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Abstract— Computing optimal paths for mobile robots is an
interesting and important problem. This paper presents a method
to compute the shortest path for a differential-drive mobile robot,
which is a disc, among piecewise smooth and convex obstacles.
To obtain a well-defined notion of shortest, the total amount
of wheel rotation is optimized. We use recent characterization
of minimum wheel-rotation paths for differential-drive mobile
robots with no obstacles [4], [5]. We reduce the search for the
shortest path to the search on a finite nonholonomic visibility
graph. Edges of the graph are either minimum wheel-rotation
trajectories inside the free space or trajectories on the boundary
of obstacle region. Vertices of the graph are initial and goal
configurations and points on the boundary of obstacle region.
We call the search graph a nonholonomic visibility graph because
the jump condition of the Pontryagin Maximum Principle gives
a necessary condition which is reminiscent of bitangency in well-
known visibility graphs. To the best of our knowledge, this is the
first progress on the problem.

I. INTRODUCTION

This paper presents a method to compute minimum wheel-

rotation trajectories for differential-drive mobile robots in

the plane among obstacles. By wheel-rotation we mean the

distance travelled by the robot wheels, which is independent

of the robot maximum speed. Nonholonomic shortest path

problems without obstacles have been studied for some useful

systems in [3], [4], [5], [8], [2], [9], [16], [19], [20], [21], [22].

The first work on shortest paths for car-like vehicles is

done by Dubins [9]. He gives a characterization of time-

optimal trajectories for a car with a bounded turn radius. In

that problem, the car always moves forward with constant

speed. He uses a purely geometrical method to characterize

such shortest paths. He even studies homotopy of the space of

all plane curves with bounded curvature [10]. Later, Reeds and

Shepp [16] solve a similar problem in which the car is able

to move backward as well. They identify 48 different shortest

paths. Shortly after Reeds and Shepp, their problem is solved

and also refined by Sussmann and Tang [22] with the help

of optimal control techniques. Sussmann and Tang show that

there are only 46 different shortest paths for Reeds-Shepp car.

Souères and Laumond [20] classify the shortest paths for a

Reeds-Shepp car into symmetric classes, and give the optimal

control synthesis. Souères and Boissonnat [19] study the time

optimality of Dubins car with angular acceleration control.

They present an incomplete characterization of time-optimal

trajectories for their system. However, full characterization of

such time-optimal trajectories seems to be difficult because

Sussmann [21] proves that there are time-optimal trajectories

for that system that require infinitely many input switchings

(chattering or Fuller phenomenon). Sussmann uses Zelikin

and Borisov theory of chattering control [25] to prove his

result. Chyba and Sekhavat [8] study time optimality for a

mobile robot with one trailer. For a numerical approach to time

optimality for differential-drive robots see Reister and Pin [17].

For a study on acceleration-driven mobile robots, see Renaud

and Fourquet [18]. In [3], the time-optimal trajectories for the

differential drive is studied, and a complete characterization of

all time-optimal trajectories is given. In [2], the time-optimal

trajectories for an omni-directional mobile robot is given.

Holonomic shortest path problems among obstacles have

been studied in different disciplines [13], [15]. However,

nonholonomic shortest path problems become harder in the

presence of obstacles. For example, there are few approaches

to the nonholonomic shortest path problems among obstacles

[6], [23], [24]. In [6], a polynomial-time algorithm for comput-

ing a shortest path for Dubins car among moderate obstacles

is given. An obstacle is said to be moderate [1] if it is convex

and its boundary is a differentiable curve whose curvature is

everywhere not more than 1. In [14] the problem of finding

the shortest distance for Reeds-Shepp car to a manifold in

configuration space is studied. In [23], [24] a method to

compute the shortest distance for a car-like robot from a given

configuration to the obstacle region is presented.

