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Abstract— Recent advances in machine learning and adaptive
motor control have enabled efficient techniques for online
learning of stationary plant dynamics and it’s use for robust
predictive control. However, in realistic domains, system dy-
namics often change based on unobserved external contexts
such as work load or contact conditions with other objects.
Previous multiple model approaches to solving this problem are
restricted to finite, discrete contexts without any generalization
and have been tested only on linear systems. We present a
framework for estimation of context through hidden latent vari-
able extraction – solely from experienced (non-linear) dynamics.
This work refines the multiple model formalism to bootstrap
context separation from context-unlabeled data and enables
simultaneous online context estimation, dynamics learning and
control based on a consistent probabilistic formulation. Most
importantly, it extends the framework to a continuous latent
model representation of context under specific assumptions of
load distribution.

I. INTRODUCTION

The dynamics of a system often depend on an unobserved

external context. An example of unobserved external context

that results in non-stationary dynamics is the work load of

a robot manipulator. The resultant dynamics of the robot

arm change as it manipulates objects with different physical

properties, e.g. mass, shape or mass distribution. The study of

adaptive control [8] has provided a multitude of methods that

could be used in cases of non-stationary dynamics. However,

if the dynamics switch back and forth, e.g. if manipulating

a set of tools for executing various tasks, classic adaptive

control methods are inadequate since they result in large

errors and instability during the period of adaptation; more-

over, readapting every time is a suboptimal and inefficient

strategy that unlearns the dynamics of the previous contexts.

A proposed solution is the use of multiple models, each

of which is appropriate for a different context. However,

existing work on the multiple models paradigm [3], [10], [5],

[7] does not cope well with issues concerning the choice of

correct number of models, detection of novel contexts and

use of knowledge from previously learned models to new

contexts. Furthermore, the actual number of discrete contexts

may grow indefinitely with time as new situations appear.

Most prior work on estimating contexts from movement data

rely heavily on analytical rigid body dynamics and estimation

of a few, heavily constrained parameters of the full body

dynamics[4]. This approach fails when deriving analytical

dynamics is complicated or not feasible.
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Our approach will formulate a probabilistic model that

represents the context as a latent (switching or continu-

ous) variable. This framework allows us to estimate the

context online based only on the learned inverse dynamics

models using Markovian filtering. Further, an Expectation-

Maximization procedure is used to bootstrap the distinction

of contexts from context-unlabeled data. In Section II, we

briefly discuss single model learning and control under a

single context using LWPR, an efficient online algorithm. We

then talk about the multiple model paradigm and discuss con-

text estimation, control and data separation under multiple

discrete contexts in Section III. We then show in Section IV,

using knowledge about analytical dynamics, that it is possible

to reformulate the discrete context scenario to a continuous

latent model representation where the generalizations to new

contexts (outwith the already learned models) holds under

specific assumptions of the load distribution. To the best of

our knowledge, this is the first work that deals with learning

control under continuously varying contexts.

II. LEARNING DYNAMICS FOR CONTROL

Anthropomorphic robotic systems have complex kinematic

and dynamic structure, significant non-linearities and hard

to model non-rigid body dynamics; hence, deriving reliable

analytical models of their dynamics can be cumbersome

and/or inaccurate. We take the approach of learning dynamics

for control from movement data (see Fig. 1 for a graphical

model representation); typically the inverse dynamics model

for predicting desired torques. The inverse model maps

current states Θt and the next desired states Θt+1 to the

command τt that results in the transition between these

states:

τt = g(Θt, Θt+1) . (1)

θt+1

τt

θt θt+1

τt

θt

Fig. 1. The forward and inverse model

The inverse model shown in Fig. 1(right) can be used in

many control settings; the most common being to use it as
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part of a composite controller. Given a desired trajectory,

Θ∗

1:T , the composite control law computes the command as

τt = g(Θ∗

t , Θ
∗

t+1) + A (Θ∗

t − Θt) , (2)

where A is the gain matrix. This is a combination of a

feedforward command that uses the inverse model and a

feedback command that takes into account the actual state

of the system. The more accurate the inverse model is, the

lower the feedback component of the command will be, i.e.,

the magnitude of the feedback command can be used as a

measure of the accuracy of the inverse model. Furthermore,

good predictive models allow us to use low feedback gains,

resulting in a highly compliant system without sacrificing the

speed and accuracy of the movements.

