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Abstract— Rao-Blackwellized Particle Filter and FastSLAM
have become popular tools to solve the Simultaneous Local-
ization and Mapping (SLAM) problem. However, the above
techniques have two important potential limitations, which
are the derivation of the Jacobian matrices and the linear
approximations to the nonlinear functions. Also, one of the
major challenges of both Rao-Blackwellized particle filter
and FastSLAM is to reduce the number of particles while
maintaining the estimation accuracy. This paper proposes a new
algorithm based on unscented transformation called Unscented
FastSLAM (UFastSLAM) that overcomes important drawbacks
of the Rao-Blackwellized particle filter frameworks by directly
using nonlinear relations. Experimental results in large scale
environments are presented that demonstrate the effectiveness
of the UFastSLAM algorithm over the previous approaches.

I. INTRODUCTION

The simultaneous localization and mapping is the problem
to determine the position and the heading of an autonomous
vehicle moving through an unknown environment and, si-
multaneously, to estimate features of the environment. In the
past decade, a lot of researchers focused on this problem.

Recently, the estimation algorithms can be roughly classi-
fied according to their underlying basic principle. The most
popular approaches to SLAM problem are the Extended
Kalman Filter (EKF-SLAM) and the Rao Blackwellized
Particle Filter (RBPF-SLAM) [1]. The effectiveness of the
EKF approach comes from the fact that they estimate a
fully correlated posterior over feature maps and vehicle
poses. However, the EKF-SLAM assumes linearization of
the motion and measurement models and Gaussianity for the
probability density functions, so a consistency analysis and
an improvement of the classical algorithm have been reported
[2]–[4]. In [5], Murphy introduced the RBPF as an effective
approach to solve the SLAM problem by decoupling the
state of the vehicle and the map. Montemerlo et al. [6], [7]
developed a framework called the FastSLAM for landmark
based maps.

One of the major challenges of both the RBPF and
the FastSLAM is to reduce the number of particles while
maintaining the estimation accuracy. Additionally, the re-
sampling step of the particle filter can eliminate the correct
particles [8]. The noticeable one is that both the RBPF and
the FastSLAM linearize the motion and the measurement
model in the same manner as the EKF-SLAM. As a result,
unfortunately, the EKF based RBFP frameworks have two
important potential drawbacks which are the derivation of

Chanki Kim, R. Sakthivel and Wan Kyun Chung are with the Department
of Mechanical Engineering, Pohang University of Science and Technology,
Korea {minekiki,Sakthi,wkchung}@postech.ac.kr

the Jacobian matrices and the linear approximations to the
nonlinear functions. Inherently, inaccurate approximations of
the nonlinear function should be solved since it can lead to
filter divergence [2], [4], [9].

Martinez-Cantin and Castellanos [2] introduced the Un-
scented Kalman Filter (UKF) [10]–[12] in SLAM problem
for large scale outdoor environments. This approach is used
to avoid the analytical linearization based on Taylor series
expansion of both the motion and the measurement model.
Merwe et al. [8] introduced the Unscented Particle Filter
(UPF) algorithm for a novel proposal distribution in the
sampling step. The unscented filter estimates the mean and
the covariance by a linear weighted regression of evaluation
of the true nonlinear models at the sigma points. As proved in
the previous researches, the number of sigma points precisely
and accurately approximates the posterior covariance up to
the third order, whereas the EKF relies on a first order
approximation. More recently, Li et al. [13] introduced the
UKF based RBPF for SLAM problem using a monocular
vision but they did not apply the UKF based RBPF in a
proper way 1.

In this paper, a new framework called the Unscented
FastSLAM (UFastSLAM) is developed and demonstrated to
overcome the important limitations of the RBPF frameworks.
The UFastSLAM consists of the UKF for feature update and
the Unscented Transformation (UT) for feature initialization
and the modified UPF for improved sampling of the vehicle
state.

We observe experimentally that the proposed UFastSLAM
algorithm, even with 3 particles, yield significantly more
accurate results compared with the FastSLAM2.0. And this
improvement is salient with large uncertainty.

