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Abstract— This paper presents a novel dual adaptive dynamic
controller for trajectory tracking of nonholonomic wheeled
mobile robots. The controller is developed entirely in discrete-
time and the and the robot’s nonlinear dynamic functions are
assumed to be unknown. A Gaussian radial basis function
neural network is employed for function approximation, and its
weights are estimated stochastically in real-time. In contrast to
adaptive certainty equivalence controllers hitherto published for
mobile robots, the proposed control law takes into consideration
the estimates’ uncertainty, thereby leading to improved tracking
performance. The proposed method is verified by realistic
simulations and Monte Carlo analysis.

Index Terms— Nonholonomic mobile robots, trajectory track-
ing, dual adaptive control, neural networks.

I. INTRODUCTION

Motion control of nonholonomic mobile robots has been
receiving considerable attention for the last fifteen years [1].
This activity is not only justified by the vast array of existing
and potential practical applications, but also by some partic-
ularly interesting theoretical challenges. In particular most
mobile configurations manifest restricted mobility, giving
rise to nonholonomic constraints in the kinematics. Moreover
the majority of mobile vehicles are underactuated, since they
have more degrees of freedom than control inputs. Conse-
quently the linearised kinematic model lacks controllability;
full-state feedback linearisation is out of reach [2]; and pure,
smooth, time-invariant feedback stabilisation of the Cartesian
model is unattainable [3].

Originally researchers focused only on kinematic control
of nonholonomic vehicles [1], [2], [4], assuming that the
control signals instantaneously establish the desired robot
velocities. This is commonly known as perfect velocity
tracking [5]. This approach may be reasonably valid for
non-critical applications. However it stands to reason that
controllers based on a full dynamic model [5], [6] capture
better the behaviour of real robots because they account for
dynamic effects such as mass, friction and inertia, which are
otherwise neglected by a mere kinematic controller. On the
other hand, the exact values of the parameters in the dynamic
model are often uncertain or even unknown, and may even
vary over time. These factors call for the development of
adaptive dynamic controllers to handle better unmodelled
robot dynamics, as well as noise and external disturbances.

† This work was supported by the National RTDI Grant, RTDI-2004-026.

To address these advanced control issues, some researchers
opt to use pre-trained function estimators, specifically arti-
ficial neural networks (ANNs), to render nonadaptive con-
ventional controllers more robust in the face of uncertainty
[7]. These techniques require prior off-line training and
remain blind to variations which take place after the training
phase. To account for parametric variations in the kine-
matic/dynamic model, robust sliding mode control and para-
metric adaptive control [8] have also been proposed. Another
approach is that of online functional-adaptive control, where
the uncertainty is not restricted to parametric terms, but
covers the dynamic functions themselves [9]–[11].

Adaptive controllers which have hitherto been proposed
for the control of mobile robots [9]–[11] are based on the
heuristic certainty equivalence (HCE) property [12]. In other
words, the estimated functions are used in the control law
as if they were the true ones; ignoring completely their un-
certainty. When the uncertainty is large, for instance during
startup or when the unknown functions are changing, HCE
often leads to poor control performance. The latter is usually
exhibited as large tracking errors and excessive control
actions which if not limited can excite unmodelled dynamics
or pull the system outside the ANN approximation region.

To account for the estimates’ uncertainty in the control
design we opt to employ stochastic adaptive control tech-
niques, more specifically the so-called dual control principle
introduced by Fel’dbaum [13]. Basically a dual adaptive
control law is designed with two aims in mind: (i) to ensure
that the system output tracks the desired reference signal,
with due consideration given to the estimates’ uncertainty;
(ii) to excite the plant sufficiently so as to accelerate the
estimation process, thereby reducing quickly the uncertainty
in future estimates. These two features are known as caution
and probing respectively [12].

