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Abstract— We explore the capabilities of a robot designed
to locate objects underwater through active movement of an
electric field emitter and sensor apparatus. The robot is inspired
by the biological phenomenon of active electrolocation, a sensing
strategy found in two groups of freshwater fishes known to emit
weak electric fields for target localization and communication.
We characterize the performance of the robot using several
types of automatic electrolocation controllers, objects, and
water conditions. We demonstrate successful electrolocation
both in the conditions in which it is naturally observed, in low
conductivity water, as well as in conditions in which it is not
observed, in water of ocean salinity. The belief of the position
of the target is maintained via a particle filter and refined with
each measurement.

I. INTRODUCTION

The ability of some aquatic animals to sense electric fields

was discovered in the late 1950s [8] and is therefore one

of the most recently discovered biological sensing mech-

anisms. Many fish, such as sharks, sturgeons, and catfish,

and some other animals, such as the platypus, are able to

sense weak bioelectric fields emitted by aquatic prey and

use these fields to locate prey. This ability is termed “passive

electrolocation.” Only two groups of freshwater fishes, one

in South America and one in Africa, both emit and sense

an electric field, similar to active sensing systems such

as radar and sonar [15]. They are therefore referred to as

active electrolocators. These fish utilize their self-generated

weak electric field (∼1 mV/cm near the body) to detect

and identify objects in their environment—irrespective of

whether these objects emit a bioelectric field as needed by

passive electrolocators.

Active electrolocators hunt in total darkness and in clut-

tered and turbid environments where vision is useless [3],

[23], [11]. The neural mechanisms of active electrolocation

have become the subject of intense investigation, making

“weakly electric fish”—as the fish of these two groups have

been designated—a leading model system in neurobiology

for studies of how animals process sense data.

The principle of biological active electrolocation is that

objects that differ in impedance from the surrounding

medium distort a self-generated field, and an array of sensors

(“electroreceptors”) on the body detect these distortions. In

prior work, we have provided evidence that changes as small
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as 0.1% of the baseline voltage across the skin (about one

microvolt given the typical millivolt baseline) may be sensed

by one species of weakly electric fish to guide a strike at

small prey (∼2 mm) at distances of up to ∼30 mm (about

one quarter of a body length) [11], [14].

The work presented here has two motivations, one from

basic science and the second from engineering. In this work

we develop an approach for processing electrosensory data

to control the position of an artificial electric field emitter

and sensor array to localize objects. This is done without

regard to mechanisms of biological active electrolocation,

beyond the constraints of utilizing an applied field and

voltage sensors. Our basic science motivation is to utilize our

findings for comparison to knowledge gained through our

ongoing investigations into biological electrolocation [14],

[16], [11]. We expect this will yield helpful new avenues of

research and experimentation. Our engineering motivation is

that while current aerial and aquatic vehicles excel at high

speed, long distance movement through uncluttered spaces,

the sensing, control, and mechanical technology needed for

low speed, high maneuverability movement through cluttered

spaces is very poorly developed, yet an area of growing need

[9].

In the sensory domain, such future vehicles have some

distinct desirable attributes. First, the provisioned sensors

must work well at short range. Second, rather than being

concentrated on one portion of the hull of the vehicle (e.g.,

cameras at the front of a remotely operated vehicle), the

sensors should be distributed over the entire surface of the

vehicle. This is required to support high maneuverability,

possibly omnidirectional movement in tight spaces. Third,

to more robustly control sensory acquisition in geometrically

complex spaces, such sensors should generate the energy that

they subsequently transduce, as with radar and sonar systems

[15]. Since these properties pertain to the biological systems

that inspire the present work—weakly electric fish sense at

short range, typically less than one body length; sensors

are scattered over the entire body to support multidirec-

tional movement; and it is an active sensory system—active

electrolocation may provide a useful sensing and movement

approach for a future class of underwater vehicles.