(a)

(b)

Fig. 2. (a) Simulated 3DOF arm (b) 7DOF SARCOS dextrous arm

Typically, in robotic systems with proprioceptive and

torque sensing, at each time step t we “observe” a state

transition and an applied torque signal summarized in the

triplet (Θt, Θt+1, τt), i.e., we have access to the true ap-

plied control command (which was generated via composite

control). To learn the inverse dynamics, we need a non-

linear, online regression technique which also provides error

bounds that we may use for context identification. We use

the Locally Weighted Projection Regression (LWPR) [9] –

an algorithm which is extremely robust and efficient for in-

cremental learning of non-linear models in high dimensions.

An LWPR model uses a set of linear models, each of which

is accompanied by a locality kernel (usually a gaussian) that

defines the area of validity of the linear model. For an input

x, if the output of the kth local model is written as yk(x)
and the locality kernel activation is wk(x), the combined

prediction of the LWPR model, ŷ, is

ŷ(x) =
1

W

∑

k

wk(x) yk(x) , W =
∑

k

wk(x) . (3)

The parameters of the local linear models and locality kernels

are adapted online and also local models are added on an

as needed basis. Furthermore, LWPR provides statistically

sound input dependent confidence bounds on its predictions
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Fig. 3. Results on learning single context dynamics. Left: test error. Middle:
contribution of error-correcting feedback command. Right: Tracking error

and employs Partial Least Squares (PLS) to deal with high

dimensional inputs. For more details about LWPR, see [9].

A. Experiments in Learning Dynamics for Single Context

We verify the ability to learn the inverse model online

with LWPR and show that the model can successfully be

used for control. We demonstrated this for a simulated

3 DOF robot arm 1 (see Fig. 2(a)) as well as on the

7 DOF anthropomorphic SARCOS robot arm (Fig. 2(b)).

The statistics are accumulated and shown briefly for the

simulated arm, for more details please see [2]. The task

of the arm was to follow a simple trajectory planned in

joint angle space, consisting of a superposition of sinusoids

with different phase shifts. 20 iterations of the trajectory

were repeated: during the first four iterations, pure feedback

(PD) control was used to control the arm, while at the

next 16 iterations, a composite controller using the inverse

model being learned was used. The gains were lowered as

training proceeded. The procedure was executed six times

and repeated for six different contexts for accumulating the

statistics. Fig. 3(left) plots the normalized mean squared

error between the torques predicted by the LWPR model

and the true torques experienced on the test data (i.e., the

data that was held out from the training), which shows a

quick drop as training proceeds and settles at a very low

value averaged over all trials. The contribution of the error-

correcting feedback command to the feedforward command

(see Fig. 3(middle)) is low, vouching for the accuracy of

the learnt model while being used for control. Furthermore,

the tracking error (Fig. 3(right)) is very low and improves

significantly when we switch to composite control. For the

detailed statistics on the online dynamics learning of the 7

DOF SARCOS robot arm and tracking results on a pattern

eight task, readers are referred to [9].

1Simulations performed using ODE and OpenGL
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III. THE MULTIPLE MODEL PARADIGM

Although we have verified the ability to learn dynamic

models and perform control under a single context, the main

emphasis of this work is the ability to cope with varying

contexts. The multiple model paradigm copes with the issue

of non-stationary dynamics by using a set of models, each

of which is specialized to a different context. A schematic of

a generic multiple model paradigm is shown in Fig. 4. The

Command
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Context 2

Dynamics models

Context n

Control Learning

Commands

Switch / Mix

Context

Estimates

Context estimator

Dynamics 

Predictions

Context

Estimates

System

State
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Fig. 4. Schematic of a multiple model paradigm

observed dynamics of the system are compared to the predic-

tion of each learned model to identify the current context.

