Euclidean distance between x
and y and θ = 6 s1xs2 is the angle between the sensors
and the target (Figure 1). The details of this derivation can
be found in [8]. In general, Equation 1 suggests that better
measurements are obtained when the sensors are closer to
the target and the angle is as close to 90 degrees as possible.

Similarly, the uncertainty in merging the measurements of
two range sensors (which correspond to circles centered at
the sensor location, passing through the target), can be shown
to be:

U(s1, s2, x) =
1

| sin 6 s1xs2|
(2)

In general, it is desirable to obtain a placement algorithm
for arbitrary uncertainty measures U(s1, s2, x) so as to
incorporate additional sensing constraints such as occlusion,
minimum clearance required by cameras, etc. In the next
section, we formalize the sensor placement problem.

B. Problem formulation

Let W be the workspace which consists of all possible
locations of the robot. We assume that W is discretized
and given by a set of points. Similarly, let S be the set of
candidate sensor locations. In addition to the two sets W and
S, we are given a function, U(si, sj , w) for all si, sj ∈ S
and w ∈ W which returns the uncertainty in localization
when the robot is at location w ∈ W and queries sensors si

and sj . The function U can be easily defined to incorporate
sensor limitations. For example, for cameras, we can define
U(si, sj , w) to be infinite if one of the cameras can not see
the point w.

Let S = {s1, . . . , sn} ⊆ S be a set of sensors placed
at locations s1 through sn. When there is no danger of
confusion, we will use si to denote the location of sensor
i as well. For a given placement S and a location w ∈
W , let assign(w,S) = arg minsi,sj∈S U(si, sj , w) be the
assignment function which chooses the best pair of sensors
for location w.

The uncertainty of a placement is defined as U(S,W) =
maxw∈W U(w, assign(w,S)).

We can now define the sensor placement problem:
Given a workspace W , candidate sensor locations S, an

uncertainty function U and an uncertainty threshold U ∗,
find a placement S with minimum cardinality such that

U(S,W) ≤ U∗.

C. Hardness of the sensor placement problem

The hardness of the sensor-placement problem can be
easily obtained by establishing its relation to the well-
known k-center problem, which is NP-Complete. In the k-
center problem, we are given a set of locations for centers
and a set of targets along with a distance function d(i, j)
between the centers and the targets. The objective is to
minimize the maximum distance between any target and the
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center closest to it [9]. The converse problem, where the
maximum distance from each vertex to its center is given
and the number of centers is to be minimized, is also NP-
Complete [10]. Further, this problem is equivalent to the
dominating set problem [10] which is not only NP-complete,
but also can not be approximated within a factor better than
log n in polynomial time [11]. Here, n denotes the number
of target locations. The converse problem can be easily
seen to be a special case of the sensor placement problem
where the uncertainty function is chosen as U(si, sj , w) =
min{d(si, w), d(sj , w)}. Hence, sensor placement is at least
as hard as the mentioned problems.

D. A mathematical programming formulation

There are many different types of sensors with different
measurement characteristics. Since the general placement
problem is hard, when designing placement algorithms, con-
straints imposed by the estimation process must be utilized.
However, designing a dedicated placement algorithm for
every type of sensor is a tedious process. Therefore, in this
section, we present a general solution framework which can
be utilized to solve placement problems that arise in practice.

The general sensor placement problem can be formulated
as an integer linear programming (ILP) problem as follows:

minimize
∑

j

yj (3)

subject to
yj ≥ xu

ij ∀u, i, j (4)

xu
ij = 0 ∀u, i, j with U(u, i, j) ≥ U∗ (5)

∑

i

zu
i = 2 ∀u (6)

∑

i

xu
ij = zu

i ∀u, j (7)

∑

j

xu
ij = zu

j ∀u, i (8)

We define a binary variable yj for every location j. If
yj = 1, a sensor will be placed at location j. Other binary
variables are zu

i and xu
ij . The index u varies over all possible

target locations whereas i and j vary over candidate sensor
locations. Variables zu

i become 1 when the sensor at location
i is assigned to target location u. Variables xu

i,j are set to 1
if the target location u is monitored by sensors at locations
i and j.