A. Prior Work in Electric Field Sensing

There are a few examples of engineered electric field

sensing systems. One of the earliest was the Theremin, a

musical instrument that made its first public appearance in

1921 and measures the player’s capacitance relative to a set
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of transmitter/reciever antennae to determine the pitch of

the output tone [21]. The Theremin is the first device that

could measure the position of an object (the body parts of

the player in this case) by measuring changes of an emitted

electro-magnetic field. A system has been recently developed

by the MIT Media Lab that is able to extract the 3-D position

of a user’s hand using principles similar to the Theremin [19].

More closely related to the present work is a previous

study that built an artificial electrosensory array to study

the feasibility of using such a system in underwater robots

[10], [9]. They were able to determine the distance of a

submerged 10 mm diameter plastic sphere up to a distance of

about 12 mm away from the sensor. Their distance estimation

algorithm was based on the spatial distribution of the sensor

measurements A related study built an artificial electrosen-

sory system to investigate the possibility of using such a

system for obstacle avoidance in underwater robots [4].

Their system could detect either a conducting or insulating

sphere 25 mm in diameter at a range of 5 mm. In their

preliminary experiments the robot could perform obstacle

avoidance using this electrosensory system.

B. Paper Overview

The next section describes a simple model that is able to

predict the observed perturbation in an electric field due to

a spherical target. It will be shown that simulations using

this model are qualitatively similar to the empirical results

examined in later sections. Section III describes the elec-

trolocation system hardware and the method of constructing

a probabilistic sensor model of a single object (the “electric

image” of the object). The method for locating objects

using electrosensory information are detailed in Section IV.

Section V details the experimental facilities and protocol,

and Section VI summarizes the results and implications of

the electrolocation experiments.

II. IDEALIZED ELECTROLOCATION

When an electric field is present around an object, the field

induces a dipole at the object. The magnitude of the dipolar

perturbation at a particular measurement point is a function

of the object location, size, shape, and electrical contrast, as

well as the electric field strength at the object. We will define

the complete pattern of perturbations created by an object

with a given applied field, along with the variance of those

perturbations in the case of empirical measurements, as the

“electric image” of the object. This pattern of perturbations

is used by an active electrolocation system in identifying the

position and properties of an object. The theoretical model

used in this paper only considers spherical targets, and was

derived by Rasnow in [17]:

δφ(r) =
a3Ef · r
|r|3

(
σtarget − σwater

σtarget + 2σwater

)
(1)

where δφ(r) represents the change in potential (mV) at

position r (cm) relative to the center of the target; a is

the target’s radius (cm); Ef is the electric field vector at the

location of the target (mV/cm); σtarget is the conductivity of

the target, and σwater is the conductivity of the water (μS/cm).

The right term of Equation (1) within the parentheses is

called the electrical contrast factor and denoted χ. The

electrical contrast factor varies from χ = −1/2 (for perfect

insulators) to χ = +1 (for perfect conductors). When the

conductivity of the target and water are equal, the electrical

contrast is zero and the target becomes electrically invisible.

However, it should be noted that this model ignores phase

shifts due to capacitive components of the target impedance.

In weakly electric fish, such phase shifts are detected by

a different electrosensory system [16]. Such phase shifts

are likely used to differentiate between inanimate objects

and live objects, which have capacitance due to biological

membranes.

Fig. 1. (A) An idealized noiseless electric image of a perfectly conducting
1 cm diameter sphere. To compute this image, we place the sphere at
each point on a grid covering the image. For each place on this grid,
we compute the perturbation at the green diamond (sensor) according to
Equation (1), given the field applied at the red squares. Intermediate values
are interpolated. Arrows show the direction of the unperturbed electric field.
Light gray designates positive perturbations of the simulated electric field
as observed at the sensor, and dark gray designates negative perturbations
of this field as observed at the sensor. The two yellow contours indicate the
1-D subspace to which the sphere located at any point on the contours can
be localized after one measurement, if the electric image of this sphere is
already known. (B) Probability distribution resulting from the 1 cm sphere
being located at any position along the yellow contours (for example, at
the position indicated by the filled yellow circle). Gaussian noise is added
to the simulated sensor readings of (A). Each color represents a confidence
interval (CI) based on the standard deviation of the probability mass of
the PDF. White is the one-sigma CI, or 68.3%; white and the lightest gray
together represent the two-sigma, or 95.5%, CI.