The approach that we use to derive optimal trajectories is

similar to the visibility graph in [12], [15]. However, the dif-

ference between our method and the aforementioned method is

that we construct a nonholonomic visibility graph whose edges

are nonholonomic shortest paths. The obstacles are assumed

to be open, bounded, disjoint, and convex subsets in the plane

with a simple, piecewise-smooth with piecewise-continuous

curvature boundary. The robot is a differential-drive vehicle

modeled as a disc in the plane. Using the Pontryagin Jump

Condition [11] we give necessary conditions for local optimal-

ity which is reminiscent of bitangency conditions in visibility-

based methods. We first argue that minimum wheel-rotation
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Fig. 1. The robot which is a differential-drive vehicle modeled as a disc of
radius r

trajectories exist for our problem. It is then viable to apply

the necessary condition of the Pontryagin Maximum Principle

(PMP) and the Jump Condition [11]. We use the recent

characterization of minimum wheel-rotation trajectories inside

the free space [5]. Using the necessary conditions and other

arguments, we restrict the search for the optimal trajectory to

the search on the nonholonomic visibility graph. Any shortest

path algorithm on graphs, such as Dijkstra’s algorithm, can be

used to extract the minimum wheel-rotation trajectory from the

nonholonomic visibility graph. Some of the proofs of lemmas

and propositions are omitted due to space limitations.

II. PROBLEM FORMULATION

A differential-drive robot [3], [5] is a three-dimensional sys-

tem with its configuration variable denoted by q = (x, y, θ) ∈
C = R

2×S
1 in which x and y are the coordinates of the point

on the axle, equidistant from the wheels, in a fixed frame in

the plane, and θ ∈ [0, 2π) is the angle between x-axis of the

frame and the robot local longitudinal axis (see Figure 1).

The robot has independent velocity control of each wheel.

Assume that the wheels have equal bounds on their velocity.

More precisely, u1, u2 ∈ [−1, 1], in which the inputs u1 and

u2 are respectively the left and the right wheel velocities, and

the input space is U = [−1, 1] × [−1, 1] ⊂ R
2. The system is

q̇ = f(q, u) = u1f1(q) + u2f2(q) (1)

in which f1 and f2 are vector fields in the tangent bundle

TC of configuration space. Let the distance between the robot

wheels be 2b, and the robot be a closed disc of radius r > b.

In that case,

f1 =
1

2





cos θ
sin θ
− 1

b



 and f2 =
1

2





cos θ
sin θ

1
b



 . (2)

The Lagrangian L and the cost functional J to be minimized

are

L(u) =
1

2
(|u1| + |u2|) (3)

J(u) =

∫ T

0

L(u(t))dt. (4)

The factor 1
2 above helps to simplify further formulas, and

does not alter the optimal trajectories.

We assume that there are n obstacles, O1, O2, . . . , On, in

the workspace of the robot. Each Oi is a bounded, open,

and convex subset of R
2, and the boundary of Oi, which is

denoted by ∂Oi, is a simple, piecewise-smooth with piecewise-

continuous curvature, and closed curve. Recall that the robot

is a disc of radius r. Let

Pi = {p ∈ R
2 | d(p,Oi) < r}, (5)

in which d is the Euclidean distance from a set. The obstacle

region in the configuration space of the robot is

Cobs = (P1 ∪ P2 ∪ · · · ∪ Pn) × S
1. (6)

We also assume that all Pi’s are disjoint. Hence

∂Cobs = (∂P1 ∪ ∂P2 ∪ · · · ∪ ∂Pn) × S
1. (7)

Note that Pi’s are open subsets of R
2, and hence, Cobs is open.

Let Cfree = C\Cobs be the free part of the configuration space.

Note that Cfree is closed and ∂Cfree = ∂Cobs. It is obvious

that ∂Pi’s are simple, piecewise-smooth, and closed curves.

Proposition 1. The curvature of ∂Pi is not more than
1

r
everywhere, for i = 1, 2, . . . , n.