We begin Section II by describing the UFastSLAM algo-
rithm. In this section, we present the measurement update,
initialization of the feature, then how the proposal distri-
bution is calculated using the unscented filtering. At the
end of this section, we introduce the resampling technique.
In Section III, the results are presented to demonstrate the
effectiveness of the proposed algorithm. The results validate
that the UFastSLAM shows the better performance. Section
IV contains the conclusion and the future works.

1Some invalid parameter values are used to deterministically generate
sigma points. In particular, the selected value for α = 0 explicitly reveals
that the value of parameter λ = −n. This leads (2) is invalid and
consequently the further steps are in question. Moreover, the authors claimed
that UKF is used for feature update. The way in which they applied UKF
for feature update is obviously wrong. Just UT is used for approximating
the nonlinear measurement function and subsequently the new mean and
covariance are obtained using the classical EKF technique.
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II. BACKGROUND: FASTSLAM FRAMEWORK

The FastSLAM algorithm, introduced by Montemerlo et
al. [7] is an efficient algorithm for the SLAM problem that is
based on a straightforward factorization. This algorithm par-
titions SLAM posterior into a localization problem and inde-
pendent landmark positions estimation problem conditioned
on the vehicle pose estimate. The conditional independence
property of the SLAM problem enables us to estimate the
posterior in the following factored form:

p(xt, θ|zt, ut, nt) = p(xt|zt, ut, nt)
N∏

k=1

p(θk|xt, zt, ut, nt).

Here the path of the vehicle is denoted by xt = x1, . . . , xt,
zt = z1, . . . , zt is a sequence of measurements and ut =
u1, . . . , ut is a sequence of control inputs. nt = n1, . . . , nt

are data association variables, in which each nt specifies the
identity of the landmark observed at time t. Each landmark
is denoted by θk for k = 1, . . . , N and θ means the set of
all landmarks.

FastSLAM uses a particle filter to approximate the ideal
recursive Bayesian filter for estimating the vehicle pose.
The remaining posterior of feature locations are analytically
calculated by using the EKF filters. So the FastSLAM
algorithm is a Rao-Blackwellized particle filter. Each particle
in the FastSLAM is of the form

X
[m]
t =< xt,[m], µ

[m]
1,t ,Σ

[m]
1,t , . . . , µ

[m]
N,t,Σ

[m]
N,t >

where [m] indicates the index of the particle, xt,[m] is its path
estimate, and µ[m]

k,t and Σ[m]
k,t are the mean and covariance of

the Gaussian, representing the k-th landmark location that is
attached to the m-th particle. In FastSLAM1.0, new poses
are sampled using the most recent motion command ut:

x
[m]
t ∼ p(xt|x[m]

t−1, ut).

It is important to note that this proposal distribution uses only
the motion control ut, but ignores the current measurement
zt. So the FastSLAM1.0 approach is particularly troublesome
if the observation is too accurate relative to the vehicle’s
motion noise. To overcome this problem, an improved ver-
sion called FastSLAM2.0 is proposed by Montemerlo et
al. In FastSLAM2.0, the vehicle poses are sampled under
consideration of both the control ut and the measurement zt

which is denoted by the following sampling distribution

x
[m]
t ∼ p(xt|x[m]

t−1, ut, z
t, nt)

and, as a result, the FastSLAM2.0 is superior to the Fast-
SLAM1.0 in all aspects [17].

In the FastSLAM algorithm, each particle does not rep-
resent a single momentary vehicle pose. Rather, it repre-
sents an entire vehicle path history and the path history is
recorded in the map estimates. The map is represented as a
set of independent Gaussians, with linear time-complexity,
rather than a joint map covariance with quadratic time-
complexity. These are key properties of the FastSLAM and
are the reason for its computational speed. FastSLAM offers

some improvements over the traditional EKF-based SLAM
framework. In addition to the obvious reduction in com-
putational complexity, the technique intrinsically provides a
way of maintaining multi-hypothesis data association. This
is an important advantage, given that a single-hypothesis
data association error can cause the EKF-based strategy to
fatally diverge. In FastSLAM, particles with incorrect data
association eventually “die” because of their low importance
weights, thereby reducing the impact of such errors.