By applying this simple model we can gain some basic

intuition into the challenges of active electrolocation. In

Figure 1(A), we show the electric image of a 1 cm (diameter)

spherical ideal conductor. An electric field is applied at the

red squares, and a sensor (green diamond) measures the

difference in voltage between the unperturbed and perturbed

electric field. The black lines are perturbation isocontours.

If we consider one perturbation value, such as the one

indicated by the two yellow contours, a measurement of this

value at the sensor can only show that the sphere is located

somewhere on one of the two contours.
The isopotential perturbation contours of Figure 1(A)

therefore represent the theoretical limit on how well a target

of known properties can be localized by a single noiseless

observation of the perturbation in 2-D. Each contour in

Figure 1(A) represents the 1-D “localization subspace” of

a target for the given sensor observation. It is impossible
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to disambiguate the location of the 1 cm spherical ideal

conductor from the location of any other 1 cm spherical ideal

conductor (observed at a different time) located on the same

contour. Real sensors, however, have noise. In this case, the

contours become bands of probability according to the noise

model for the sensor. For example, if the sphere is actually

on one of the yellow contours in Figure 1(A)—such as at the

position indicated by the filled yellow circle in Figure 1(B)—

by assuming Gaussian noise of a certain mean and variance

we can compute the probability distribution over the possible

target locations. This probability distribution is shown in

Figure 1(B). We discuss the algorithm for computing the

probability distribution later in the paper.

III. ELECTROSENSORY ARRAY AND FIELD EMITTER

Now that we have looked at idealized electrolocation in

simulation, we describe the hardware and protocol behind

our robotic active electrolocator.

A. Hardware

The electric field is generated by a 2 V (RMS) biphasic

1 kHz square wave. This electric field is transmitted between

two silver electrodes submerged in water, which were plated

with silver chloride to improve the metal-water electrical

interface. The field emission electrodes are 51 mm apart.

The two sensing electrodes are also 51 mm apart, arranged

as shown in Figure 3(B). Both the electric field emission

electrodes and the sensing electrodes are 0.38 mm diameter

silver wires that are stabilized by 0.5 mm borate silicate

glass pipettes (see [18] for more details on hardware for

measuring electric fields). The two sensing electrodes are

positioned to give identical readings with no object present.

Perturbations are measured by amplifying the difference of

the signals recorded at the two sensing electrodes with a

high-gain differential amplifier.

-1
analog
switch

analog
switch

low pass filter

to
ADC

analog switch control signal

G

Fig. 2. Schematic of the electrosensory circuit.

After the sensor signals are differentially amplified, the

resulting signal, along with its negative, is sent to an analog

switch. The analog switch passes one of the two input signals

to the output according to a switching signal, which is the

original square wave used to generate the electric field. This

serves as a matched filter, since only sensory signals of the

same frequency as the field signal have a nonzero time-

averaged mean at the output of the analog switch. The final

stage is a low-pass filter that outputs this mean value. The

technique used here is similar to the “synchronous detection”

approach of the Flying Fish [20].

B. Measuring the Electric Image
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Fig. 3. Theoretical and empirical electric images. Red squares indicate
the location of the electric field emission electrodes. Green diamonds
indicate the location of the voltage sensing electrodes. The color map goes
from white for +10 volts to gray for intermediate values to black for -10
volts. Dashed lines are at 500 mV increments. We only show the magnitude,
not variance, component of the electric images. (A) Voltage perturbation
versus position derived from Equation (1) using a perfectly conducting
sphere 38.1 mm in diameter (contrast factor χ = +1). This 2-D slice
of modeled sensor voltages represents the horizontal plane (constant water
depth) that is 3 mm above the top of the sphere. (B) Measured electric
image with a 38.1 mm diameter stainless steel sphere just below the plane
of the electrodes (about 3 mm) in low conductivity water (160 μS/cm).
The color map for (A) was adjusted to saturate at the same voltages as our
sensor circuit for comparison purposes. See Section V-C for more details
on the measurement protocol.