Sketch of proof. Since Oi is convex and Pi is the set

of points within distance at most r, the radius of the robot,

from Oi, it is obvious that at every point p ∈ ∂Pi, a circle of

radius r tangent to ∂Pi is contained in Pi ∪ ∂Pi. This implies

that the curvature of ∂Pi is not more than 1
r

everywhere.

For every pair of free initial and goal configurations, not on

the boundary of Cfree, we seek an admissible control, i.e. a

measurable function u : [0, T ] → U , that minimizes J while

transferring the initial configuration to the goal configuration

in free region of the configuration space Cfree. Since the cost

J is invariant by scaling the input within U , we can assume

without loss of generality that the controls are either constantly

zero (u ≡ (0, 0)) or saturated at least in one input, i.e.

max(|u1(t)|, |u2(t)|) = 1 for all t ∈ [0, T ]. Since u ≡ (0, 0)
gives trivial motionless trajectory, we assume throughout this

paper that u 6≡ (0, 0).

III. EXISTENCE OF OPTIMAL TRAJECTORIES

The differential-drive vehicle is controllable [3]. Moreover,

it can be shown that the system is small-time local controllable.

Hence, since the obstacles are bounded, there exists at least

one trajectory between any pair of initial and goal configura-

tions in Cfree, and it is meaningful to discuss the existence

of optimal trajectories. Since Cfree is closed, the existence of

optimal trajectories follows from Filippov Existence Theorem

[7] and compactification technique in [5]. For more details of

the proof please refer to [5].

IV. NECESSARY CONDITION

We use previous characterization of minimum wheel-

rotation trajectories [4], [5] inside free region of the con-

figuration space, and also apply Pontryagin Jump Condition

[11] which is a necessary condition for optimality of those

trajectories that partially lie on the boundary of Cfree.
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Fig. 2. The jump time τ and the jump point q(τ) on a trajectory q(t)

A. Pontryagin Maximum Principle (PMP) inside Cfree

Let the Hamiltonian H : R
3 × C × U → R be

H(λ, q, u) = 〈λ, q̇〉 + λ0L(u) (8)

in which λ0 is a constant. According to the PMP [11], for

every optimal trajectory q(t) not touching the boundary of

Cfree defined on [0, T ] and associated with control u(t), there

exists a constant λ0 ≤ 0 and an absolutely continuous vector-

valued adjoint function λ(t), that is nonzero if λ0 = 0, with

the following properties along the optimal trajectory:

λ̇ = −
∂H

∂q
, (9)

H(λ(t), q(t), u(t)) = maxz∈U H(λ(t), q(t), z), (10)

H(λ(t), q(t), u(t)) ≡ 0. (11)

Let the switching functions be

ϕ1 = 〈λ, f1〉 and ϕ2 = 〈λ, f2〉 , (12)

in which f1 and f2 are given by (2). The analysis given in [5]

proves that if λ0 = 0 then u ≡ (0, 0). We can then assume

λ0 = −2, and we have the following along q(t) inside Cfree:

H = u1ϕ1 + u2ϕ2 − (|u1| + |u2|) ≡ 0, (13)

|ϕi| ≤ 1, (14)

ui = 0 if |ϕi| < 1, (15)

ui ∈ [0, 1] if ϕi = 1, (16)

ui ∈ [−1, 0] if ϕi = −1, (17)

for i = 1, 2 (see [5]). Moreover

λ(t) =





λ1(t)
λ2(t)
λ3(t)



 =





c1

c2

c1y − c2x + c3



 , (18)

where c1, c2, and c3 are constants, and |c1| + |c2| + |c3| 6= 0.

B. Pontryagin Jump Condition

Minimum wheel-rotation trajectories among obstacles are

composed of a finite number of subpaths inside Cfree and

also a finite number of subpaths on the boundary of Cfree. In

general, there can be an arbitrary number of pieces of each

kind in a minimum wheel-rotation trajectory among obstacles.