In contrast to other work on mobile robots, the novel
contribution of this paper is to introduce a neural adaptive
dynamic controller that features these dual adaptive proper-
ties. Moreover the control law is developed in discrete-time,
and in contrast to [9] has the desirable property of yielding
closed loop dynamics which are completely independent of
the robot parameters. In this paper we focus on trajectory
tracking of wheeled mobile robots (WMRs). Nevertheless
the employed framework is completely modular, and the dy-
namic controller can easily be adopted for other robot control
scenarios, such as posture stabilisation or path tracking [2].
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The presented method employs a Gaussian radial ba-
sis function (RBF) ANN to estimate the unknown robot’s
nonlinear dynamic functions, which are assumed to be
completely unknown. The ANN parameters are estimated
stochastically in real-time and no preliminary off-line train-
ing is assumed. The estimated functions and their degree
of uncertainty are both used in the suboptimal dual adaptive
control law, which operates in cascade with a trajectory track-
ing kinematic controller. Section II of this paper develops the
stochastic discrete-time dynamic model of the robot. This is
then utilised in the dual adaptive control design outlined in
Section III. The proposed method is verified and compared
by realistic simulation and Monte Carlo analysis in Section
IV, which is followed by a brief conclusion in Section V.

II. MODELLING

This paper considers the differentially driven wheeled
mobile platform depicted in Fig. 1. We ignore the passive
wheel and adopt the following notation:
Po: midpoint between the two wheels
Pc: centre of mass of the platform without wheels
d: distance from Po to Pc

b: distance from each wheel to Po

r: radius of each wheel
mc: mass of the platform without wheels
mw: mass of each wheel
Ic: moment of inertia of the platform about Pc

Iw: moment of inertia of wheel about its axle
Im: moment of inertia of wheel about its diameter

The robot dynamic state can be expressed as a five dimen-
sional vector q � [x y φ θr θl]

T , where (x, y) is the co-
ordinate of Po, φ is the robot orientation angle with reference
to the xy frame, θr and θl are the angular displacements of
the right and left driving wheels respectively. The pose of the
robot refers to the three-dimensional vector p � [x y φ].

A. Kinematics

Assuming that the robot wheels roll without slipping, the
mobile platform is subject to three kinematic constraints, two
of which are nonholonomic [6]. The three constraints can be
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Fig. 1. Differentially driven wheeled mobile robot

written in the form A(q)q̇ = 0 where

A(q) =


 − sin φ cos φ 0 0 0

cos φ sinφ b −r 0
cos φ sinφ −b 0 −r


 .

Furthermore, it is straightforward to verify that
A(q)S(q) = 0 where

S =




r
2 cos φ r

2 cos φ
r
2 sin φ r

2 sinφ
r
2b − r

2b
1 0
0 1


 .

The kinematic state-space model of the WMR in Fig. 1 can
now be expressed as

q̇ = S(q)ν, (1)

where ν represents a column vector composed of the
angular velocities of the two driving wheels, specifically

ν � [νr νl]
T �

[
θ̇r θ̇l

]T

.

B. Dynamics

The dynamic equations of motion of this WMR can be
written in matrix form as

M(q)q̈ + V (q̇, q)q̇ + F (q̇) = E(q)τ − AT (q)λ, (2)

where M(q) is the inertia matrix, V (q̇, q) is the centripetal
and Coriolis matrix, F (q̇) is the frictional forces vec-
tor, E(q) is the input transformation matrix, τ is the torque
vector and λ is the constraint forces vector [6]. Differentiat-
ing (1) with respect to time, substituting the expression for
q̈ in (2), premultiplying the resulting expression by ST (q),
and noting that ST (q)AT (q) = 0 it can be shown that

M̄ν̇ + V̄ (q̇)ν + F̄ (q̇) = τ , (3)

where:

M̄ =

[
r2

4b2 (mb2 + I) + Iw
r2

4b2 (mb2 − I)
r2

4b2 (mb2 − I) r2

4b2 (mb2 + I) + Iw

]
,

V̄ (q̇) =

[
0 mcr2dφ̇

2b
mcr2dφ̇

2b 0

]
,

F̄ (q̇) = ST (q)F (q̇), I = (Ic + mcd
2) + 2(Im + mwb2),

and m = mc + 2mw. It is important to note that:
Remark 2.1: M̄ is symmetric, positive definite, and inde-

pendent of the state vector and/or its derivatives.
Remark 2.2: V̄ (q̇) and F̄ (q̇) constitute the nonlinear

terms in the WMR dynamics.
Remark 2.3: V̄ (q̇) is effectively a function of ν only,

since φ̇ = r
2b (νr − νl) as can be seen in (1).