The electric image of a spherical object can be estimated

using Equation (1), as shown in Figure 3(A) Rather than

estimate the image with the model, we measure the electric

image by sampling the voltage at each point of a grid of

locations (xs, ys), representing the location of the target in

the sensor frame. By taking a number of readings at each

grid point, the measured electric image consists of two grids

of values: a grid of average sensor readings and a grid

of sensor reading variance. The measurement of the sensor

reading variance is a good estimate of the sensor uncertainty

if the noise is Gaussian, which was approximately confirmed

by our empirical data. Off-grid values are interpolated. The

resulting mean and variance components of the electric

image are denoted ave(xs, ys) and var(xs, ys), respectively,

mapping the position of the target in the sensor frame to

a sensor reading and variance. Figure 3(B) shows that the

empirical electric image of a 38.1 mm diameter stainless steel

sphere in low conductivity water is similar to the theoretical

model constructed from Equation (1).

IV. ESTIMATION AND CONTROL

An active target localization system requires a controller

to prescribe subsequent sensor positions that will obtain

useful information. We have chosen two control algorithms

to compare their electrolocation effectiveness. One of these is

a random walk, and thus is not active by the above definition.

They both utilize a Monte Carlo-based control scheme that

accounts for the stochastic nature of sensing and motion.

They require that the electric image of the target be recorded

prior to localization.
For both controllers belief about the position of the target

is maintained via a particle filter. A particle filter tracks
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a finite number of candidate target positions based on a

forward simulation of their position (Monte Carlo simula-

tion [12]). The particle filter is a type of Bayes filter, where

beliefs are probabilistic and updated as new information

comes in [22]. As illustrated in Figure 1(B), the belief in

the location of the target may be ambiguous—with 95%

confidence, the target is in one of the two white regions

of the figure. One of the many applications of particle

filters is localization and mapping in mobile robotics [5],

[7], [22]. The robotic electrolocation problem is a variant

of the localization problem, where the task is to determine

the location of an external target as opposed to the location

of the robot relative to some external coordinate frame. The

particle filter algorithm consists of recursive implementations

of both a predictive and a measurement update step, which

are described below.
Predictive step. The predictive step integrates the control

intention along with the motion model to estimate the next

state. In most real-world scenarios the execution of the

motion model increases the uncertainty of the belief. The

XY robot used for these experiments has high-precision

encoders and controllers to achieve accurate motion. Thus,

the motion model introduced very little uncertainty into the

belief about the target position. Thus, we did not employ

a probabilistic motion model in our system. If motion

uncertainty was significant, then techniques from SLAM

(simultaneous localization and mapping) could be utilized

to specifically compensate for these multiple sources of

uncertainty. Alternatively, if only the relative location of

the object is of interest, then the state space could be re-

parameterized as the relative position between the robot and

target.
Measurement update step. The measured electric image

consists of the ave() and var() functions, as discussed in

Section III-B. Given a cloud of M particles representing the

current belief of the target location, then, a new sensor read-

ing zi assigns to each of those particles a weight according

to how likely it is to explain the data. This weight is simply

the value of a Gaussian at (zi−ave(xs, ys))/(var(xs, ys))1/2

standard deviations, where (xs, ys) is the location of the

particle in the sensor frame. Importance resampling then

selects particles M times randomly from a roulette wheel

where each particle’s slice of the wheel is proportional to

its weight. This results in duplicate particles at the same

location. To introduce diversity into the particle set, a small

amount of normally-distributed noise (standard deviation of

1 mm) is then added to the position of each particle.
We choose a discrete-time formulation with a discrete set

of 16 different control options. One of these is to remain

stationary, and the other 15 are randomly sampled (new set at

each time step) from the interior points of a square centered

at the current robot position and with sides of length 20 mm.