Throughout Section IV, we focus on a single isolated jump,

i.e. those minimum wheel-rotation trajectories that have only

two subpaths: one piece inside Cfree and the other lying on

∂Cfree. In the next sections, we will address the general case.

Def 1. Let q(t) be an optimal trajectory defined on [0, T ].
Let 0 < τ < T be such that q|[0,τ) is inside Cfree and

q|[τ,T ] lies completely on the boundary of Cfree. We call τ
the jump time of q(t), and q(τ) the jump point. See Figure 2

for an illustration. Note that q(t) is not necessarily an optimal

trajectory in Figure 2.

Let H be the Hamiltonian in Section IV-A. Let

h(q, u) = 〈
∂m

∂q
, f(q, u)〉, (19)

g(q, u) =





g1

g2

g3



 =
∂h

∂q
, (20)

in which m : C → R is a real-valued smooth function such that

the boundary of Cfree is locally defined by m(q) = 0. Note

that ∂m
∂θ

= 0 since ∂Cfree = (∂P1 ∪ ∂P2 ∪ · · · ∪ ∂Pn) × S
1.

According to the PMP [11], there exists a constant λ0 ≤ 0 and

vector-valued adjoint function λ(t), that is nonzero if λ0 =
0, with the properties in Section IV-A over the time interval

[0, τ), and the following properties over the time interval [τ, T ]
along the optimal trajectory q(t):

λ̇ = −
∂H

∂q
+ c(t)g(q, u), (21)

H(λ(t), q(t), u(t)) = maxz∈U H(λ(t), q(t), z), (22)

H(λ(t), q(t), u(t)) ≡ 0. (23)

Above, c(t) is a real-valued function, and g(q, u) is a vector-

valued function in (20). Moreover, λ(t) is continuous on [0, τ)
and (τ, T ]. According to the Pontryagin Jump Condition [11],

at time τ one of the following two cases happen:

1) λ−(τ) = λ+(τ)
2) λ0 = 0 and λ−(τ) is perpendicular to the boundary of

Cfree at q(τ).

Above, λ−(τ) and λ+(τ) are the left and the right limit of

λ(t) at t = τ respectively. We may assume that the second

case cannot happen because λ0 = 0 implies u1 ≡ u2 ≡ 0.

Thus, λ(t) is continuous on the whole interval [0, T ]. Due

to the symmetries of the problem, q(T − t) is an optimal

trajectory if q(t) is optimal. Hence, the same analysis holds

if the trajectory q(t) lies on the boundary of Cfree over [0, τ ]
and is inside Cfree over (τ, T ].

C. Characterization of Jump Points

Let the switching functions be defined in (12). Since we

showed in Section IV-B that λ(t) is continuous along an

optimal trajectory, the switching functions ϕ1(t) and ϕ2(t)
are also continuous. Conditions (11) and (23) together with

maximization of the Hamiltonian in (10) and (22) imply that

|ϕi(t)| ≤ 1, and also give the control law

ui(t) ∈







[0, 1] if ϕi(t) = 1
{0} if |ϕi(t)| < 1

[−1, 0] if ϕi(t) = −1
(24)
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along an optimal trajectory. For details of this analysis see [5].

Lemma 1. Let q(t) be an optimal trajectory defined on [0, T ].
If τ is the jump time of q(t), then |ϕi(t)| = 1 for t ∈ [τ, T ],
i = 1, 2. In particular, |ϕi(τ)| = 1.

Proof. Suppose |ϕi(t0)| < 1 for some t0 ∈ [τ, T ] and some

i = 1, 2. Let j be the index of obstacle, i.e. (x(t0), y(t0)) ∈
∂Pj where q(t0) = (x(t0), y(t0), θ(t0)). Since ϕi(t) is con-

tinuous on [0, T ], there exists ǫ > 0 such that |ϕi(t)| < 1
for t ∈ [t0 − ǫ, t0 + ǫ]. Thus, the control law (24) implies

that the robot swings over the interval [t0 − ǫ, t0 + ǫ], i.e.

ui|[t0−ǫ,t0+ǫ] = 0. This is impossible because by Proposition

1, the curvature of ∂Pj does not exceed 1
r

, and center of

the robot follows a circle of radius b while swinging. The

curvature of this circle is 1
b

> 1
r

. Thus, the robot cannot follow

the boundary of Cfree at (x(t0), y(t0)) while swinging.