The context estimates are used for selecting the model to

use for control and for training. All existing multiple model

paradigms roughly follow the same plot. Some of the existing

models are Modular Selection and Identification for Control

(MOSAIC) [3], Multiple Paired Forward and Inverse Models

[10] and Multiple Model Switching and Tuning (MMST) [5],

[7]. The main issues that have to be tackled for using multiple

discrete models for control are:

1) Infer the current context for selecting the appropriate

model to use for control.

2) Infer the current context for selecting the appropriate

model to train with the experienced data.

3) Figure out the appropriate number of models (possibly

using a novelty detection mechanism).

Hence, it is clear that context estimation is of critical

importance in the multiple model scenario.

A. Context Estimation

It is appropriate to formulate context estimation in a

probabilistic setting to account for inaccuracies of the learnt

models as well as handle transitions. The graphical model in

Fig. 5(a) represents a set of inverse models corresponding to

a specific number of contexts. The hidden contextual variable

ct is discrete and indexes the different models. The inverse

model in this formulation can be written as:

P (τ |Θt+1, Θt, ct = i) = N (τ (i)(Θt+1, Θt), σ(i)(Θt+1, Θt)) ,

where τ (i) is the command predicted by the LWPR model

corresponding to the ith context and σ(i) is some estimate of

the variance, which can be either set to a predetermined con-

stant or based upon the input dependent confidence bounds

provided by LWPR. Also, if there is no knowledge about the

prior probability of contexts, we can assume that different

θt+1θt

τt

ct

τt

θt+1

ct+1

τt+1

θt

ct

(a) (b)

Fig. 5. Multiple models and hidden contexts

contexts have equal prior probabilities p(ct). Under this

probabilistic formulation, context estimation is just inferring

the posterior of ct given a state transition and the command

that resulted in this transition:

P (ct = i |Θt, Θt+1, τt) ∝ P (τt | ct = i, Θt, Θt+1)P (ct = i). (4)

Context estimates are very sensitive to the accuracy of the

inverse models. They can be improved by acknowledging

that contexts do not change too frequently. We can introduce

a temporal dependency between contexts p(ct+1 | ct) with

an appropriate transition probability between contexts that

reflects our prior belief on the switching frequency to achieve

much more robust context estimation. The graphical model

can be reformulated as the Dynamic Bayesian Network

shown in Fig. 5(b) to achieve this. Application of standard

Hidden Markov Model (HMM) techniques is straightforward

by using (4) as the observation likelihood in the HMM,

given the hidden state ct = i. A low transition probability

penalizes too frequent transitions and using smoothing or

Viterbi alignment produces more stable context estimates. In

the experiments, we will assume a fixed transition matrix

P (ct = j | ct = i) with high value .999 for i = j and

.001 otherwise and use the HMM model only for filtering or

smoothing, depending on whether we investigate an online

or batch estimation scenario, respectively.

B. Data Separation

Context estimates are used for guiding online control and

for further training of the models. However, to get these

context estimates we need a mechanism for getting relatively

accurate (initial) models to bootstrap the context estimation

procedure. Most of the existing multiple model paradigms do

not give a satisfying answer to this issue. MMST assumes

that relatively good models are available from the beginning,

whereas MPFIM does not address this issue at all.

The problem of bootstrapping the context separation from

context-unlabeled data is very similar to clustering problems

using mixture of Gaussians. In fact, the context variable

can be interpreted as a latent mixture indicator and each

inverse model contributes a mixture component to give

rise to the mixture model of the form P (τt |Θt, Θt+1) =∑
i
P (τt |Θt, Θt+1, ct = i) P (ct = i). Clustering with

mixtures of Gaussians is usually trained using Expectation-

Maximization (EM), where initially the data are labeled

ThB3.4
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Fig. 6. Discrete context estimation under randomly switching dynamics

with random responsibilities Then every mixture component

is trained on its assigned (weighted) data (M-step) and

afterwards the responsibilities for each data point is recom-

puted by setting them proportional to the likelihoods for

each mixture component (E-step). Iterating this procedure,

each mixture component will specialize on different parts of

the data and the responsibilities encode the learned cluster

assignments.

