
Realization of Dynamics Simulator Embedded Robot Brain for

Humanoid Robots

Takashi Ogura, Kei Okada and Masayuki Inaba

Abstract— This paper proposes the new robot programming
environment in which robot motion programming environment
and dynamics simulator are integrated. This allows robot mo-
tion programs to include simulation descriptions. Additionally,
a new implementation of simulation that is composed by sim-
ulation modules is presented, on the other hand, conventional
simulators are monolithic and implanted every function. This
makes it difficult to add new simulation functions such as new
sensors on a simulator by its users. In the new method, the
users of the environment can add new modules easily. The
simulation function of this system is evaluated by showing
new robot motion simulations like brooming, seesaw and so
on. The experiment that shows how the simulation embedded
brain changes the motion planning of block moving problem is
illustrated in the end this paper.

I. INTRODUCTION

This paper proposes “Dynamics Simulator Embedded

Robot Brain” and show how to realize it. This robot brain has

dynamics simulator inside and it can make motion planning,

learning or prediction using the simulation environment.

The left figure of Fig.1 shows usual relation of humanoid

robot brain and dynamics simulator such as FAST[1] or

OpenHRP[2]. The brain is connected to the real robot or the

virtual robot. The virtual robot is just substitution of the real

robot. In such environments, it is difficult to control virtual

world from the brain, and only can do batch simulations. The

brain can not handle the dynamics models in the simulator.

Therefore the environment is not enough for the brain to

learn or predict future. The new brain has simulator inside,

and uses it for prediction and makes motion planning or

controlling of motion. The right hand of the Fig.1 shows

that. This simulation embedded brain has the three merits

mainly not only for the brain itself but the users.

• Sensor-based programming in only one environment.

• The brain can control the virtual world directly.

• Interactive simulation.

At first, if the brain does not have simulators outside, it

can learn by try and error in simulator using only this system.

Tryy and error learning is done in simulators so offten[3],

[4], and the brains usually use simulator for learning using

ones outside of them. Then the brain must connect the virtual

world and synchronize the two environments. This is more

troublesome for the brain and the users. The second benefit

is adjustment of virtual world. If the brain build the virtual

This work was not supported by any organization
T. Ogura (JSPS Research Fellow), K. Okada and M. Inaba are

with Department of Mechano-Informatics, Graduate School of In-
formation Science and Technology, The University of Tokyo, 7-3-1
Hongo, Bunkyo-ku, Tokyo 113-8656, Japan {ogura, k-okada,
inaba}@jsk.t.u-tokyo.ac.jp

world from recognition, the brain should have full control

of the simulator. The objects in the simulator have many

parameters such as friction, spring in collision and so on. The

third merit is that the simulation becomes interactive. If the

brain controls the simulator, the simulator must controlled

interactively. Interactive simulation is also useful for the

human.

This paper proposed “Dynamics Simulator Embedded

Robot Brain” for humanoid robots at first. In the next section,

we show the functions the brain should have. Then we

discuss how to implement the environments, and show the

new implementation method. We describe EusDyna, which

is implemented by the method, and show some simulation

results of humanoid robots. The experiment that shows how

the simulation embedded brain changes the motion planning

of block moving problem is illustrated in the end this paper.

II. THE FUNCTIONS FOR SIMULATION

EMBEDDED ROBOT BRAIN

For realizing Simulator Embedded Robot Brain, at first

the brain and dynamics simulator must be integrated. One

of integrated robot programming environment is OpenHRP.

OpenHRP’s features are realization of distributed processing

using CORBA, and to be able to use the same binaries for

simulators and real robots. However, this is for human not

for robot brain. When robot brain uses simulator, more three

features are required such as,

• selectivity in space

• selectivity in time

• interactive control

In the following, it explains these.

A. Selectivity in Space of Simulation Target

In conventional simulators, all objects and agents in the

simulator are simulated. If there are many objects, the

calculation amount becomes huge. Robot brain does not need

the result of all objects, but the objects payed attention to by

the robot. Then we call the function to select for simulation

“selectivity in space”. The robot is focusing on the cylinder in

Fig.2, then it only needs the simulation result of the cylinder.