Def 2. Let q(t) be an optimal trajectory defined on [0, T ]
associated with adjoint λ(t). Let τ ∈ [0, T ] be its jump time.

In Section IV-A, we showed that λ(t) is given by (18) for

t ∈ [0, τ). Let c1, c2, and c3 be the constants in (18). We call

q(t) a loose optimal trajectory if c1 = c2 = 0 and |c3| = 2b.

We call q(t) a tight optimal trajectory if |c1| + |c2| 6= 0.

According to [5], minimum wheel-rotation trajectories in-

side Cfree are either tight or loose.

D. Jump Points of Tight Optimal Trajectories

Lemma 2. Let q(t) be a tight optimal trajectory defined on

[0, T ]. If τ is the jump time of q(t), then either ϕ1(t) =
ϕ2(t) = 1 or ϕ1(t) = ϕ2(t) = −1 for t ∈ [τ, T ].

Proof. Lemma 1 shows that |ϕ1(t)| = |ϕ2(t)| = 1 for

t ∈ [τ, T ]. Since ϕi(t)’s are continuous over [0, T ], it is

enough to show that ϕ1(τ) = ϕ2(τ). On the contrary, if

ϕ1(τ) = −ϕ2(τ), control law (24) implies u1(τ)u2(τ) ≤ 0.

Since ϕi(t)’s are continuous, there exists ǫ > 0 such that

u1(t)u2(t) ≤ 0 for t ∈ [τ, τ+ǫ]. Furthermore, u1(t) = −u2(t)
for t ∈ [τ, τ + ǫ], because otherwise center of the robot

traverses a path in the plane with curvature more than 1
r

,

which does not lie on the boundary of Cfree by Proposition

1. Thus, the robot rotates in place over the interval [τ, τ + ǫ],
i.e. u1(t) = −u2(t), and over this interval

g1(q, u) =
u1 + u2

2
(
∂2m

∂x2
cos θ +

∂2m

∂x∂y
sin θ) ≡ 0, (25)

g2(q, u) =
u1 + u2

2
(

∂2m

∂y∂x
cos θ +

∂2m

∂y2
sin θ) ≡ 0, (26)

in which g(q, u) is defined in (20). Consequently, (21) implies

that λ̇1 ≡ λ̇2 ≡ 0 and λ1(t) ≡ c1, λ2(t) ≡ c2, for constants

c1 and c2, over the interval [τ, τ + ǫ]. Since q(t) is assumed

to be tight, |c1| + |c2| 6= 0. Finally ϕ1(t) = −ϕ2(t) implies

c1 cos θ + c2 sin θ ≡ 0 over the interval [τ, τ + ǫ]. This is true

only if θ̇ ≡ 0, which is contradiction.

Lemma 3. Let q(t) be a tight optimal trajectory defined

on [0, T ]. If τ is the jump time of q(t), and (x(τ), y(τ)) ∈

∂Pj , then the vector (cos θ(τ), sin θ(τ)) is tangent to ∂Pj at

(x(τ), y(τ)).