Equation 3 is the cost function, i.e. the total number of
sensors. The constraints on the placement are imposed by
Equations 4 – 8.

The first constraint (Equation 4) ensures that if a sensor
at location j will be assigned to a target u, then a sensor
must be placed at location j in the first place. Equation 5
guarantees sensing and quality constraints: it prevents sensor
pairs which do not satisfy the constraints from being assigned
to a target location.

Equation 6 guarantees that two sensors are placed to
monitor the target u.

Finally, Equations 7 and 8 make the connection between
the variables xu

ij and zu
i . The variable xu

ij can be 1 if and
only if i and j are the locations for the sensor pair which is
assigned to monitor the target u. All the other xu

ij variables
with same u but different i and j locations will be 0 (due to
Equation 6). Therefore, if i′ and j′ are the two locations for
the sensors to be assigned for the target u′, the total of sum
xu′

i′j will be equal to zu′

i′ and zu′

j′ .
Since the sensor placement problem is NP-Complete,

this ILP can not be solved in polynomial time in its full
generality. However, there are many efficient algorithms for
solving ILPs in practice. In Section IV, we demonstrate the
practical feasibility of this approach in simulations.

III. A LOG FACTOR APPROXIMATION ALGORITHM
ADDRESSING OCCLUSIONS

In this section, we present an approximation algorithm for
a modified version of the uncertainty metric for triangulation
with bearing-only sensors such as cameras. As stated in
Equation 1, the uncertainty in estimating the position of a
target at location x from sensors s1 and s2 is given by:

U(s1, s2, x) =
d(s1, x) × d(s2, x)

| sin 6 s1xs2|

Our goal is to design a placement algorithm which mini-
mizes this uncertainty metric and addresses occlusions in the
workspace.

In a workspace with obstacles, the strategy of the optimum
solution is not predictable and can result in a placement
which is undesirable in practice. For example, an optimal
placement can compensate an obtuse or an acute angle
between target and sensors by placing sensors very close
to the target. Similarly, it is possible to have one sensor very
close while the second sensor is very far from the target:
their product will still remain small.

Therefore, instead of minimizing the product, it makes
sense to explicitly restrict the distances and the angle be-
tween the sensors and the target. In this section, we present
an approximation algorithm for the problem of placing a
minimum number of sensors with the following properties.

Let S be a placement of sensors, and x be a target location.
We assume that the workspace is represented by a polygon
and say that a camera at s1 sees a point x inside the polygon,
if the line segment s1x lies completely inside the polygon.

The placement S is called a valid placement if, for all
x in the workspace, two sensors s1(x), s2(x) ∈ S can be
assigned to x such that

(i) both s1(x) and s2(x) see x,
(ii) α∗ ≤ 6 s1(x)xs2(x) ≤ π − α∗, and
(iii) d(s1(x), x) ≤ D∗ and d(s1(x), x) ≤ D∗

where D∗ and α∗ are user defined threshold values. In [4],
Efrat et al. present an approximation algorithm for placing
sensors that addresses constraints (i) and (ii). In this section,
we present an extension of their algorithm to accommodate
constraint (iii) as well. We start with some preliminaries.
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A. Preliminaries

A set system is a pair (X,R) where X is a subset and R
is a collection of some subsets of X . We say that a set of
subsets R′ ⊆ R cover X if their union is equal to X . The
minimum set cover problem is to find a minimum cardinality
R∗ ⊆ R that covers X .

As an example, consider the following camera placement
problem: we are given a set of candidate target locations X
(which lie inside a polygon) along with a set of candidate
camera locations S. The goal is to place a minimum number
of cameras such that every point in X is visible from at
least one camera. This problem (which we call visibility
cover) can be formulated as a set-covering problem for
the set system (X,R) where R contains a subset R(s)
for each candidate sensor location s ∈ S where R(s) =
{x|x is visible from s}.

The following definition is introduced in [4]: A point x is
two-guarded at angle α by sensors s1 and s2, if the angle
6 s1xs2 is in the interval [α, π−α] and both sensors can see
x.