We will apply a common variant of the EM-algorithm

where responsibilities are computed greedily, i.e., where

the data is hard assigned to the mixture component with

maximal likelihood instead of weighted continuously with

the component’s likelihood in the M-step. In our case, the

likelihood of a data triplet (Θt, Θt+1, τt) under the ith

inverse model is P (τt |Θt, Θt+1, ct = i), which is a Gaussian

with either fixed variance or the variance given by LWPR’s

confidence bounds.

C. Experiments With Multiple Discrete Models

The context estimation methods described in Section III-

A were used for online estimation and control with six

separately learnt contexts. Random switches between the six

contexts were performed in the simulation, where at every

time step we switch to a random context with probability

.001 and stay in the current context otherwise. The context

estimates were used online for selecting the model that will

provide the feed-forward commands.

We have two classes of experiments: one where we use

HMM filtering of the contextual variable and the other where

it is not used. We also have two choices for the variance of

the observation model: one where we use a constant (found

empirically) and the other, where we use the more principled

confidence bounds provided by LWPR. The simulation was

run for 10 iterations.

The percentage of accurate online context estimates for

the four cases along with offline Viterbi alignment are shown

in the Fig. 6(left). Fig. 6(middle) gives an example of how

the best context estimation method that we have, the HMM

filtering using LWPR’s confidence bounds, performs when

used for online context estimation and control. Sometimes

the context estimation lags behind a few time steps when

there are context switches, which is a natural effect of online

filtering (as opposed to retrospect smoothing). Fig. 6(right)

presents an example of the predictions of the six models

along with the actually applied command.

The performance of online context estimation and control

is close to the control performance we achieved for the single

context displayed in Fig. 3. Using the HMM filtering based

on LWPR’s confidence bounds, the average tracking error

over the 10 cycles was 0.0019 and the ratio of feedback PD

control was 0.074.

In another analysis, automatic separation of data to con-

texts was tested. We ran the simulation switching randomly

between two different contexts, collected the data and exe-

cuted 6 iterations of the EM-like algorithm described in Sec-

tion III-B. The evolution of the assignment of datapoints to
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Fig. 7. Automatic separation of datapoints to contexts. Left: the non-
temporal model is used for the E-step. Right: the temporal model is used
in the E-step

contexts can be seen in Fig. 7. On the left, the non-temporal

model has been used for context estimation, whereas on

the right, the temporal model has been used. The first

column displays the random initial assignment of datapoints

to contexts, whereas the last column displays the correct

assignment. As can be seen in the plot on the right, at the

end of the last iteration, most of the datapoints are grouped

correctly (84% of the data was classified correctly). The

learned models were then used for online control and further

online training. Twelve iterations of the trajectory were

executed, with random switches between the two contexts.

Accuracy in context estimation was 88% while the tracking

error was 0.0051 and the ratio of feedback PD control was

0.23. The errors are slightly higher than in the case where

models were trained using labeled data, but this is satisfying

considering the fact that we started with unlabeled data.

IV. AUGMENTED MODEL FOR CONTINUOUS CONTEXTS

The multiple model paradigm has several limitations. First

of all, the right number of discrete models needs to be known

ThB3.4
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TABLE I

LINEARITY OF THE DYNAMICS MODEL IN THE INERTIAL PARAMETERS

If T is the kinetic energy, U is the potential energy of the system and we define a Lagrangian L = T − U , the dynamics of the system is given by

d

dt

∂L

∂q̇i

−
∂L

∂qi

= τi (5)

where q1, q2...qn is a set of generalized coordinates (here, the joint angles) and τ1, τ2...τn denote the so called generalized forces associated with the
corresponding joint angles qi. The generalized force τi is the sum of joint actuator torques, joint friction torques and other forces acting on the joint (e.g.
forces induced by contact with the environment). The total kinetic energy T and the total potential energy U is just the sum of the kinetic energy and potential
energies of all the links of the manipulator respectively, i.e., T =