Proof. By Lemma 2, ϕ1(t) = ϕ2(t) over the interval [τ, T ].
Thus, control law (24) implies u1(τ)u2(τ) ≥ 0, i.e. the robot

cannot rotate in place. Since q̇(τ) is tangent to ∂Pj × S
1 at

q(τ), and (ẋ(τ), ẏ(τ)) = ((u1 + u2)/2)(cos θ(τ), sin θ(τ)) 6=
(0, 0), the vector (cos θ(τ), sin θ(τ)) is tangent to ∂Pj at

(x(τ), y(τ)).
Lemma 3 proves that the robot joins the boundary of an

obstacle region tangentially from inside Cfree over a tight

optimal trajectory. Equivalently, the robot leaves the boundary

of an obstacle region tangentially to move inside Cfree over

a tight optimal trajectory. In other words, orientation of the

robot is tangent to the obstacle region at the jump point.

Lemma 4. Let q(t) be a tight optimal trajectory defined on

[0, T ]. If τ is the jump time of q(t), then λ3(τ) = c1y(τ) −
c2x(τ) + c3 = 0.

Proof. By Lemma 2, ϕ1(τ) = ϕ2(τ). Equations (2), (12), and

(18) give the result.

In [5], a geometric representation of the tight minimum-

wheel rotation trajectories inside Cfree is given. According to

that representation, Lemma 4 shows that center of the robot

lies on the center line of region S±, defined by c1y−c2x+c3 =
0, at the jump point.

E. Jump Points of Loose Optimal Trajectories

Lemma 5. Let q(t) be a loose optimal trajectory defined on

[0, T ]. If τ is the jump time of q(t), then either ϕ1(t) =
−ϕ2(t) = 1 or ϕ1(t) = −ϕ2(t) = −1 for t ∈ [τ, T ].
Moreover, u1(t) = −u2(t) for t ∈ [τ, T ]. In other words,

the robot rotates in place over the interval [τ, T ].

Proof. Lemma 1 shows that |ϕ1(t)| = |ϕ2(t)| = 1 for t ∈
[τ, T ]. Since ϕi(t)’s are continuous over [0, T ], it is enough

to show that ϕ1(τ) = −ϕ2(τ). Since q(t) is loose, c1 =
c2 = 0 and |c3| = 2b. Equations (2) , (12), and (18) show

that ϕ1(τ) = − c3

2b
and ϕ2(τ) = c3

2b
. Control law (24) shows

that u1(t)u2(t) ≤ 0 for t ∈ [τ, T ]. Furthermore, if there exist

ǫ > 0 and t0 ∈ [τ, T − ǫ] such that u1(t) 6= −u2(t) for

t ∈ [t0, t0 + ǫ], then center of the robot traverses a path in the

plane with curvature more than 1
r

, which does not lie on the

boundary of Cfree by Proposition 1.

Lemma 6. Let q(t) be a loose optimal trajectory defined on

[0, T ]. If τ is the jump time of q(t), then λ1(t) = 0, λ2(t) = 0,

and |λ3(t)| = 2b for t ∈ [0, T ].

Proof. By Lemma 5 the robot rotates in place over the interval

[τ, T ], i.e. u1(t) = −u2(t), and over this interval

g1(q, u) =
u1 + u2

2
(
∂2m

∂x2
cos θ +

∂2m

∂x∂y
sin θ) ≡ 0, (27)

g2(q, u) =
u1 + u2

2
(

∂2m

∂y∂x
cos θ +

∂2m

∂y2
sin θ) ≡ 0, (28)

in which g(q, u) is defined in (20). Consequently, (21) implies

that λ̇1 ≡ λ̇2 ≡ 0 and λ1(t) = 0, λ2(t) = 0 over the interval
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∂Pj

∂Pk

pj

pk

R
2

θ − π

θ

θ

θ − π

Fig. 3. An illustration of bitangent edges (v1

j , v1

k
) and (v2

j , v2

k
) in the

nonholonomic visibility graph G, in which v1

j = (pj , θ), v2

j = (pj , θ−π) ∈

R2 × S1 and v1

k
= (pk, θ), v2

k
= (pk, θ − π) ∈ R2 × S1

[0, T ]. Finally, |λ3(t)| = 2b over the interval [0, T ], because

otherwise |ϕi(t)| 6= 1.