III. UNSCENTED FASTSLAM

A. Feature Update and Initialization using the UKF in the
FastSLAM framework

The UKF is more accurate than the EKF in the aspect
of nonlinear approximation accuracy and does not employ
Jacobian matrices for calculating feature covariance. Instead
of approximating the measurement nonlinear function by
Taylor series expansion, the UKF deterministically extracts
so-called sigma points from the Gaussian and passes these
through the nonlinear function. These sigma points are
defined using previous mean and covariance of features.

χ[0][m] = µ
[m]
nt,t−1

χ[i][m] = µ
[m]
nt,t−1+

(√
(n+ λ)Σ[m]

nt,t−1

)
i

, (i=1, ..., n) (1)

χ[i][m] = µ
[m]
nt,t−1−

(√
(n+ λ)Σ[m]

nt,t−1

)
i

, (i=n+1, ..., 2n)

Here n is the dimension of feature state (n = 2). λ = α2(n+
κ) − n, with α = 0.01 and κ = 0 being scaling parameters
that determine how far the sigma points are separated from
the mean. Because landmarks on a planar environment have
only 2 degrees of freedom, so in the feature part, it is enough
to use 2 dimensional Gaussian. µ[m]

nt,t−1 is the mean of the
n-th feature which is registered in previous step. χ[i][m] is the
sigma points on Cartesian coordinate. [m] means an index of
particles. Σ[m]

nt,t−1 is the covariance matrix of the n-th feature,
and it has 2 by 2 dimension in the FastSLAM framework.

The UKF requires computation of a matrix square root
which can be implemented directly using the Cholesky
factorization. However, the covariance matrices have low di-
mensions and can be expressed recursively. So, not only does
the UKF outperform the EKF in accuracy and robustness, it
does so at no extra computational cost [8].

A weight w[i]
g is used when computing the mean and the

weight w[i]
c is used when recovering the covariance of the

Gaussian. These weights are calculated by

w[0]
g =

λ

(n+ λ)
, w[0]

c =
λ

(n+ λ)
+ (1 − α2 + β) (2)

w[i]
g =w[i]

c =
1

2(n+ λ)
(i = 1, ..., 2n)

The parameter β = 2 can be choosen to encode additional
knowledge about the distribution underlying the Gaussian
representation. The predicted measurement ẑ

[m]
t and the
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Kalman gain K [m]
t is calculated as follows

Z̄
[i][m]
t = h(χ[i][m], x

[m]
t ) (i = 0, ..., 2n)

ẑ
[m]
t =

2n∑
i=0

w[i]
g Z̄

[i][m]
t

S
[m]
t =

2n∑
i=0

w[i]
c

(
Z̄

[i][m]
t − ẑ

[m]
t

)(
Z̄

[i][m]
t − ẑ

[m]
t

)T

+Rt

Σ̄[m]
t =

2n∑
i=0

w[i]
c

(
χ[i][m] − µ

[m]
nt,t−1

) (
Z̄

[i][m]
t − ẑ

[m]
t

)T

K
[m]
t = Σ̄[m]

t

(
S

[m]
t

)−1

(3)

Here, h(·) is the observation model. Z̄ [i][m]
t is the sigma

points on the polar coordinate made by nonlinear trans-
formation. In this observation model, the current vehicle
state of m-th particle x

[m]
t is used. We assume that the

measurement noise covariance Rt is additive. K [m]
t is the

Kalman gain calculated from pure nonlinear transformation.
This is more accurate than the EKF. Finally the mean µ[m]

nt,t

and the covariance Σ[m]
nt,t of the n-th feature is updated by

µ
[m]
nt,t = µ

[m]
nt,t−1 +K

[m]
t

(
zt − ẑ

[m]
t

)
(4)

Σ[m]
nt,t = Σ[m]

nt,t−1 −K
[m]
t S

[m]
t

(
K

[m]
t

)T

(5)

zt is the true measurement. We can use the Cholesky
factorization in this feature update to make the algorithm
more stable numerically.

In the feature initialization, the current measurement zt

and measurement noise covariance Rt compose the sigma
points ψ[i][m]. In the FastSLAM and the RBPF framework,
the feature initialization is separated from the vehicle state
estimator. This means that it is possible to use the measure-
ment noise covariance as an initial feature covariance [6],
[7].