The algorithm in [4] proceeds in two stages. In the first
stage, a visibility cover C1 of X is computed. This gives
a placement where each location x is assigned to a single
sensor s1(x). In the second stage, a second set of sensors C2

is computed such that, for each x ∈ X , there exists a sensor
s2(x) ∈ C2 such that x is two-guarded by s1(x) and s2(x)
at angle α/2. The existence of the set C2 is guaranteed by
the following lemma.

Lemma 1 ([4]): Let C∗ be a set of sensors that two-guard
X at angle α and C1 be a visibility cover of X . Then, for
any point x ∈ X there exist sensors s1 ∈ C∗ and s2 ∈ C1

that two-guard x at angle α/2.
Let OPT be the minimum set of sensors that two-guard x.

It is shown in [4] that one can compute C1 and C2 above in
polynomial time such that |C1 ∪ C2| = O(OPT log OPT ).
In other-words, one can simultaneously satisfy condition (i),
obtain a 2-approximation for (ii) and a log approximation to
the number of sensors.

In the next section, we show how this result can be
extended to satisfy condition (iii). That is, we show how two
sets C1 and C2 can be computed in a way that simultaneously
satisfy conditions (i) and (iii), obtain a 2-approximation for
(ii) and a log approximation to the number of sensors.

B. Computing C1 and C2

A standard algorithm to compute a cover of a given set
system (X,R) is the greedy algorithm: we initialize all
elements in X to be uncovered. Next, we select a subset
R′ from R which contains the most number of uncovered
elements. We mark all elements of R′ as covered and repeat
this process until all elements of X are covered (or we
run out of subsets in R). It is well known that the greedy
algorithm is a log|X|-approximation, that is, the number
of subsets chosen is guaranteed to be within a factor of
O(log |X|) of the optimal solution.

For geometric set systems, however, once can usually do
better:

Definition 2: Given a set system (X,R), let A be a subset
of X . We say A is shattered by R if ∀Y ⊆ A, ∃R′ ∈ R
such that R′ ∩ A = Y . The VC-dimension of (X,R) is the
cardinality of the largest set that can be shattered by R [12].

In what follows, we will utilize two well-known properties
of set systems with bounded VC-dimension.

(i) The VC-dimension of a set system obtained by the
intersection or union of two set systems of constant VC-
dimension is also constant [13].

(ii) Let (X,R) be a set system and (X ′, R′) be its dual:
X ′ = R and R′ = {R(x) : x ∈ X} where R(x) is the set
of subsets in R which contain the element x. If (X,R) has
a constant VC-dimension, so does its dual [14].

Our algorithms rely on the fact that, for sets systems
with finite VC-dimension d, there are algorithms which can
compute a set-cover of the set system whose size is at
most O(d · log OPT · OPT ) where OPT is the size of the
minimum set-cover [15], [16]. In other words, in the finite
(or bounded) VC-dimension case, one can obtain a log OPT
approximation, as opposed to the log |X| approximation
obtained by the greedy algorithm.

Let (X,R) be a set system where X is a set of points
on the plane. We say (X,R) is a disk set system if R is
obtained by intersecting X with the set of all possible disks
on the plane. Similarly, we call (X,R) a triangle set system
if R is obtained by intersecting X with all triangles. It is a
well known fact that both disk and triangle set systems have
constant VC-dimension. Another example of a set system
with finite VC-dimension is the following. Let X be a set
of points in a polygon P . For each possible point p ∈ P , let
V (p) be the set of those points in X that are visible from p.
In [17] it was shown that the set system (X, {V (p) : p ∈ P}
has a constant VC dimension if P is simply-connected or
has a bounded number of holes.

We now present the details of the algorithm to construct
C1. Recall that X is a set of candidate target locations we
would like to cover and S is the set of candidate sensor
locations. Both C and S are points sampled inside a polygon
which represents the workspace. We are given thresholds
D∗ and α∗ that specify the angle and distance constraints.
Let OPT be a minimum cardinality sensor placement which
satisfies constraints (i) – (iii).

To compute set C1, we first build the set system (X,R′)
where

R′ = {R′(s)|s ∈ S}

R′(s) = {x|x ∈ X ∧ x is visible from s ∧ d(x, s) ≤ D∗}

The VC-dimension of this set system is constant. This is
because the set system can be expressed as an intersection
of a visibility set system and a disk set system.