We will now discretise the continuous-time dynamics (3)
to account for the fact that the controller is implemented
on a digital computer. Using a first order explicit forward
Euler approximation with sampling interval T seconds the
following discrete-time dynamic model is obtained

νk − νk−1 = fk−1 + Gk−1τk−1, (4)
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where the subscript integer k denotes that the corresponding
variable is evaluated at time kT seconds and vector fk−1

and matrix Gk−1 are given by

fk−1 = −TM̄−1
k−1

(
V̄k−1νk−1 + F̄k−1

)
,

Gk−1 = TM̄−1
k−1.

The following conditions are assumed to hold:
Assumption 2.1: The control input vector τ remains con-

stant over each sampling interval.
Assumption 2.2: The sampling interval is chosen low

enough for the Euler approximation to hold.
To account for noise, uncertainty and disturbances we

introduce an additive discrete random vector εk. The de-
terministic model (4) is hence converted to the following
nonlinear, stochastic, discrete-time dynamic model

νk − νk−1 = fk−1 + Gk−1τk−1 + εk, (5)

under the following assumption
Assumption 2.3: εk is an independent, zero-mean, white,

Gaussian process, with known covariance matrix Rε.

III. CONTROL DESIGN

A very simple yet useful representation of the trajectory
tracking problem, is through the concept of the virtual
vehicle [4]. Basically, the time dependent trajectory to be
tracked by the WMR is designated by a non-stationary virtual
vehicle having the same nonholonomic constraints as the real
robot. The controller aims for the real WMR to track the
virtual vehicle at all times, in both pose and velocity.

A. Kinematic Control

The discrete-time tracking error vector ek is commonly
defined as

ek �


 e1k

e2k

e3k


 �


 cos φk sin φk 0
− sin φk cos φk 0

0 0 1


 (prk − pk) ,

where prk � [xrk yrk φrk]T denotes the virtual vehicle
sampled pose. In trajectory tracking the objective is to make
e converge to zero so that p converges to pr. For this task
we propose a discrete-time version of the continuous-time
controller originally presented in [4] given by

νck = C

[
vrk cos e3k + k1e1k

ωrk + k2vrke2k + k3vrk sin e3k

]
, (6)

where νck is the wheel velocity command vector issued
by the kinematic controller, (k1, k2, k3) > 0 are design
parameters, vrk and ωrk are the translational and angular
virtual vehicle velocities respectively, and C is a velocity
conversion matrix given by

C =

[
1
r

b
r

1
r − b

r

]
.

If we consider only the kinematic model (1) of the WMR
and assume perfect velocity tracking (i.e. νk = νck ∀ k),

then (6) completely solves the trajectory tracking problem.
However as mentioned earlier, mere kinematic control rarely
suffices and often leads to performance degradation in de-
manding, practical control situations [9].

B. Nonadaptive Dynamic Control

If the nonlinear dynamic functions fk and Gk are assumed
perfectly known, the control law

τk = G−1
k (νck+1 − νk − fk + kd (νck − νk)) (7)

with the design parameter −1 < kd < 1, yields the following
closed-loop dynamics

νk+1 = νck+1 + kd (νck − νk) + εk+1. (8)

Note that in contrast to [9], the proposed control law in (7)
has the desirable property of yielding closed loop dynamics
which are completely independent of the robot parameters.
Moreover, this control law solves the velocity tracking prob-
lem since (8) and the choice of kd, clearly indicate that
|νck − νk| → εk as k → ∞. It is important to note that:

Remark 3.1: The control law (7) requires the velocity
command vector νc to be known one sampling interval
ahead. For this reason it is required to advance the kinematic
law (6) by one sampling interval. This is achieved by gen-
erating the reference trajectory vectors (assumed available
from an external path-planning algorithm) corresponding to
the (k + 1) instant, and using a first order hold to estimate
pk+1 from pk. The latter is reasonable since a typical sam-
pling interval (in the order of milliseconds) is high enough
compared to the relatively slow dynamics of a WMR.

