
Detecting and Tracking Level Sets of Scalar Fields using a Robotic Sensor Network

Karthik Dantu and Gaurav S. Sukhatme

Abstract— We introduce an algorithm which detects and
traces a specified level set of a scalar field (a contour) on a plane.
A network of static sensor nodes with limited communication
and processing are deployed in a planar environment along
with a mobile node which can both sense and move. As
the mobile node moves through the environment, it computes
the local spatial gradient of the field by communicating with
its immediate neighbors in the static sensor network. The
algorithm causes the mobile node to perform gradient descent
on the scalar field till it arrives at a location on the desired
contour. From this point onwards, the algorithm drives the
mobile node to trace the desired contour without departing
from it. Experiments in simulation indicate that the required
contour is found with reasonable accuracy (between 80-90%)
for networks with node degree of greater than or equal to
six. Our results also indicate that the paths generated by our
algorithm are near-optimal in terms of the distance traversed
by the mobile node. Our preliminary experimental results with
a physical robot show that our algorithm is feasible.

I. INTRODUCTION

Sensor networks are quickly evolving into powerful tools

for environment monitoring. Their use is [15] particularly apt

for environments which are remote, hostile, or inaccessible.

In such environments infrastructure does not exist, and is

hard to build and maintain.

There are several key requirements that a sensor network

needs to satisfy to be viable in unstructured environments. It

needs to function unattended and conserve energy to extend

lifetime. The applications developed for such networks need

to scale to large sizes. This is particularly difficult since

individual nodes of the network usually have meager com-

putation, storage and communication capabilities [5].

To address scalability, a major area of research in sensor

networks has focused on distributed algorithms [6] which

rely on local communication among network nodes. To

facilitate this, processing at nodes is designed to operate with

local data input as much as possible since the energy cost of

moving bits across the network is relatively high compared

to the cost of computation [11].

It has been noted that spatio-temporal irregularity is one

of the inherent characteristics of sensor networks [7]. There

are two ways to approach this problem:

• The deployment could be assumed to be fixed and

algorithms that incorporate the spatio-temporal irregu-

larity [7] might be utilized.

This work is supported in part by the National Science Fundation (NSF)
under grants CNS-0325875, IIS-0133947, CNS-0540420, CNS-0520305 and
grants CCR-0120778, ANI-00331481 (via subcontract).

Karthik Dantu (dantu@usc.edu) and G. S. Sukhatme
(gaurav@usc.edu) are with the Robotic Embedded Systems
Laboratory, Computer Science Department, Unversity of Southern
California, 941 W. 37th Place, Los Angeles, CA 90089, USA

• Adapt the deployment by relocating deployed sensors

as and when required. This approach needs mobility.

For the latter case to be viable, the re-deployment needs

to be autonomous in that the network nodes should be

robotically mobile (not human portable). For true unattended

functioning, the network of nodes needs to effectively func-

tion as a collection of autonomous robots, moving themselves

in accordance with task requirements. In other words, the

idea of adaptive fidelity [6] is to be extended to physical

mobility of nodes.

Consider an example from environmental monitoring. We

would like to detect the presence, and measure with relatively

high accuracy the concentration of certain kinds of marine

microorganisms in the ocean. We imagine that we have at

our disposal nodes that can sample the water, detect and

measure algal concentration, as well as measure temperature.

The nodes can also communicate with each other using radio.

Fortuitously, certain algae are hypothesized to bloom

near regions of sharp temperature gradients (thermoclines)

underwater. Thermoclines occur at different depths and with

varying profiles in the ocean. The problem for the network of

sensors is to locate a thermocline and to sample the water for

algae in the region near the thermocline. Given little prior

information about the location of the thermocline, and the

sheer size of such domains, over deployment of sampling

nodes is difficult. We propose to use a strategy based on

actuation [14].

The idea is to allow some of the nodes in the network to be

autonomously mobile. We deploy static nodes at relatively

low density over a wide area, and a (smaller) number of

robotically mobile nodes that will spatially re-deploy as

needed depending on where the thermocline is located. The

robotic nodes will use information from the static network

to facilitate their own re-deployment. One can think of

similar problems for a variety of environmental phenomena,

including finding the edge of a forest fire, the boundary of

a chemical spill and so on.

The paper is structured as follows. Section II states the

problem (contour finding) and our assumptions. Section III

is a brief review of related work and Section IV provides the

theoretical background for our work. Section V elaborates

our approach. Section VI describes the simulation setup

and Sections VII discusses simulation results. Section VIII

describes our experimental setup, the validation experiments

performed and their results. We conclude with a summary

and a discussion of open issues.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We are interested in the detection of level sets of a scalar

field being sensed (e.g.: isotherms if the sensed phenomenon

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB5.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3665

is temperature) using one or more mobile sensor nodes and

a network of stationary sensor nodes. Note that we use the

terms Level Set and Contour interchangeably. Both refer to

the set of points that have scalar field values equal to the

desired level. We also make the assumption that the scalar

field being detected has a measurable gradient in all regions

(including those far from the contour under consideration).