∑n

j=1
Tj , U =

∑n

j=1
Uj The kinetic and potential energy of the jth link is given by:

Tj =
1

2
mj ṗT

j ṗj + mj lj ṗT
j S(ωj) +

1

2
ωT

j Ijωj , Uli
= −mjgT

0 pj − mjgT
0 lj (6)

where mj is the total mass of link j, pj is the position vector of the center of mass of link j, ωj is the rotational velocity of link j, S(ωj) is a 3 × 3
skew-symmetric matrix that depends on ωj , lj is the position vector of the center of mass of the link from the origin of the frame of the link, g0 is the
gravity acceleration vector, Ij is the inertia tensor of link j measured at the origin of the reference frame of the link. Substituting (6) in the Lagrangian
and with some rearrangement, we can see that the Lagrangian has a linear relationship to the set of inertial parameters:

π = [m1, m1l1x, m1l1y , m1l1z , I1xx, I1xy, ...,mn, mnlnx, mnlny , mnlnz , Inxx, ..., Inzz]

In short, the Lagrangian can be written in the form:
L = g(q, q̇)π

Since the inertial parameters in π do not depend on time or q̇ then the dynamics equation for joint i is:

π
d

dt

∂g(q, q̇)

∂q̇i

− π
∂g(q, q̇)

∂qi

= τi

Thus, the dynamics can be written in the form
τi = yi(q, q̇, q̈)π (7)

and estimating this is non-trivial. Realistically, novel contexts

appear quite often and to cope with this, a novelty detection

mechanism is needed. However, even with a very robust

novelty detection mechanism, we may end up with a very

large number of models, since in theory, possible contexts are

infinite. Moreover, it is better if we can generalize between

contexts and most multiple model paradigms do not provide

an obvious way to do this.

All these issues can be circumvented if we replace the set

of models with a single unique model that takes as input

continuous hidden contextual variables, i.e., instead of a set

of gis corresponding to different contexts, a single inverse

model G is used:

τt = G(Θt, Θt+1, ct) . (8)

Here, ct is not a discrete variable that indexes different

models but a set of continuous variables that describe the

context. The probabilistic model of the inverse dynamics

would then be:

P (τ |Θt, Θt+1, ct) = N (G(Θt, Θt+1, ct), σ(Θt, Θt+1, ct)) .
(9)

A possibility for learning the augmented model is to follow

the same procedure as in the discrete case for learning the

models, i.e., apply an EM like procedure. However, the

relationship of the contextual variables to the output of the

augmented model could be arbitrary, making learning in such

a setting a very difficult task. It is imperative to exploit any

prior knowledge about the relationship of the inverse model

to appropriate contextual variables.

For the case of manipulation of objects with a robot arm,

this is possible. It can be shown that the dynamics of a robot

arm have a linear relationship to the inertial properties of the

manipulator links. In other words, the inverse dynamics can

be written in the form:

τ = Y (q, q̇, q̈)π (10)

or for a specific context r:

τr = Yr(q, q̇, q̈)πr (11)

where q, q̇ and q̈ denote joint angles, velocities and accelera-

tions respectively. This relationship can be derived based on

fundamentals of robot dynamics [6], [1] as shown in Table I.

This equation splits the dynamics in two terms. Y (q, q̇, q̈) is

a term that depends on kinematics properties of the arm such

as link lengths, direction of axis of rotation of joints and so

on. This is a very complicated and highly non-linear function

of joint angles, velocities and accelerations. The term π is a

high dimensional vector containing all inertial parameters of

all links of the arm (see Table I).

Now, lets consider that we model the dynamics of the

arm as the manipulated object being the last link of the

arm. Then, manipulating different objects is equivalent to

changing the physical properties of the last link of the arm.