Thus, the robot can never move more than 10 mm in each

dimension in a single time step. We tested two different

policies for the probabilistic controller:

#1 Random walk (rnd wlk)

Randomly choose one of the possible control op-

tions.

#2 Minimize expected variance of particles (min

var)

Choose the control option that minimizes the ex-

pected variance of the particles at the next step.

Controller #2 uses greedy control laws, which attempt to

maximize the expected information gain on the next step.

Similar techniques have been successfully used in [2], [6],

[13], where controllers minimize some scalar function of the

covariance matrix (in the case of a Gaussian belief) or the

entropy (in the case of nonparametric belief). Controller #1
is essentially open-loop.

The random walk (#1) controller serves as the baseline

to compare to the performance of the minimal variance

controller. Controller #2 (minimize expected variance of
particles) utilizes particle voting (see Algorithm 1) to choose

the control option. This method examines each particle and

chooses the best control action under the assumption that the

target is actually at that particle’s location. Each particle can

then be thought of as voting for a particular control action

that works best for that particle. Once all of the votes are

tallied, the control action with the most votes is chosen. Each

particle’s vote for the best control option is determined by

evaluating the expected belief after executing each of the 16
control action and taking an observation. This observation

is assumed to be the expected observation for this particular

particle and control option combination. After each simulated

control action and observation, the current particle cloud is

resampled based on this simulated observation. The variance

of this new (simulated) particle cloud serves as the metric

for this control action. The control action that yields the

lowest expected spatial variance of the particles receives the

particle’s vote.

Algorithm 1 Particle voting

for each particle, m = 1 to M , do
Assume particle m is the true location of the target.

for each control option, c = 1 to 16, do
Simulate control option c and find the variance of the

resultant particles based on the expected observation.

end for
Particle m votes for the control action that resulted in

the lowest expected variance.

end for
The control option with the most votes is chosen.

V. EXPERIMENTAL SETUP AND PROTOCOL

A. The Robot

The two sensing electrodes and the two electrodes that

transmit the electric field are attached to a carriage above

the tank. An XY table positions the carriage. The XY table

consists of two orthogonal linear slides that are driven by DC

motors. Two computers are used for information processing.

One computer runs a real-time operating system (xPC, The
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Mathworks, Natick MA USA) and handles low-level con-

trol of motors (PID position controller) and recording and

filtering of the measurements. A second computer receives

the filtered data from the real-time computer, generates the

next position of the carriage, and sents it to the real-time

computer. All algorithms were implemented with commercial

numerical software (SIMULINK, Real Time Workshop, and

MATLAB: The Mathworks, Natick MA USA).

Fig. 4. The electrolocation robot. The Y linear slide is seen in the
foreground and the X linear slide is in the background. A 24.5 mm diameter
aluminum cylinder is in the tank of water. The electrodes are mounted to a
translucent plastic breadboard.

B. Aquatic Environment

Experiments were conducted in a 750 mm by 750 mm

glass tank filled to a depth of approximately 160 mm. In

order to minimize the effects of the tank walls on the electric

field, experiments were conducted in a central region of

200 mm by 200 mm. We used two different types of water,

the first to mimic conductivity conditions in the natural

habitat of weakly electric fish (“fresh”) [11], [16], and the

second to mimic ocean water conductivity. For each type of

water sodium-chloride was added to de-ionized water until

the desired salinity was obtained. The salinities of the two

water types resulted in conductivities of 160 μS/cm for fresh

water and 56, 000 μS/cm for marine water.

A small stand in the tank suspended the spherical targets

such that the tops of the targets cleared the bottom of the

electrodes. The electrical signature of the object stand alone

did not significantly interfere with any of the measurements.

C. Object electric images

Electric images were recorded for each of the eight

experimental conditions in Table I. For each target/water

combination the target was placed at the center of the tank.

For the 38.1 mm diameter spheres the robot moved the sensor

carriage on a 120 mm by 120 mm grid, stopping every 4 mm

to take a data point, for a total of 31×31 = 961 positions. For

the 12.7 mm diameter spheres the robot moved the sensor

carriage on a 80 mm by 80 mm grid, stopping every 4 mm

to take a data point, for a total of 21 × 21 = 441 positions.