Remark 3.2: The case with kd = 0 in (7), corresponds to
deadbeat control associated with digital control systems.

C. Dual Adaptive Dynamic Control

The dynamic control law (7) driven by the kinematic
law (6), solves the trajectory tracking problem when the
WMR dynamic functions fk−1 and Gk−1 in (5) are com-
pletely known. As emphasised in Section I this is rarely the
case in real-life robotic applications, commonly manifest-
ing: unmodelled dynamics, unknown/time-varying parame-
ters and imperfect/noisy sensor measurements. Consequently
throughout the following, we consider fk−1 and Gk−1 to be
completely unknown. In previous publications we addressed
the issue of adaptivity for WMR via an HCE approach [10],
[11]. This is improved upon in the following, where we
develop a control scheme featuring dual adaptive properties.

1) Neuro-Stochastic Function Estimator: A Gaussian
RBF ANN is used to approximate the vector of discrete non-
linear functions fk−1. The advantage of using Gaussian RBF
ANN [12] comes from the fact that the RBF network weights
appear linearly in the final state-space output equation. This
detail enables the use of a standard Kalman filter for weight
estimation, leading to the least-squares-sense optimal tuning
of the neural network weights.
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The ANN used to approximate fk−1, which estimate is
denoted by f̂k−1, is given by

f̂k−1 =

[
φT

f (xf k−1)ŵ1k

φT
f (xf k−1)ŵ2k

]
, (9)

in the light of the following definitions and assumptions:
Definition 3.1: xf k−1 represents the neural network input

vector, which in this case is set to νk−1.
Definition 3.2: φf (xf ) is the Gaussian RBF vector

whose ith element is given by

φf i = exp
(
−0.5 × (

xf − mf i

)T
Rf

−1
(
xf − mf i

))
,

where mf i is the coordinate vector of the centre of the ith
basis function, Rf is the corresponding covariance matrix,
and the time index has been dropped for clarity.

Definition 3.3: ŵik represents the weight vector of the
connection between the RBFs and the ith output element of
the network.

Definition 3.4: Lf denotes the number of basis functions.
Assumption 3.1: The ANN input vector xf k−1 is as-

sumed to be contained within an arbitrarily large compact
set χf ⊂ R

2 fixed by the designer.
Assumption 3.2: The basis functions are shaped and

placed within the compact set χf by setting mf i and Rf

accordingly.
Sanner and Slotine in [14] show that with knowledge of
the bounds on the frequency characteristics of the function
being estimated, the number of basis functions and their
corresponding means and covariance matrices can be ap-
propriately selected. Moreover, simulation results indicate
that the control performance is not overly sensitive to the
placement and covariance of the RBFs.

It is known that Gk−1 is a symmetric, state-independent
matrix with unknown elements (refer to Remark 2.1). Con-
sequently its estimation does not require the use of an ANN.
These properties are exploited to construct its estimate at
instant (k − 1) as follows

Ĝk−1 =

[
ĝ1k−1 ĝ2k−1

ĝ2k−1 ĝ1k−1

]
, (10)

where ĝ1k−1 and ĝ2k−1 represent the unknown elements.
The ANN weight-tuning algorithm is developed next. The

following formulation is required in order to proceed:
Definition 3.5:

Φk−1 �
[

φT
f 0T

f

0T
f φT

f

]
, Γk−1 �

[
τrk−1 τlk−1

τlk−1 τrk−1

]
,

and Hk−1 � [Φk−1

... Γk−1], where 0f is a zero vector
having the same length as φf , τrk−1 and τlk−1 are the
first and second elements of the input torque vector τk−1

respectively, and the time index in Φk−1 indicates that φf

is evaluated for xf k−1.
Definition 3.6: The individual weight vectors are given by

ŵf k �
[
ŵ1

T
k ŵ2

T
k

]T

and ŵGk �
[
ĝ1k−1 ĝ2k−1

]T
; and

grouped into a single vector ŵk � [ŵf
T
k ŵG

T
k ]T .