B. Selectivity in Time of Simulation Target

The brain must have “selectivity in time” as same as

“selectivity in space.” The brain does not always need the

simulator. If it always simulates, most of the results are

wastes. It is important to be able to select target, start

simulation and stop it in any time, and back to the past.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB5.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2175



Simulator

Real World

Virtual Body

- Virtual Sensors

- Virtual Motors

Switchable

- Planning

- Recognition

- Motion Control

- Learning

Robot Brain Body

- Sensors

- Motors

Virtual Env.

Virtual Body

Robot Brain

- Planning

- Recognition

- Motion Control

- Learning

- Prediction
Integration of

Brain and Simulator

Real World

Virtual World

- Other agents

Fig. 1. Conventional brain and simulator, new simulator integrated brain.

Fig. 2. Simulate the objects paid attention to by the robot

C. Interactive Control of Simulation

In the complicated simulations such as humanoid robots

use tools of human, there are many simulation parameters

like friction or hardness. The brain must be able to control

simulation world interactively. Fig.3 shows the simulation

that the humanoid robot cleans using a broom. At first,

the hardness of the broom head is too hard to collect

the garbages, and this is not natural. If the coefficient of

bounce is changed by the brain, the brain can simulate the

sweep well (Fig.4). These motion program are the same one,

but only the coefficient is different. Not only adjustment

of parameters, but simulation methods or simulation speed

should be controlled by the brain.

1 2 3

Fig. 3. Garbage collection motion using dustpan and broom (not configured
parameters)

III. IMPLEMENTATION OF SIMULATOR

EMBEDDED ROBOT BRAIN

A. Implementation of Simulator by Micro-kernel method

In this section micro kernel method, which is one of

implementation method of simulator, is described. In sim-

1 2 3

Fig. 4. Garbage collection motion using dustpan and broom (configured
parameters)

ulator programs, integration, collision, servo simulation, and

simulation of many kinds of sensors are done for one loop,

and repeat it. Left side of Fig.5 shows this flow. This

structure is normally static. If you want to add functions or

change, you must recompile the simulation programs. This

is not easy for the users, and can’t be done dynamically.

We call this conventional implementation method of sim-

ulator, monolithic kernel method. The core of simulator is

monolithic and can not be divide. On the other hand, this

paper proposes micro kernel method. The system prepares

only the framework and minimum functions, and users can

add or delete functions dynamically. Right side of Fig.5

shows this method. The functions such as servo simulation

are implemented in each modules, and the system calls this

in turn. The each module has only one function. The robot

brain can add any modules if new simulation method is

required. This addition of modules can be done dynamically

while simulation is running. All the modules have common

interface between the modules and the system, and each

module knows which object is target of simulation.

In addition, it is considered that the simulator should

be able to deal the phenomena that can not be simulated

physically, such as switching of light or mechanical systems.

Because these not physical simulation function is very many,

these can not be implanted in advance. In micro-kernel

method simulator, these functions are added when it is

needed. Fig.6 shows “breakout” game in simulator. In the

game, the blocks collided with the ball disappear. This is not

physical function. If you use monolithic simulator, you must

reconstruct the simulator at all when you add the function.

ThB5.3

2176



However if you use micro-kernel method simulator, you can

add the function very easily.

Simulation Function1

Simulation Function2

Simulation Function3

Simulation Function4

Simulation Function5

(1) conventional simulator (Monolithic)

Simulation Module1

Simulation Module2

Simulation Module3

Simulation Module4

Simulation Module5

(2) proposed simulator (Micro)

Common

 Interface

Common

 Interface

Common

 Interface

Common

 Interface

Common

 Interface

Simulation Function1

Simulation Function2

Simulation Function3

Simulation Function4

Simulation Function5

Fig. 5. Implements of conventional simulator (Monolithic) and proposed
method(micro-kernel)

1 2 3

Fig. 6. 3D Block Game by simulation

B. Example of Implementation: EusDyna

We developed EusDyna, which realizes “Robot Brain

with Simulation Prediction Function.” EusDyna is based on

EusLisp[5]. EusLisp is one of Lisp implementation, and

it has geometric modeling and multi-thread functions. The

simulation model is also modeled by the modeling function

of EusLisp. We have developed many motion programs

using EusLisp, then EusDyna can utilize the resources. We

use EusLisp for planning in symbolic and static geometric

environment normally. EusDyna expand the planning for

dynamics geometric world.