Due to symmetries of the problem, there is no difference

between the case where the trajectory joins the boundary of

obstacle region from inside Cfree and the case where the tra-

jectory leaves the boundary of obstacle region to move inside

Cfree. Lemma 6 shows that a loose optimal trajectory remains

loose all over the time interval. In other words, if any subpath

of an optimal trajectory is loose, then the whole trajectory

is loose. In [5] loose minimum wheel-rotation trajectories are

completely characterized. In particular Lemmas 6 and 7 of [5]

hold for the case of loose optimal trajectories among obstacles.

Following notation of [5], denote rotation in place by P,

straight segment by S, and swing around the left and the right

wheel by L and R respectively. Subscripts here denote the

length. Thus, loose optimal trajectories among obstacles are

composed of a sequence of rotation in place and swing seg-

ments, and are of the form RαPπ−γLγPπ−γRγ · · ·Pπ−γLβ

or RαPπ−γLγPπ−γRγ · · ·Pπ−γRβ for 0 ≤ α, β ≤ γ ≤ π.

V. NONHOLONOMIC VISIBILITY GRAPH

In previous section we focused on a single jump on an

optimal trajectory. In Lemma 3 we showed that orientation

vector of the robot is tangent to the boundary of obstacle

region at a jump point over a tight optimal trajectory. In

Lemma 4 we showed that center of the robot lies on the

center line of S± region (see [5]) at a jump point over a tight

optimal trajectory. Also, there are no differences between the

case where the trajectory joins the boundary of obstacle region

from inside Cfree and the case where the trajectory leaves the

boundary of obstacle region to move inside Cfree. We also

characterized loose optimal trajectories in Section IV-E.

We define a nonholonomic visibility graph G = (V,E)
among the obstacle regions P1, P2, . . . , Pn. Vertices are con-

figurations in R
2 × S

1, i.e V ⊂ Cfree. At each vertex of

G that lies on ∂Cfree, orientation of the robot is tangent to

ℓ1

ℓ2

S±

S−

S+

π
2 − α

∂Pj∂Pk

Fig. 4. Illustration of Rπ

2
−αLπ

2
−αRπ

2
−αLπ

2
−α as an edge of G. Note

that S± width is less than 2b in this case.

the boundary of obstacle region. Thus, there are at most two

choices for the orientation of every vertex in V. When both

orientations exist in the graph, the two vertices are distinct and

there is no edge between them in G.

Lemma 3 shows the orientation vector of the robot is tangent

to the obstacle boundary at a jump point on a tight minimum

wheel-rotation piece. Lemma 4 proves that a jump point along

a tight minimum wheel-rotation piece lies on the centerline of

S± region.

In order to construct G, first add all free bitangent line

segments between any ∂Pj and ∂Pk to G. In particular, if pj ∈
∂Pj and pk ∈ ∂Pk, then v1

j = (pj , θ), v
2
j = (pj , θ − π), v1

k =
(pk, θ), v2

k = (pk, θ − π) ∈ V and (v1
j , v1

k), (v2
j , v2

k) ∈ E

if the line segment pj − pk is tangent to ∂Pj at pj and

tangent to ∂Pk at pk and is completely in Cfree. Associate

the length of pj − pk segment to the edges (v1
j , v1

k) and

(v2
j , v2

k) in G. Add edge (v1
j , v2

k) (and (v2
j , v1

k)) to G if there

is a trajectory Sd1
Lπ

2
Sd2

Rπ

2
Sd3

or Sd1
Rπ

2
Sd2

Lπ

2
Sd3

which

starts at v1
j (respectively v2

j ) and ends at v2
k (respectively

v1
k) and is completely in Cfree. Note that the swing parts of

such trajectories are in the same direction, i.e. both clockwise

or both counter-clockwise. Associate wheel rotation of the

trajectory which is d1 + d2 + d3 + π to the edges (v1
j , v2

k)
and (v2

j , v1
k). Note that the vector of orientation of the robot

(cos θ, sin θ) is tangent to ∂Pj at pj and tangent to ∂Pk at pk.