Finally, the feature mean µ[m]
nt,t and the feature covariance

Σ[m]
nt,t in the feature initialization are calculated by

ψ[0][m] = zt

ψ[i][m] = zt +
(√

(n+ λ)Rt

)
i
, (i = 1, ..., n)

ψ[i][m] = zt −
(√

(n+ λ)Rt

)
i
, (i = n+1, ..., 2n)

M̄
[i][m]
t = h−1(ψ[i][m], x

[m]
t ), (i = 0, ..., 2n)

µ
[m]
nt,t =

2n∑
i=0

w[i]
g M̄

[i][m]
t

Σ[m]
nt,t =

2n∑
i=0

w[i]
c

(
M̄

[i][m]
t − µ

[m]
nt,t

) (
M̄

[i][m]
t − µ

[m]
nt,t

)T

B. Sampling Particles using the modified UPF in the Fast-
SLAM framework

The particle filter in the FastSLAM and the RBPF frame-
work rely on the importance sampling and, as a result,

requires the design of proposal distributions that can approx-
imate the true posterior reasonably well. The most common
strategy is to sample from the motion model. This strategy
can, however, fail if the new measurements appear in the tail
of the proposal distribution or if the likelihood is too sharp
in comparison to the proposal distribution.

Several researchers introduced the current observation into
the proposal distribution and used their own techniques,
as a result, could make the upgraded proposal distribution
which is almost same with the true posterior [7], [15], [16].
However, the Jacobian and inaccurate linear approximation
still exist on the covariance related part. The proposed algo-
rithm reducing linearization error in the proposal distribution
shows more accurate result than the FastSLAM2.0 in both
the vehicle and the feature estimation. The resulting filter
performs better accuracy and robustness, but it does not use
the Jacobian and linear approximation.

In this section, modified UPF is used to sample the
particles from the improved proposal distribution [8].

Since the observation is not always detected, constructing
the proposal distribution and sampling from this prior have
two phases. One is a prediction step, another is a measure-
ment update step. At first, the state vector is augmented with
a control input and the observation

x̄
a[m]
t−1 =


 x̄

[m]
t−1

0
0


 =




x̄
[m]
x,t−1

x̄
[m]
y,t−1

x̄
[m]
θ,t−1

0
0



, P

a[m]
t−1 =


P

[m]
t−1 0 0
0 Qt 0
0 0 Rt




(6)

x̄
a[m]
t−1 is the augmented vector for the state and x̄[m]

t−1 is the
previous mean of the vehicle. Qt and Rt are the control
noise covariance and the measurement noise covariance
respectively. The augmented covariance matrix P a[m]

t−1 has 7
by 7 dimension. A symmetric set of 2L + 1 sigma points
χ

a[i][m]
t−1 for the augmented state vector with L = 7 is given

by

χ
a[0][m]
t−1 = x̄

a[m]
t−1

χ
a[i][m]
t−1 = x̄

a[m]
t−1 +

(√
(L+ λ)P a[m]

t−1

)
i

, (i = 1, ..., L)

χ
a[i][m]
t−1 = x̄

a[m]
t−1 −

(√
(L+ λ)P a[m]

t−1

)
i

, (i = L+1, ..., 2L)

Here α = 0.0001, κ = 0 and β = 2 are enough
for estimating the vehicle pose. Each sigma point χa[i][m]

t−1

contains the state, control, and measurement components
given by

χ
a[i][m]
t−1 =



χ

[i][m]
t−1

χ
u[i][m]
t

χ
z[i][m]
t


 (7)

The motion model is characterized by a nonlinear function
and the set of sigma points χa[i][m]

t−1 are transformed by the
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motion model f, using the control u[m]
t with the added control

noise component χu[i][m]
t of each sigma point.