Simulator part of EusDyna is implemented by the micro-

kernel method as above. Fig.7 shows the programs in the

interpreter and the thread. In the thread, modules like Table

I are called in turn in one step, this makes simulation. This

thread loop can be controlled by interpreter, and you can

execute only one step too. The core physical module uses

external libraries. Because this core is one of modules, it can

be exchanged. There are four core modules that uses ODE[6],

Math Engine of Vortex, PhysX[7] that can use PPU(Physics

Processing Unit) and only EusLisp. EusDyna can use one

of these core modules and any other modules. The user can

use these libraries without consciousness of the difference

because these libraries are encapsulated. Management of

modules and viewer are implanted on simulation kernel. In

EusDyna, modules in Table I realize simulation.

C. API of EusDyna and Example Codes

Main APIs of EusDyna are shown in Table II. Charac-

teristic ones are “d-tick” for proceed simulation only one

Lisp Interpreter Lisp Thread

Drawing

Modeling

Control of Simulation Time

Non-Realtime Action Programs 

Lisp Object Update Module

Simulation Modules

User Realtime Action Module

User Simulation Module

Stop
Start

Lock
Unlock

1tick

Control of Simulation Modules

Make
Add

Remove
A New Module

Simulation Modules

Simulation

Robots Environments Tooles

)(

( )
Servo Control Module

Robot Interface

angle-vector
Physics Library Module

Fig. 7. Configuration of EusDyna: Users make models of robots or
environments, motion programming and control simulation from interpreter.
The thread draws the results of simulation and executes each modules. When
users control simulation, the system uses mutex lock.

TABLE I

EXAMPLES OF SIMULATION MODULES

Module Name Function

Dynamics Collision and Integration. Simulation Core
Servo Control of Servo Motors

Force Sensor Simulate Force Sensors
Acceleration Sensor Simulate Acceleration Sensors

Gyro Sensor Simulate Gyro Sensors
ZMP Sensor Simulate ZMP Sensors

step, “d-make” for selecting the target for simulation or “d-

no-collision” for setting collision free pairs. The robot brain

uses these APIs for prediction or learning.

A sample code is shown in Fig.8. At first, it makes

two cubes (make-cube) and sets colors and weights. :locate

method sets the position of the cubes. The rest of d-init, d-

make, d-sart, objects are EusLisp code. These functions do

initialization, select simulation targets, start simulation and

display. This sample code runs the simulation shown in Fig.9

without any model files or other simulators.

In addition, simulation of game, buggy, robot arm or

humanoid robot are written in 100–200 lines like Fig.10.

Simulation speed of EusDyna is depend on mainly the

libraries. If it uses ODE, the system takes 740msec for 1sec

of simulation of humanoid like in Fig.4 (CPU: Pentium D

3.45GHz). This shows that the robot can use the simulator

in real time.

IV. SIMULATION OF HUMANOID ROBOT

Simulator integrated robot brain system made new sim-

ulations of humanoid robot possible using selectivity of

Space and time or interactivity of simulation. In this section

simulations are illustrated.

Fig.11 is a basic simulation of humanoid robot. The

humanoid robot walk to a ball and kick it. Such simulations

are major because these do not need the features described

in this paper. More complicated simulations are shown here.

ThB5.3

2177



TABLE II

EXAMPLES OF EUSDYNA API

API Name Function

d-init initialize simulation

d-end simulation termination

d-tick proceed simulation 1 step

d-start start simulation thread

d-backtick back simulation 1 step

d-make objs make “objs” simulation targets

d-make-joint b1 b2 make a joint between b1 and b2

d-no-collision objs ignore collision among “objs”

objects objs display “objs” on viewer

1 (setq aa (make-cube 100 100 100))

2 (setf (get aa :face-color) :blue)

3 (setf (get aa :weight) 50)

4 (setq bb (make-cube 200 200 150))