Definition 3.7: The measured output in the identification
model (5) is denoted by yk � νk − νk−1.

Definition 3.8: The information state [12] denoted by Ik

consists of all the output measurements up to instant k and all
the previous inputs, denoted by Y k and Uk−1 respectively.

Assumption 3.3: Assume that inside the compact set χf ,
the neural network approximation error is negligibly small
when the weight vector ŵf kis equal to some optimal vector
denoted by w∗

f k
.

This assumption is justified in the light of the Universal
Approximation Theorem of neural networks [12]. Similarly,
let w∗

Gk
and w∗

k denote the optimal estimates of ŵGk and
ŵk respectively.

Assumption 3.4: The density p(w∗
0 ) ∼ N (w̄0,Rw0).

In practice Rw0 can be used to reflect the extent of prior
knowledge of the weight vector; larger values indicating less
confidence in the initial weight vector w̄0 [15].

Assumption 3.5: w∗
0 and εk are mutually independent ∀k.

By (9), (10), Definitions 3.1 to 3.7, and Assumptions 3.1
to 3.3; it follows that the WMR stochastic dynamic model
(5) can be represented in the following state-space form

w∗
k+1 = w∗

k

yk = Hk−1w
∗
k + εk.

(11)

It is proper to note that:
Remark 3.3: The optimal weight vector w∗

k is the only
unknown parameter in (11), and it needs to be estimated in
order to determine the values of f̂k−1 and Ĝk−1 in (9) and
(10) respectively.

Remark 3.4: w∗
k appears linearly in (11).

The latter (referred to earlier to justify the use of RBF
ANN) is exploited by employing the well established Kalman
filter in predictive mode for the optimal (least-square sense)
stochastic estimation of w∗

k+1, as detailed in the following.
Lemma 3.1: In the light of all previous definitions, As-

sumptions 2.3, 3.1 to 3.5 and Remark 3.4, it follows that
p(w∗

k+1|Ik) ∼ N (ŵk+1,Pk+1), and so ŵk+1 is the optimal
estimate of w∗

k+1 conditioned on Ik given that ŵk+1 and
Pk+1 satisfy the following Kalman filter equations [12]:

ŵk+1 = ŵk +Kkik and Pk+1 = Pk −KkHk−1Pk, (12)

where the Kalman gain matrix and the innovations vector
are given by Kk = PkHT

k−1

(
Hk−1PkHT

k−1 + Rε

)−1

and ik = yk − Hk−1ŵk respectively. Additionally
p(yk+1|Ik) ∼ N (Hkŵk+1,HkPk+1H

T
k + Rε).

Proof: The proof follows directly that of the standard
predictive type Kalman filter, when applied to the state-space
stochastic model (11).

The Kalman filter formulation (12) constitutes the adapta-
tion law for the proposed dual adaptive scheme. Additionally,
it provides a real-time update of the density p(yk+1|Ik). This
information is essential in dual control since the uncertainty
of the estimates is not ignored.

2) The Control Law: The proposed control law is based
on an explicit-type, suboptimal dual performance index,
based on the innovations dual method originally proposed
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by Milito et. al. [16] for single-input single-output (SISO)
linear systems. This approach was later adopted by Fabri and
Kadirkamanathan [15] for the dual adaptive neural control
of nonlinear SISO systems. In contrast to these works, our
control law caters for the nonlinear, multiple-input multiple-
output (MIMO) nature of the relatively more complex sys-
tem, namely the WMR.