χ̄
[i][m]
t = f(u[m]

t + χ
u[i][m]
t , χ

[i][m]
t−1 ) =



χ̄

[i][m]
x,t

χ̄
[i][m]
y,t

χ̄
[i][m]
θ,t


 (8)

Here, χ̄[i][m]
t is the transformed vehicle pose and on the

sigma domain. The first two moments of the predicted
vehicle state are computed by a weighted summation of
the transformed sigma points χ̄[i][m]

t , and the weights are
calculated as in the previous step using (2).

x̄
[m]
t|t−1 =

2L∑
i=0

w[i]
g χ̄

[i][m]
t

P
[m]
t|t−1 =

2L∑
i=0

w[i]
c

(
χ̄

[i][m]
t − x̄

[m]
t|t−1

) (
χ̄

[i][m]
t − x̄

[m]
t|t−1

)T

As some features are observed, data association provides its
identity and (9) ∼ (15) are employed to update the estimated
mean x̄

[m]
t and the covariance P

[m]
t of the vehicle. The

measurement sigma points N̄ [i][m]
t are calculated using the

observation model h, characterized by a nonlinear function,
with the added measurement noise component χz[i][m]

t .

N̄
[i][m]
t = h(χ̄[i][m]

t ) + χ
z[i][m]
t (9)

n̂
[m]
t =

2L∑
i=0

w[i]
g N̄

[i][m]
t (10)

S
[m]
t =

2L∑
i=0

w[i]
c

(
N̄

[i][m]
t − n̂

[m]
t

) (
N̄

[i][m]
t − n̂

[m]
t

)T

(11)

Σx,n[m]
t =

2L∑
i=0

w[i]
c

(
χ̄

[i][m]
t − x̄

[m]
t|t−1

) (
N̄

[i][m]
t − n̂

[m]
t

)T

(12)

K
[m]
t = Σx,n[m]

t

(
S

[m]
t

)−1

(13)

Here, n̂[m]
t is the predicted measurement and S

[m]
t is the

innovation covariance. The cross-covariance Σx,n[m]
t corre-

sponds to the Jacobian term of the EKF algorithm. K [m]
t is

the Kalman gain in the measurement update.
Notice that we do not use the measurement noise covari-

ance Rt as an additive term for calculating the innovation
covariance S

[m]
t . This is because the measurement noise

is already included in the augmented covariance (6) and
considered to calculate the predicted measurement n̂[m]

t . In
a different way, one can define the augmented state vector
and the augmented covariance (6) using the state and control
inputs and, rather than containing the measurements in the
augmentation, can handle the measurement noise covariance
as an additive term in (11). However, it is important to note
that this can lead to a negative definite of the covariance of
the vehicle P

[m]
t in a very small measurement noise with

multiple measurements.

The estimated mean and its covariance at time t are
calculated by:

x̄
[m]
t = x̄

[m]
t|t−1 +K

[m]
t

(
zt − n̂

[m]
t

)
(14)

P
[m]
t = P

[m]
t|t−1 −K

[m]
t S

[m]
t

(
K

[m]
t

)T

(15)

From the Gaussian distribution generated by the estimated
mean and covariance of the vehicle, the state of each particle
is sampled.

x
[m]
t ∼ N (x̄[m]

t , P
[m]
t ) (16)

Because the next augmented state x̄a[m]
t employs the previ-

ous mean x̄[m]
t−1, so the updated mean should be memorized

during the iterative process. Multiple measurements are
obtained frequently. In this case, (9) ∼ (15) are repeated
according to each feature, and the mean and the covariance
of the vehicle are updated based on the previously updated
one.

C. Selective Resampling

One of the major influences on the performance of the
particle filter is the resampling step. The particles with a
low importance weight are replaced by samples with a high
weight during the resampling. For the resampling technique
we apply the selective resampling strategy based on the
number of effective particles [15].

IV. RESULTS

Bailey et al. developed the SLAM simulator and opened to
the public on the web-site [18]. By using this simulator, the
comparison of the different SLAM algorithms is permitted
and Bailey, Nieto and Nebot [17] discussed an accuracy of
the FastSLAM2.0 using this simulator. We also used the
same simulator and the FastSLAM2.0 algorithm which are
used in [17].

Before comparing the UFastSLAM with the Fast-
SLAM2.0, we introduce two important versions of the modi-
fied FastSLAM2.0 which are the ‘UKF aided FastSLAM2.0’
and the ‘modified UPF aided FastSLAM’.