Since there is a set-cover of (X,R′) of size at most
|OPT |, one can find a cover of size O(OPT log OPT ) in
polynomial time using [15], [16]. This gives us the set C1.
For each target location x ∈ X , let s1(x) be a sensor in C1

which is visible from x with d(x, s1(x)) ≤ D∗.
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Fig. 2. The sensor s2 covers x because it satisfies the distance constraint
and, together with s1(x), it satisfies the angle constraint as well.

In order to compute C2, we build the set system (X,R′′)
where

R′′ = {R′′(s)|s ∈ S}

R′′(s) = {x|x ∈ X ∧

x is visible from s ∧

d(x, s) ≤ D∗ ∧

6 s1(x)xs ∈ [
α

2
, π −

α

2
]}

Lemma 1 can be easily modified to show that each R′′(s)
is nonempty if the optimal solution which satisfies all three
constraints exists. We now show that (X,R′′) has a constant
VC-dimension. Consider a point x ∈ X , together with sensor
s1(x) assigned in the previous stage. We say that a sensor
s2 covers x if it sees x, satisfies both the distance constraint
and the angle constraint together with s1(x). Now consider
a set system (S, Q) where S is the set of candidate sensor
locations and Q is obtained by inserting for each target
location x ∈ X , the set of sensors which cover x. This
set system can be obtained as follows: First, construct a set
system corresponding to intersections with triangle pairs as
shown in Figure 2. Second, intersect this new set system with
visibility and disk set systems. Since all these set systems
have finite VC-dimension, the resulting set system has finite
VC-dimension as well. The set system (X,R′′) is simply the
dual of (S, Q) and hence, has a finite VC-dimension.

IV. SIMULATIONS

In this section, we present two simulations to demonstrate
the feasibility of using an ILP solver for sensor placement.

We computed optimal placements for two environments
which satisfy all three constraints (visibility, angle and
distance) given in Section III. The left column in Figure 3
correspond to the solutions obtained by the ILP solver. For
these simulations, we used the Cbc ILP solver on the NEOS
server [18]. The first environment has 68 target locations and
84 sensor locations, whereas the second environment has 64
target locations and 70 sensor locations. The number of xu

ij

variables in the ILP introduced in Section II-D is mn2 where
m is the number of target locations and n is the number of
candidate sensor locations. However, most of these variables

are redundant. For example, if U(u, i, j) > U ∗, we can
remove the variable xu

ij . This alone reduces the number of
xu

ij variables for the first environment from 479808 to 3470
and for the second environment from 313600 to 2324. The
same approach can be applied to remove other redundant
binary variables. For example, we can remove a variable zu

i

if u is not visible from i or the distance between them is
greater than the threshold.

In these two simulations, we chose the maximum grid size
(number of locations) for each environment such that the
ILP can be solved under 5 minutes. The ILP for the first
environment contained 4612 variables and 2184 constraints.
The ILP for the second environment contained 3196 variables
and 1668 constraints.

The right column in Figure 3 is obtained using the approx-
imation algorithm presented in Section III. For simplicity, we
used the greedy algorithm to compute sets C1 and C2. In the
first environment, the approximation algorithm matched the
performance of the ILP solution. In the second environment,
however, it placed 18 sensors as opposed to the 16 placed
by the ILP.

V. CONCLUSION AND FUTURE WORK

In this paper we addressed the sensor placement problem
in scenarios where robots operating in a workspace query
the nodes of a sensor-network to localize themselves. Specif-
ically, we studied the problem of computing the minimum
number and placement of sensors so that the uncertainty at
every point in the workspace is less than a given threshold.
We focused on triangulation based state estimation where
measurements from two sensors must be combined for an
estimation.

First, we showed that the general problem for arbitrary
uncertainty models is computationally hard. For the general
version, we presented a framework based on integer linear
programming which can be used to solve placement prob-
lems in practice. We demonstrated the practical feasibility
of this approach with simulations. Finally, we presented an
approximation algorithm for a geometric uncertainty measure
which simultaneously addresses visual occlusions, angle and
distance constraints.

Our future work includes the deployment of a real camera
network in our building and to address placement (calibra-
tion) uncertainties. Future research also includes improving
the log approximation ratio achieved by the approximation
algorithm.
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