The innovation-based performance index Jinn, adopted
from [15] and modified to fit the MIMO scenario at hand, is
given by

Jinn = E
{(

yk+1 − ydk+1

)T
Q1

(
yk+1 − ydk+1

)
+

(
τT

k Q2τk

)
+

(
iT
k+1Q3ik+1

) ∣∣∣Ik
}

, (13)

where E
{·|Ik

}
denotes the mathematical expectation con-

ditioned on Ik, and the following definitions apply:
Definition 3.9: ydk+1 is the reference vector of yk+1 and

is given by ydk+1 � νck+1 − νck (refer to Definition 3.7).
Definition 3.10: Design parameters Q1, Q2 and Q3 are

diagonal and ∈ R
2×2. Additionally Q1 is positive definite,

Q2 is positive semi-definite and each element of Q3 is ≤ 0
and ≥ the corresponding element of −Q1.
It should be noted that:

Remark 3.5: The design parameter Q1 is introduced to
penalise high deviations in the output, Q2 induces a penalty
on large control signals and prevents ill-conditioning, and
Q3 affects the innovation vector so as to induce the dual
feature characterising our scheme.
It is now possible to present the dual adaptive control law,
proposed in this work.

Theorem 3.1: The control law minimising Jinn (13), sub-
ject to the WMR dynamic model (5) and all the previous
definitions, assumptions and Lemma 3.1, is given by

τk =
(
ĜT

k Q1Ĝk + Q2 + Nk+1

)−1

×
(
ĜT

k Q1

(
ydk+1 − f̂k

) − κk+1

)
,

(14)

where the following definitions apply:
Definition 3.11: Let Q4 � Q1 + Q3, and the ith row, jth

column element of any matrix AS be denoted by aS(i, j).
Definition 3.12: Note that Pk+1 is repartitioned as

Pk+1 =

[
Pff k+1 PGf

T
k+1

PGf k+1 PGGk+1

]
,

where: Pff k+1 ∈ R
2Lf×2Lf and PGGk+1 ∈ R

2×2.

Definition 3.13: If auxiliary matrix B � PGf k+1Φ
T
k Q4,

then κk+1 �
[
b(1, 1) + b(2, 2) b(1, 2) + b(2, 1)

]T
.

Definition 3.14: The elements of Nk+1 are given by:

n(1, 1) = q4(1, 1)pGG(1, 1) + q4(2, 2)pGG(2, 2)
n(2, 2) = q4(1, 1)pGG(2, 2) + q4(2, 2)pGG(1, 1)

n(1, 2) = 0.5 ×
(
q4(1, 1)pGG(1, 2) + q4(1, 1)pGG(2, 1)

+ q4(2, 2)pGG(1, 2) + q4(2, 2)pGG(2, 1)
)

n(2, 1) = n(1, 2).

Note that the time index in Nk+1 indicates that each indi-
vidual element pGG(·, ·) corresponds to PGGk+1.

Proof: By the Gaussian distribution of p(yk+1|Ik)
specified in Lemma 3.1, and several general results from
multivariate probability theory, it follows that

Jinn =
(
Hkŵk+1 − ydk+1

)T
Q1

(
Hkŵk+1 − ydk+1

)
+ trace

{
Q4

(
HkPk+1H

T
k + Rε

)}
+ τT

k Q2τk.

By replacing Hkŵk+1 by f̂k + Ĝkτk, and employing the
formulations in Definitions 3.5 and 3.12 to factorise com-
pletely in terms of τk; it is possible to differentiate the
resulting cost function with respect to τk and equate to zero
to get the dual control law (14). The resulting second order
partial derivative of Jinn with respect to τk (the Hessian
matrix), is given by 2 ×

(
ĜT

k Q1Ĝk + Q2 + Nk+1

)
. By

Definitions 3.10, 3.14 it is clear that the Hessian matrix is
positive definite, meaning that τk (14) minimises the dual
performance index (13) uniquely. Moreover, the latter im-
plies that the inverse term in (14) exists without exceptions.