The ave() and var() components were obtained by taking the

average and variance of 10 time-averaged sensor readings at

each grid point.

D. Active Electrolocation

Electrolocation was performed for the eight experimental

conditions shown in Table I using both the controllers. For

each condition both of the controllers started from 50 differ-

ent positions for a total of 100 trials for each condition. Fifty

starting positions were chosen randomly and this same set of

50 positions were used for both controllers. The target was

always placed at the center (coordinates {x = 0, y = 0}) of

the workspace. For the larger targets the robot was confined

to start within coordinates {±55,±55} and was permitted

to move anywhere with coordinates of {±60,±60}. For the

smaller targets the robot started at {±40,±40} and stayed

within {±50,±50}
Denoting the particle set covariance matrix as P , the

robot keeps moving until (trace(P ))1/2 ≤ 10 mm (where

trace(P ) = pxx + pyy). If this stopping condition is not

satisfied within 35 steps, the trial is labeled a failure. The

elements of the covariance matrix are defined here as:

P =

[
pxx pxy

pyx pyy

]

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Electric images

Electric images were recorded for the eight different test

conditions (Fig. 5). These give insight into the range and

sensitivity of the electrolocation system for each of the

target/water combinations. For example, the conditions under

which the electric images in Figures 5(a) and 5(b) were made

only differ in the conductivity of the target. Because metal

has a high electrical conductivity, in fresh (low conductivity)

water the object has high electrical contrast (Equation (1)).

By comparison, Delrin plastic has low electrical conduc-

tivity; thus in fresh water this object has low contrast.

Consequently, the magnitudes of the sensor readings are

greater for the same relative robot positions. For the same

level of noise between the two scenarios, the metal sphere

can be detected further away than the plastic one.

While a high gain or large contrast factor favors longer

range object detection, high gain can lead to adverse effects.

Most of the electric images in Figure 5 exhibit significant

regions that correspond to +10 V or −10 V due to saturation

of the electronics. Referring back to the electric images in

Figures 5(a) and 5(b), a sensor reading of +10 V would

localize the target to within the two relatively large white

lobes in Figure 5(a), but the sensor reading for the electric

image in Figure 5(b) would localize the target to a much

smaller region.

As the gain of the differential amplifier is increased, the

amount of noise in the electronics downstream from the

amplifier is also increased. Figures 5(e) and 5(f) have utilized

an order of magnitude higher gain than the other electric

image recordings. As a result, the images are noisier.
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(a) Small metal, fresh, 191
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(b) Small plastic, fresh, 191
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(c) Large metal, fresh, 103
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(d) Large plastic, fresh, 103
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(e) Small metal, salt, 1977
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(f) Small plastic, salt, 1977
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(g) Large metal, salt, 148
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(h) Large plastic, salt, 148

Fig. 5. Electric images for the eight experimental conditions. Caption
legend: Small is a 12.7 mm diameter sphere, Large is a 38.1 mm diameter
sphere, fresh is 160 μS/cm water, salt is 56, 000 μS/cm water, and the last
number is the differential amplifier gain. Metal is type 440-C stainless steel
and plastic is Delrin plastic. Red squares indicate the location of the electric
field dipoles. Green diamonds indicate the location of the voltage sensors.
The color map goes from white for +10 volts to gray for intermediate
values to black for −10 volts. Blue dashed lines are at 500 mV increments.