5 (setf (get bb :face-color) :yellow)

6 (setf (get bb :weight) 60)

7 (send aa :locate #f(50 50 600))

8 (send bb :locate #f(0 0 800))

9 (objects (list aa bb)) ;; display

10 (d-init) ;; initialization

11 (d-make (list aa bb)) ;; select

12 (d-start) ;; start simulation

Fig. 8. An Example of EusDyna’s code

The simulation which uses selectivity of space is shown

in Fig.12. The humanoid robot hold a dish and take it on

a tray, and carry it using the tray. Because the robot brain

selects only dishes, tray and board for simulation target, the

simulation can be run faster in such complicated situation.

Fig.13 shows the simulation results of sweeping garbages

with a broom. This simulation requires selectivity of time.

Fig.14 shows the main codes of this simulation and motion.

Geometric models are made in the first and second line. This

models are static one, and used for making poses or motion

planning. The lines start with “send” is calling methods of

the robot model. In the methods, if the robot is selected for

simulation, do the simulation, if not selected only animation.

In this codes reset motion and grasp the broom model, then

initialize simulation and select robot, broom and garbages

for simulation. Simulation is done between “d-init” and “d-

end.” After confirm the motion the robot brain can do the

same motion on the real body. The motion on the real body

is shown in Fig.15.

If the brain needs moving floor for simulation, it can add

moving floor module easily. The sample code for making

Fig. 9. Simulation results by the example code

Fig. 10. Examples of simulation: Block game, buggy, robot arm and
humanoid robot

and adding the module is Fig.14. Line 1 to 7 defines class

and make instance of it in line 9. Linke 10 adds the instance

to the system. The micro-kernel method enables this. The

simulation results is shown in Fig.17. The floor moves too

fast for the humanoid robot to keep standing.

Next example is reinforcement learning using this system.

Fig.18 shows the real robots environment of “swing” and

“see-saw”. The brain can do reinforcement learning without

any outer simulators and use results for the real body. Fig.19

shows that the humanoid robot sit on swing, and moves the

legs for acquiring acceleration. EusDyna can deal not only

one robot. Fig.20 is another sensor based motion example.

Two humanoid robots ride on see-saw and kick the ground

when the foot touched the ground.

Fig.21 shows simulation with visual processing. The sys-

tem can simulate robot vision functions as a module. The

robot pull a drawer and finding an object by the stereo camera

on the head.

1 2 3

Fig. 11. Walking toward a ball and kicking it

1 2 3

Fig. 12. Tidying up motion (stack the dishes and carry them using a tray)
in a kitchen environment

ThB5.3

2178



1 2 3

Fig. 13. Brooming simulation

1 (setq *bd* (create-broom-dust-model))

2 (setq *robot* (create-robot-model))

3 (send *robot* :reset-pose) ; reset motoin

4 (send *robot* :hold-broom)

5 (d-init) ; initialization

6 (d-make (list *robot* *bd*)) ; select target

7 (dotimes (i 3)

8 (send *robot* :swing-broom)); sweeping

9 (d-end)

10 (send *robot* :reset-pose) ; reset motion

Fig. 14. Motion programming code of brooming simulation

1 2 3

Fig. 15. Scene of brooming by Humanoid Robot HRP-2

1 (defclass earth-quake-module

2 :super eusdyna-module

3 :slots ())

4 (defmethod earth-quake-module

5 (:control (obj)

6 (send dj :angle (* width (sin x)) (* 1000 dt))

7 (incf x speed)))

8 (setq *dworld* (d-init))

9 (setq *em* (instance earthquake-module :init))

10 (send *dworld* :add-module *em*)

11 (send *robot* :stabilize-start) ;; control brain

Fig. 16. Motion programming code of moving floor

1 2 3

Fig. 17. Simulation result of moving floor

Fig. 18. Swing and see-saw environment in real world

1 2 3

Fig. 19. Swing simulation: Reinforcement learning

V. MOTION PLANNING USING DYNAMICS

SIMULATOR

A. Overview of Motion Planning

This section illustrates a motion planning using dynam-

ics simulator. Integration of brain and dynamics simulator

enables that recognition, making model, simulation, and

generate motion plan using the simulation results. Fig.22

shows the flow of this.