Under the assumption that Yr(q, q̇, q̈) is constant between

different models, we could use a set of learned models, with

known inertial parameters πr to infer an augmented model

that predicts the dynamics for any possible context π. Since

Yr(q, q̇, q̈) is constant between contexts, then the augmented

ThB3.4
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TABLE II

INFERRING THE HIDDEN CONTINUOUS CONTEXT IN THE TEMPORAL MODEL

In our probabilistic setting, the augmented inverse model is

τt = G(Θt,Θt+1, ct) = A(Θt,Θt+1) + B(Θt, Θt+1)ct + η (12)

where A(Θt,Θt+1) and B(Θt,Θt+1) are estimated from the models used for forming the augmented model and η = N (0, Σobs). Σobs is estimated
from the confidence bounds of the inverse models that form the augmented model. Also, the transition model for the context needs to be defined. Since
we believe that the context does not change too often, this is set to:

ct+1 = ct + ζ (13)

where ζ = N (0, Σtr) with Σtr set to a very small value.
Based on the defined model, we can write down the inference for the temporal Bayesian network using the augmented inverse model. For control, only
filtered estimates (a la Kalman filtering) can be used.
We want to compute p(ct | τ1:t+1,Θ1:t+1) using the estimate at the previous time step p(ct−1 | τ1:t,Θ1:t) and the new evidence τt+1 and Θt+1. The
previous estimate p(ct−1 | τ1:t,Θ1:t) is defined as:

p(ct−1 | τ1:t, Θ1:t) = N (µt−1 | t,Σt−1 | t) (14)

Estimates for the next time step p(ct | τ1:t+1, Θ1:t+1) are obtained in a recursive way in two steps. The first is the prediction step where, p(ct | τ1:t, Θ1:t)
is computed using the filtered estimate on the previous time step and the transition model p(ct+1 | ct), without taking into account evidence at time t +1:

p(ct | τ1:t,Θ1:t) = N (µt | t,Σt | t) (15)

where µt | t = µt−1 | t and Σt | t = Σt | t + Σtr . Then, the filtered estimate modifies the predicted estimates using the observation at the time t + 1 as
(dependency of A and B on the state transition is omitted for compactness):

p(ct | τ1:t+1,Θ1:t+1) = N (µt | t+1,Σt | t+1) (16)

where,
µt | t+1 = µt | t + Σt | tB

T (BΣt | tB
T + Σobs)

−1(τt+1 − A − Bµt | t) (17)

Σt | t+1 = Σt | t − Σt | tB
T (BΣt | tB

T + Σobs)
−1BΣt | t (18)

model G(Θt, Θt+1, ct) is simply:

G(Θt, Θt+1, ct) = Y (q, q̇, q̈)πr = τ (19)

where state transitions have been appropriately replaced by

joint angles, velocities and accelerations and the contextual

variables by the inertial parameters. To acquire the model,

we need to have an estimate of Y (q, q̇, q̈). If we have an

appropriate number of models (that is, at least as many as

the cardinality of πr), we can simply estimate Y (q, q̇, q̈)
using least squares due to the linearity property. For control

purposes, if we have an estimate of πr at time t, given the

desired transition for the next time step, we can compute

Y (q∗, q̇∗, q̈∗) and hence, the feedforward command. For

robust context estimation, we can use temporal dependencies,

similar to the principles used in the multiple model scenario.

However, since we now have a set of continuous hidden

variables as opposed to a single discrete context variable,

the inference is slightly more involved (refer to Table II).

But what does it mean for the quantity Yr(q, q̇, q̈) to

remain constant in different contexts? Basically, it means

that all kinematic quantities of the arm remain the same

between different contexts – this is clearly true in the case

of manipulating different objects.

Each link of the arm typically has ten inertial parame-

ters. This implies that, ideally, if we have the prerequisite

number of ’labeled’ context models (for e.g., more than ten

independent and perfect models corresponding to different

scenarios), then, one can infer all the dynamic parameters of

any manipulated object. In practice, however, since learned

dynamic models will not be perfect and due to the presence

of noise in the sensor measurements, a larger number of

‘context models’ is necessary to give accurate estimates.