B. Active Electrolocation

Electrolocation was performed using the electric images

shown in Figure 5 for the targets shown in Table I. For a

given starting position, if either controller yielded a failure

trial, then data from these trials was omitted in calculating
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Fig. 6. Snapshots of a typical electrolocation sequence. The 2500
particles whose mean constitutes the estimate of the target position are
shown as blue dots. The actual target location is a yellow circle, in this case
the 12.7 mm diameter stainless steel sphere. The position of the electrodes
on the robot are the green diamonds (sensors) and red squares (electric
field emitter). The orange asterisks represent the path of the robot. The
contours are iso-electric-field-perturbation gradations at approximately 1 V
steps. The target is at coordinate x = 0, y = 0. (A) Initial belief; (B)
First observation; (C) Move {+4.5, +9.5}(mm); (D) Second observation;
(E) Move {+8.9,−9.3}; (F) Third observation; (G) Move {−9.2,−5.1};
(H) Fourth observation; (I) The red “x” located at coordinate x = 0.074
and y = 0.001 is the centroid of the particles and is the final estimate of
the location of the target. The numbered orange asterisks are the positions
visited by the robot. Note that the axes have changed from the other
subfigure.

the mean error and the mean number of steps statistics. This

was done because failure trials often resulted in errors much

larger than successful trials. All data (included failure trials)

were used in calculating the medians.

Table I shows the performance of the electrolocation

controllers using three statistical measures:

1) success trials: This is the number of trials that

were labeled a SUCCESS. The number next to it in

parentheses is the number of trials that were labeled

FAILURE.

2) error: This is the distance between the actual target

location and the estimated target location at the end

of the trials. The mean error only considers the trials

that were a success for both controllers for that starting

position, while the median error considers all trials.

3) steps: This is the number of steps needed to complete

the trials. As described in the text, the mean calcula-

tion only considers successful trials while the median

calculation accounts for all trials.

Figure 6 shows a typical electrolocation sequence. In

Figure 6(B) the robot has updated its belief using a single

observation and the particle filter algorithm described in
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TABLE I

Electrolocation statistics for the eight experimental conditions tested for

the particle filter-based control scheme. P=Plastic; S=Steel. Water salinity:

fresh is 160 μS/cm; salt is 56, 000 μS/cm.

9.7 / 6.72.2 / 1.948 (2)min varconditionsall

10.8 / 12.42.4 / 2.836 (14)rnd wlkconditionsall

11 / 12.52.9 / 2.844 (6)min var38.1 / Psalt

11 / 14.53.1 / 4.931 (19)rnd wlk38.1 / Psalt

11 / 6.51.3 / 1.045 (5)min var38.1 / Ssalt

10 / 131.1 / 1.037 (13)rnd wlk38.1 / Ssalt

7 / 52.7 / 1.950 (0)min var12.7 / Psalt

10 / 8.52.3 / 2.241 (9)rnd wlk12.7 / Psalt

10 / 73.9 / 3.749 (1)min var12.7 / Ssalt

11 / 114.3 / 4.935 (15)rnd wlk12.7 / Ssalt

9 / 52.2 / 2.449 (1)min var38.1 / Pfresh

10 / 9.52.4 / 2.835 (15)rnd wlk38.1 / Pfresh

9 / 6.51.4 / 1.544 (6)min var38.1 / Sfresh

15 / 23.52.2 / 2.832 (18)rnd wlk38.1 / Sfresh

10.0 / 61.5 / 1.150 (0)min var12.7 / Pfresh

9 / 102.1 / 2.035 (15)rnd wlk12.7 / Pfresh

10 / 51.7 / 1.150 (0)min var12.7 / Sfresh

10 / 92.0 / 1.541 (9)rnd wlk12.7 / Sfresh

# steps
mean / 
median

error
[mm]

mean / 
median

success
(failure)

control
type

sphere
dia.

[mm] /
material

water
salinity

IV. Since the sensor measurement is near the RMS noise

assumed for the sensor, the particle filter kept most of the

particles that correspond to a sensor reading of near 0 V.

This trial uses the controller that minimizes the expected

spatial variance of the particles at the next step. Based on the

particles shown in Figure 6(B) the robot moves up 9.5 mm

and right 4.5 mm. This “sense and move” sequence is

repeated until the uncertainty is below the threshold (square

root of the trace of the covariance is less than or equal to

10 mm). Figure 6(I) shows the final belief (blue dots).