The superscripts of v1, v2 represent two different orientations

which are an angle π apart. See Figure 3 for an illustration.

This construction corresponds to those tight minimum wheel-

rotation pieces for which the width of S± region is 2b (see

[5]).

Second, add to G all of the free segments between

any ∂Pj and ∂Pk that make equal angle with the tan-

gent. More precisely, if pj ∈ ∂Pj and pk ∈ ∂Pk, then

vj = (pj , θj), vk = (pk, θk) ∈ V and (vj , vk) ∈ E if

the angle α between the segment pj − pk and the tangent

on ∂Pj at pj is equal to the angle between the segment

pj − pk and the tangent on ∂Pk at pk, and one of the

paths Rπ

2
−αLπ

2
−α, Lπ

2
−αRπ

2
−α, Rπ

2
−αLπ

2
−αRπ

2
−αLπ

2
−α,
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or Lπ

2
−αRπ

2
−αLπ

2
−αRπ

2
−α which takes the robot from vj

to vk is completely in Cfree. In such trajectories the first two

swings are in the same direction and the remaining two are

also in the same direction, i.e. both clockwise or both counter-

clockwise (see [5]). This construction corresponds to those

tight minimum wheel-rotation pieces for which the width of

S± region is less than 2b. See Figure 4 for an illustration.

Associate wheel rotation of such path which is π − 2α or

2π − 4α to the edge (vj , vk).
Finally, add initial and goal configurations, vinit and vgoal,

to V. If the minimum wheel-rotation trajectory between vinit

and vgoal is in Cfree, then add the edge (vinit, vgoal) to E and

we are done. Also check if there exists any loose trajectory

of the form given in Section IV-E between vinit and vgoal.

If pj ∈ ∂Pj , then vj = (pj , θj) ∈ V and (vinit, vj) ∈ E if

there exists a tight minimum wheel-rotation trajectory of type

I or type II (see [5]) which takes the robot from vinit to vj

and is completely inside Cfree. Associate wheel rotation of

such path to this edge. Again, orientation of the robot at vj is

tangent to ∂Pj at pj . Do the same for (vj , vgoal). Eventually,

for every pair v1 = (p1, θ1), v2 = (p2, θ2) ∈ V such that p1

and p2 belong to the same boundary component ∂Pℓ, add an

edge (v1, v2) ∈ E if the robot can move from v1 to v2 by

following the boundary of obstacle ∂Pℓ. Associate the length

of the path in ∂Pℓ to this edge.

VI. COMPUTING THE OPTIMAL TRAJECTORY

In previous section we construct the nonholonomic visibility

graph G. The initial and goal configurations vinit and vgoal

are two vertices in G, and all other vertices in G are config-

urations in ∂Cfree. Between every two adjacent vertices in G

there exists a collision-free trajectory. By the analysis given

in Section IV the minimum wheel-rotation trajectory between

the initial and goal configurations lies on G. In other words,

the minimum wheel-rotation trajectory between the initial and

goal configurations is a path in G from vinit to vgoal. Thus,

by using a standard shortest path algorithm such as Dijkstra’s

algorithm on the finite graph G, the minimum wheel-rotation

trajectory between the initial and goal configurations can be

extracted.

VII. CONCLUSIONS

We first argue that minimum wheel-rotation trajectories

exist for this problem. By using previous characterization of

minimum wheel-rotation trajectories inside the free space [4],

[5], the Pontryagin Jump Condition [11], and other methods

we give necessary conditions for optimality. Necessary condi-

tions help to restrict the search for the optimal trajectory to a

nonholonomic visibility graph which is constructed. Using any

shortest path algorithm on graphs, such as Dijkstra’s algorithm,

the minimum wheel-rotation trajectory between the initial and

goal configurations can be extracted.
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