A. Experiments with the augmented model

The augmented model proposed for extracting the con-

tinuous context/latent variable was empirically evaluated.

Separate models for the dynamics of the arm manipulating

seven different objects with the same shape but different

masses were trained and labeled. Masses were uniformly

distributed between 0 and 0.06 where zero mass means

load-free arm movement. Since all 10 inertial parameters

of the manipulated object change linearly as the mass of

the manipulated object changes between the contexts, just

two known (labeled) contexts can be used to obtain the

augmented model. While the scenario is less complicated

than estimating the full moment of inertia matrix , successful

estimation of the mass of the other five contexts and control

using the augmented model can be used to validate the

concept.

First, the accuracy of the augmented model was tested

based on how well it can approximate other contexts’ dynam-

ics. We trained the augmented model using data from masses

of 0.01 and 0.03. After parameter estimation, the learned

model was used to predict the dynamic torques required to

manipulate the other five contexts over a subset of the trained

trajectory but for loads which have not been trained with.

The error for the novel loads were computed by comparing
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Fig. 8. Continuous context estimation: (a) Accuracy of the augmented inverse model (b) Temporal vs. Non temporal (c) Context estimates in control

the results of the augmented model with the torques learnt

by the multiple, discrete models for the other five contexts.

Fig. 8 (a) shows the nMSE of the torques predicted by the

augmented model, averaged over all the joints. While the

interpolated torques for the load of 0.02 is almost perfect,

the extrapolated torques (outside the trained model of 0.01

and 0.03) for other loads also show excellent performance.

Next, we investigate whether the augmented model can

be used for accurate context estimation. The augmented

model (learned using the same two contexts) was used for

context estimation under pure feedback control, where the

mass of the manipulated object changed randomly during the

simulation. Note that in this case, the context estimates were

not used for computing the control commands. We compared

the non-temporal and temporal formulation for context esti-

mation, results for which are plotted in the Fig. 8 (b). The

results for the non-temporal case are not that accurate and

depend heavily on the choice of the prior of the context.

However, when using the temporal model, the mass of the

manipulated object is estimated quite accurately, irrespective

of the prior. This can be explained by the fact that in the

temporal case, the posterior of one time step effectively acts

as the prior of the next, negating the influence of the initial

priors beyond the start phase of the trajectory. Considering

the real mass as the target, the nMSE of the estimates for the

non-temporal and temporal cases were 0.8881 and 0.0423,

respectively.

In the next step, we used the context estimates for control.

The last simulation with continuous random changes in the

context was repeated, but this time the arm was controlled

with a composite controller and the augmented model was

used to provide the feedforward command. Context estimates

based on the temporal model were used as input to the

augmented model. Fig. 8 (c) displays the accuracy of context

estimates in this experiment compared to the one using pure

feedback command. This comparison gives us an idea about

how context estimation is affected when using the augmented

model for control. Quantitatively, context estimation accu-

racy is a bit worse: in the previous experiment it was 0.0423

whereas it is now 0.0644. Furthermore, the efficiency of the

augmented model in controlling the arm which can judged

from the feedback to composite command ratio was 0.1495

– a result comparable to one we had for control with learned

models under a single context.

V. DISCUSSION

We have described a method of using a learned set of

models for control of a system with non-linear dynamics

under continuously varying contexts. In addition , we have

refined the multiple model paradigm to be able to simulta-

neously deal with learning dynamic models, use them for

online switching control and also efficiently bootstrap data

separation for context unlabeled data. An important aspect of

this work is that we manage to infer the continuous hidden

context that contains dynamic properties of the manipulated

object, e.g. the mass of the object as illustrated in the experi-

ments. While in this research, we have focused on estimating

context purely from the predictive and experienced dynamics

from manipulation, we are investigating avenues of incor-

porating a much richer sensory suite including haptic/tactile

information from the hand to enhance context estimation and

control.
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