A random walk (controller #1) was compared to controller

#2, which minimized the expected variance of the parti-

cles (via particle voting) at the next step. Tables I and II

summarize the statistics for the 800 target electrolocation

trials and the 100 global localization trials (details on the

global localization trials are described below). For both tasks

the same algorithms were used, and for both controllers

the statistics were computed in the same way. Table I also

summarizes the overall performance of the two controllers

in the last two rows.

If we examine the success trial statistics only, the mean

error and the mean number of steps for completion do not

make a compelling argument for choosing the minimum

TABLE II

Electrolocation statistics for the global localization experiment that the

particle filter-based control scheme.

6.9 / 61.4 / 0.849 (1)min var

11.8 / 111.3 / 1.048 (2)rnd wlk

# steps
mean / median

Error [mm]
mean / median

success
(failure)

control
type

variance over the random walk controller. However, if we

examine all trials including the failures, the median error

and the median number of steps is significantly better for

the active controller over the random walk.

A particular trail is defined as a failure if it took more

than 35 steps to localize the object or if the final error was

greater than 15 mm. In almost all of the failure trials the robot

took more than 35 steps to complete the task, which was a

result of the robot getting lost. For the electrolocation of the

38.1 mm diameter plastic sphere in freshwater the random

walk controller yielded 15 failures out of 50 possible trials

(30% failure rate) while the active controller only had one

(2% failure rate). As seen in figure 5(d), the electrosensory

system would observe a reliable sensor measurement if the

target was within roughly 45 mm of the center of the robot.

But, for these trials the robot could start anywhere within

{x = ±55, y = ±55} from the location of the target. On

average, the target fell within the 45 mm radius only about

53% of the time.

C. A Global Localization Scenario

Thus far we have utilized the active electrolocator to

localize single spherical objects. The abilities of our elec-

trosensory system extend past this specific task. From the

standpoint of the particle filter-based electrolocation algo-

rithm, it does not matter if the measured electric image is of

a single target or of a complex layout of diverse objects.

For this set of experiments six cylinders of different

diameters and conductivities were dispersed randomly with

x and y coordinates within {x = ±80, y = ±80}. The

goal of the robot was to localize itself relative to the origin

of the map. Table II summarizes the performance of the

global localization task for all 100 trials (50 trials for each

controller).

VII. CONCLUSIONS

Weakly electric fish use a self-generated electric field

and their population of 14,000 voltage-sensitive sensors to

determine the spatial location of nearby objects. We have

shown that our system, with one sensor, can successfully

localize simple objects within water where the conductivity

of both target and fluid were varied over a large range. First,

we used an analytic model (Equation (1)) to develop an

idealized (i.e., noise-free) electric image (Fig. 1(A)) and

then discussed an example of a probabilistic belief based

on a hypothetical noisy observation (Fig. 1(B)). A novel

electrosensory system (Fig. 2 and Fig. 4) was presented
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along with some electric images of simple objects it could

record.

For the particle-filter-based electrolocation controller, the

belief of the target took the form of a population of particles,

where each particle represented a possible location of the

target. As the robot received new measurements, the belief

was updated via a particle filter. A greedy controller that min-

imized the expected variance of the particles was matched

against a random walk (summary of results in Table I), and

the same algorithms were applied to the global localization

problem (summary of results in Table II). Our results show

that our electrolocation system could usually locate the object

within about 10 steps and with an average error of 2 to 3 mm

across all the experimental conditions tested.

Several modifications could improve our current system.

Future iterations of the electrosensory system could exploit

time-varying gains of the differential amplifier. Armed with

the controller’s ability to dynamically change G, an electrolo-

cation algorithm could take advantage of having both a high-

gain electric image (good for long-range detection) and a

lower-gain electric image (good for precise localization when

near the object). Such an approach appears to be utilized

in weakly electric fish [1]. Electrolocation algorithms could

also be developed that do not require an empirical electric

image a priori. Preliminary experiments have demonstrated

an algorithm that uses specific features of electric images

from a class of simple objects to determine their position.

Alternatively, an electric image derived from a mathematical

model, similar to that shown in Figure 3(A), could possibly

be used if the required physical properties are known.
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