Referring to control law (14) it is important to note that:
Remark 3.6: Q3 acts as a weighting factor where at one

extreme, with Q3 = −Q1, the controller completely ignores
the estimates’ uncertainty resulting in HCE control, and at
the other extreme, with Q3 = 0, it gives maximum attention
to them, which leads to cautious control. For intermediate
settings of Q3, the controller operates in a dual adaptive
mode. It is well known that HCE control leads to large track-
ing errors and excessive control actions when the estimates’
uncertainty is relatively high. On the other hand, cautious
control is known for its slowness of response and control
turn-off [12]. Consequently, dual control exhibits superior
performance by striking a balance between the two extremes.

IV. SIMULATION RESULTS

The WMR was simulated via the continuous-time, full
model given by (1) and (2) with the following nom-
inal parameter values: b = 0.5m, r = 0.15m, d = 0.2m,
mc = 30kg, mw = 2kg, Ic = 15kgm2, Iw = 0.005kgm2,
Im = 0.0025kgm2. Sampling interval T = 50ms and the
sampled data was corrupted with noise εk. To render the
simulations more realistic, a number of robot parameters
(such as masses, frictions and inertias), were allowed to
vary realistically about a set of nominal values, from one
simulation trial to another. The ANN contained 49 RBFs with
Rf = 100I2, where Ii denotes an (i × i) identity matrix.
ŵ0 was generated randomly. Using MATLAB�, it took a
standard desktop computer (Pentium�4 @ 3GHz, 512MB
RAM) with no code optimisation merely 5s to simulate 30s
of real-time. Clearly, this indicates that the proposed dual
control algorithm is not computationally demanding.

For comparison purposes, trials were conducted using the
three modes of operation in (14) namely: HCE (Q3 = −Q1),
cautious Q3 = 0 and dual (Q3 = −0.8Q1). Another control
mode, referred to as tuned non-adaptive (TNA) control, was
also included for comparison. This was implemented via (7)
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Fig. 2. (a): reference (×) & dual WMR (©); (b): same as (a) & HCE WMR
(�)

; (c): transient performance; (d): steady state performance.

assuming the nominal values for the model parameters. In
contrast, the HCE, cautious and dual controllers, assume
no preliminary information about the model. In Fig. 2: Plot
(a) depicts the WMR (dual control) tracking the reference
trajectory (reaching 1.8m/s). It clearly verifies the good
tracking performance of the proposed scheme, even with
non-zero initial conditions. Plots (c) and (d) compare the
Euclidian norm of the pose error during the transient and
steady state performance respectively, for the four controllers
under test. Plot (c) clearly indicates that dual control exhibits
the best transient initial performance among the adaptive
modes (in accordance to Remark 3.6). It is not surprising that
the TNA controller leads to better initial transient response,
since it requires no learning process and is pre-tuned to
the nominal parameters of the actual model. However this
superiority is quickly lost in the steady state phase, depicted
in Plot (d), since by that time, the initially random estimates
used by the adaptive controllers would have converged to
better approximates, while the TNA would still be assuming
the far less accurate nominal parameters that it was originally
tuned with. Plot (b) also verifies the superiority of dual
control over the more crude HCE controller. To quantify the
performance objectively, a Monte Carlo analysis involving
100 trials was performed. The accumulated Euclidian norm
of the pose error was calculated over the whole simulation
interval (3 minutes) after each trial. The mean and variance of
the accumulated cost over 100 trials are tabulated in Table I,
where the lower values of the mean and variance in the dual
control case, substantiate the arguments in Remark 3.6.

V. CONCLUSIONS

The novelty in this paper comprises the introduction of
dual adaptive control for the discrete-time, dynamic control
of mobile robots. The proposed controller exhibits great
improvements in steady state and transient performance, over
non-adaptive and non-dual adaptive schemes respectively.
This was confirmed by simulations and Monte Carlo anal-
ysis. Future research will investigate the use of multiple

TABLE I

MONTE CARLO ANALYSIS RESULTS

HCE CAUTIOUS DUAL TNA

Mean cost 1602 398 362 408

Variance 6.2 × 107 186 33 1381

model approaches [12] to introduce fault-tolerant schemes
for the control of mobile robots. We also anticipate to get
satisfactory experimental results once the proposed algorithm
is implemented on a real mobile robot in the near future.
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