A. Preliminary Experiments

The preliminary experiment is executed on a rectangular-
shaped trajectories of 100 meters x 20 meters as shown
in Fig. 1. The vehicle has 0.26 meters wheel base and
is equipped with a range-bearing sensor with a maximum
range of 20 meters and a 180 degrees frontal field-of-view.
Gaussian noise covariances are generated for both the mea-
surement and the motion. The control noise is σV = 0.1m/s,
σγ = 3◦. A control frequency is 40 Hz and observation
scans are obtained every 5Hz. Data association is assumed
known. The measurement noise is 0.2m in range and 8◦

in bearing. We used only 3 particles. The feature and the
vehicle states are predicted and updated by the pure nonlinear
transformation in the UFastSLAM which outperforms the
FastSLAM2.0 as shown in Fig. 1.

Each bar in Fig. 2 represents the mean of the estimated
error of the vehicle pose. The mean and variance of the MSE
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(b) UFastSLAM
Fig. 1. Estimated and true vehicle path with estimated and true landmarks. The black line and green stars denote the true path and landmark positions,
respectively. The red line is the mean estimate of the vehicle and the red dots are estimated landmarks. The measurement noises are relatively large
(σr = 0.2m, σφ = 8◦) and only 3 particles are used.

are calculated over 10 independent runs for each algorithm.
Additionally, only 3 particles are used. The ‘UKF aided
FastSLAM2.0’ employs the sampling technique same as the
FastSLAM2.0 but feature states are updated using the UKF
and initialized by the UT. In Fig. 2 and Tab. I, the estimation
accuracy of the ‘UKF aided FastSLAM2.0’ (B in Fig. 2)
is increased comparing with the FastSLAM2.0 (A in Fig.
2). This is because more accurate transformation operates
upon the estimator rather than linear approximation of the
nonlinear function. However, one can find that the reduction
of the MSE is only 1 meter. This means that the effect of
the unscented filter in the ‘UKF aided FastSLAM2.0’ (B in
Fig. 2) is not so large. This is because the feature covariance
has low dimension.

The ‘modified UPF aided FastSLAM’ (C in Fig. 2)
consists of the unscented filter based sampling technique
and the EKF feature update. The most important factor of
the particle filter approach is the sampling process. The
FastSLAM framework is also particle filter based estimator,
and as a result, the novel sampling technique affects the
performance of the estimator, directly. In this case, we can
observe the greatly increased performance compared with the
‘UKF aided FastSLAM2.0’ (B in Fig. 2).

Finally, the proposed algorithm UFastSLAM (D in Fig.
2) shows the most accurate result comparing with the other
3 algorithms (FastSLAM2.0, UKF aided FastSLAM2.0 and
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Fig. 2. Comparisons of the developed algorithms with FastSLAM2.0.

modified UPF aided FastSLAM) as shown in Fig. 2.

B. Performance Comparison Between UFastSLAM and Fast-
SLAM2.0

In this section, we consider three types of simulation
experiments to demonstrate the effectiveness of the proposed
algorithm, UFastSLAM.

The first set of experiments has been designed to validate
the effect of the measurement uncertainty. In this experiment,
10 particles were used with various measurement noise levels
in the relatively small environment (20 meters by 25 meters).
The mean and variance of the MSE are calculated over 5
independent runs for each algorithm. As the measurement
noise is increased, the estimation errors of the FastSLAM2.0
and the UFastSLAM algorithms are increased as shown in
Fig. 3. However, the increasing rate of the estimation error of
the FastSLAM2.0 is almost twice than the UFastSLAM and
the variance of the MSE of the FastSLAM2.0 is larger than
the UFastSLAM. So we can conclude that the UFastSLAM
is more robust to the sensor noise than the FastSLAM2.0.

In the second experiment, the number of particles of the
UFastSLAM is considered to obtain the same estimation
accuracy with the FastSLAM2.0. A size of the environment
is about 100 meters by 100 meters and the vehicle traveled
about 500 meters. Tab. II presents the mean squared errors
and the number of particles. Although the UFastSLAM uses
one-fifth of the particles of the FastSLAM2.0, the estimated
error is almost the same as the FastSLAM2.0.