B. Block Moving Task using Dynamics Simulator

We show block moving task for an example. There are

three blocks, and they are stacked. The task is that the under

block should be moved to left side position without any

blocks over. Normal robot brains generate the plans that

move blocks one by one in order very carefully. But this is

not like human and too polite. The wiser agents like human

will act more dynamically.

At first the robot acquires the block color, size and position

by stereo vision. The left pictures of Fig.23 are visual images

of the robot, and the rectangle regions that are detected as the

blocks. The right sides are the models in the robot brain. The

upper images are the initial scene. The models are created in

this scene. The blocks are tracked and the results are lower

images. The robot brain with simulator can use the block

models for simulation directly.

1 2 3

Fig. 20. See-saw simulation by two humanoid robots: these robots have
force sensors on their foots, and kick the ground using the sensor values.

ThB5.3

2179



1 2

3 4

Fig. 21. Integration with vision processing: Pull the knob recognizing the
position by stereo vision (The right upper picture is result of color extraction,
Left lower one is result of stereo vision processing in each pictures.)

Fig. 22. Flow of motion planning using dynamics simulator

The planner selects the block for moving and selects

moving direction for one action. In this case, A* search

algorithm is used and generates the orbit of blocks. The

heuristics is the distance to the target position and number

of blocks on the target block. If any block falls down on

the ground the search cost is infinity. The planner generates

robot whole body motion from the orbit of the blocks, using

inverse kinematics and stabilize the pose.

A simulation module is used for moving the blocks. This

enables the motion of blocks that is not natural without

simulation robot motion. The motion and movement of

blocks are shown in Fig.24.

VI. CONCLUSIONS

This paper proposed Robot Brain integrated with dy-

namics simulator. Therefore we implemented EusDyna and

described it. Then some simulation results of humanoid robot

with tools of human, and sample codes are shown. This

system can start and stop simulation in any time, and can

select simulation targets, then brooming by a humanoid robot

and simulation in complicated situations such as kitchen

space. Additionally, a new implementation method of sim-

ulator is shown. The mechanism makes it possible for the

brain to add or delete simulation functions dynamically. The

block stacking problem experiment shows that the new brain

can generate dynamic motions which may be looked rough,

but like humans do. It needs the functions that absorb the

difference between the predicted situation and the real, and

Fig. 23. Scene of acquisition models by vision (Left: visual image and
detected regions. Right: acquired model of blocks in the robot brain.)

1 2 3

4 5 6

Fig. 24. Results of motion plan using dynamics simulator

customize the simulator on site. The system shown in this

paper can change the robot’s behaviors very much.

REFERENCES

[1] K. Okada, Y.Kino, F. Kanehiro, Y. Kuniyoshi, M. Inaba, and H. Inoue.
Rapid development system for humanoid vision-based behaviors with
real-virtual common interface. In Proceedings of the 2002 IEEE/RSJ

Intl. Conference on Intelligent Robots and Systems (IROS’02), pp.
2515–2520, 2002.

[2] Fumio KANEHIRO, Kiyoshi FUJIWARA, Shuuji KAJITA, Kazuhito
YOKOI, Kenji KANEKO, Hirohisa HIRUKAWA, Yoshihiko NAKA-
MURA, and Katsu YAMANE. Open architecture humanoid robotics
platform. In Proceedings of the 2002 IEEE Intl. Conference on Robots

and Automation (ICRA’02), pp. 24–30, 2002.
[3] K. Sims. ”Evolving Virtual Creatures” Computer Graphics. In

Proceedings of Siggraph, pp. 15–22, July 1994.
[4] J. Bongard and R. Pfeifer. Evolving complete agents using artificial

ontogeny, 2003.
[5] T. Matsui. Multithread object-oriented language euslisp for parallel and

asynchronous programming in robotics. In In Workshop on Concurrent

Object-based Systems, IEEE 6th Symposium on Parallel and Distributed

Processing, 1994.
[6] Open Dynamics Engine ODE. http://ode.org.
[7] PhysX. http://www.ageia.com.

ThB5.3

2180