Finally, we compared the performance of both UFast-
SLAM and FastSLAM2.0 algorithms with an unknown data
association and with the same number of particles. The
individual compatibility nearest neighbor test with the 2σ
acceptance region is used for the data association. At a
position ‘G’ of Fig. 4(a), we notice that the vehicle again
observed the landmark A, B and C but the data association is
failed because of the large heading errors, and at a position
‘H’ of Fig. 4(a), the landmark B and C are mismatched
again. Consequently, the filter is diverged and is failed to
close a first loop. On the other hand, the UFastSLAM,
in Fig. 4(b), estimates both the vehicle and the feature
states accurately by avoiding the analytical linearization of
the nonlinear equations. The accurate estimation induced a
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TABLE I

PRELIMINARY EXPERIMENTS

SLAM algorithm MSE [m] heading
(with 3 particles) mean var errors [deg]

FastSLAM2.0 5.783 0.500 -6.6927
UKF aided FastSLAM2.0 4.705 0.352 -5.4442

Modified UPF aided FastSLAM 2.322 0.001 -2.9198
Unscented FastSLAM 1.831 0.076 -2.4861

sequence of successful data associations of the observed
landmarks A, B and C. Then further, consider landmarks
D, E and F in Fig. 4(b), which contribute to the first loop
closing event and we observe that the first loop is closed
successfully. Since the Kalman gain of the feature update
(3) and the Kalman gain in the proposal distribution (13)
are calculated from the pure nonlinear transformation, the
UFastSLAM compensates the angular uncertainty robustly
as shown in Fig. 4(b) comparing with Fig. 4(a).

V. CONCLUSIONS

In this paper, we proposed the UFastSLAM algorithm
which is an improved framework to solve the SLAM problem
efficiently. The main advantage of this algorithm is that it
does not use the derivation of the Jacobian matrices and the
linear approximations to the nonlinear functions in the RBFP
framework.

In the proposed algorithm, the feature state and the covari-
ance are updated by the UKF to avoid the linearization errors
and the Jacobian calculations. For sampling the particles, the
UT is implemented in the prediction step of the vehicle state,
and the unscented filter is employed to obtain the better
proposal distribution to overcome linearization errors and
the Jacobian calculations in the measurement update step
of the vehicle state. Due to this, the accuracy of the state

Fig. 3. The effectiveness of UFastSLAM according to large measurement
noises. Each bar means its mean of the estimated vehicle pose. The mean
and variance of the MSE are calculated over 5 independent runs for each
SLAM algorithm. 10 particles are used in small environment (20m x 25m).
Measurement noises of each experiment are (a) σr = 0.1, σφ = 3◦ (b)
σr = 0.2, σφ = 6◦ (c) σr = 0.2, σφ = 8◦ (d) σr = 0.3, σφ = 10◦ (e)
σr = 0.3, σφ = 14◦. The loop closure with known data association and a
long range of an observation (20 meters) induced an absolutely small MSEs
in entire experiments.

TABLE II

SECOND EXPERIMENT

SLAM algorithm Number of MSE[m]
particles (size of environment, traveling)

FastSLAM2.0 50 1.6815 (100m x 100m, � 500m)
UFastSLAM 10 1.6963 (100m x 100m, � 500m)

estimation has been improved over the previous approaches.
Also this technique has the additional advantage of reducing
the number of particles while maintaining the estimation
accuracy.

We conclude from the results in large scale environments
with various sensor noise uncertainties that the proposed
UFastSLAM algorithm, even with less particles, yields sig-
nificantly more accurate and robust results compared with
the FastSLAM2.0.

Future work considers on resampling technique for im-
proving the consistency of the Rao-Blackwellized particle
filters.
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(a) FastSLAM2.0 (b) UFastSLAM
Fig. 4. Unknown data association. Estimated and true vehicle path with estimated and true landmarks. The black line and green stars denote the true
path and landmark positions, respectively. The red line is the mean estimate of the vehicle and the red dots are estimated landmarks. In this experiment,
the control noise is σV = 0.3m/s, σγ = 3◦. The measurement noises are relatively large (σr = 0.2m, σφ = 8◦) and only 3 particles are used for both
FastSLAM2.0 and UFastSLAM algorithms.

(a) (b)
Fig. 5. Estimated errors of the vehicle. The dashed line represent FastSLAM2.0 and the solid (red) line represent UFastSLAM: (a) x position errors and
(b) y position errors
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