Note that certain classes of boundaries (e.g: step functions)

do not possess this property. However many real physical

phenomena (phenomena that can be modeled by diffusion

processes) do have gradients that can be detected by sensors.

Static sensor nodes of limited communication range are

assumed to be uniformly randomly deployed in the 2D space

over which the field is defined. The values of the field could

correspond to light, temperature etc. Each sensor node is

assumed to possess appropriate sensing to measure the field

along with computation and communication capabilities.

Also, it is assumed that the nodes are localized. Several

techniques exist in the literature to provide node localization;

we use the one in [1] for our experimental validation. In

addition to the static sensor nodes, it is assumed that one

or more autonomously mobile nodes (e.g. [4]) are randomly

deployed in the environment.

Fig. 1. Initial deployment and a particular level set to be traced by the
mobile node

Fig. 2. The mobile node moves towards the level set

The objective is to detect and possibly trace a contour

consisting of points in space where the scalar field values

are equal to some prespecified desire level using the mobile

Fig. 3. The mobile node traces the locus of the contour

node(s). Each mobile node is provided with the level that

defines the contour to be traced. In Figure 1, 2, 3, the mobile

node starts at an arbitrary position and is given the desired

level of the scalar field that describes the desired contour. Its

task is to locate the contour and to trace it. The other nodes

in the picture can sense the value of the field but cannot

move.

III. RELATED WORK

Boundary or edge-finding has received some attention in

the sensor networking community. There are various schemes

proposed using techniques from varied backgrounds e.g.

computational geometry, image processing and statistics.

The dual-space approach to tracking boundaries [9] at-

tempts to track/detect simple boundaries (approximated by

straight lines) of physical phenomena by bounding them

by certain nodes in the sensor network. The approach is

to map the problem of detecting lines using points (sensor

nodes) to a dual where lines are transformed into points and

vice versa. A topological sweep is performed to detect the

boundary nodes of the phenomenon and only those nodes

are kept active. To move out of the region bounded by these

nodes, it is shown that the boundary has to cross one or

more of the active nodes. The algorithm in [9] monitors for

such crossings and activates nodes appropriately. Thus, linear

boundaries are localized in an energy-efficient manner.

Another paper on localized approaches to edge detection

in sensor fields [2] introduces three algorithms to solve the

problem of edge detection using static sensor nodes. The

statistical approach tries to statistically estimate if a given

sensor is an edge sensor by probing the neighborhood. There

is a trade off between the amount of information communi-

cated amongst nodes in a neighborhood to the certainty of the

solution. The second technique in [2] is inspired by image

processing. The idea is to use a high-pass filter to filter out

noise and only retain the prominent differences (the edge)

from the sensed data. Also, unlike images, since sampling is

not possible at regular intervals, the authors provide weights

for the sensors based on a continuous version of the filter.

The third technique discussed is a classifier-based approach

inspired by pattern recognition. The idea is to classify sensor

readings into two partitions. This scheme seems to provide

FrB5.4

3666

the best results. All three schemes rely on what is called

the Probing Radius which is the range around a sensor from

which it can get other sensor information. Increase in probing

radius increases the certainty of the decision of a sensor.

However, the communication cost rises roughly as the square

of the probing radius which constitutes an energy-quality

trade off.

A third proposed solution to boundary estimation [10]

attempts to use clusters and their hierarchical structure to

minimize communication and thus reduce the overall en-

ergy consumption. The key idea is to devise a hierarchical

processing strategy that enables nodes to collaboratively

determine a non-uniform rectangular partition of the sensor

domain that is adapted to the boundaries. This partition

will have a fine resolution along the boundary and low

resolution in homogeneous regions. The result is a staircase-

like approximation to the boundary. The main motivation

behind this work is that such algorithms have been explored

in image processing and theoretical frameworks exist to

analyze such strategies. Also, it provides a method of tuning

the trade-off between accuracy of boundary estimate and

energy consumption of the network.

All the above edge detection techniques are

mathematically-inclined and adopt techniques from

well-researched fields for edge detection. One of the main

underlying motivations for these approaches is reduction

in energy consumed. Our approach is inherently different

in that we attempt to use mobile nodes and actively

search for the required level set (using physical actuation).

Our algorithm indirectly attempts to minimize energy

consumption due to actuation by minimizing the distance

traveled.

[13] studies distributed coverage control and proposes

a distributed algorithm to redeploy mobile sensor nodes

depending on the sensory function. This is the closest to

our work. The authors propose a control law to move the

robot to the centroid of the voronoi region formed based on

the sensory function. This work is different from our work

in that their objective is coverage control. Our objective is

to detect a particular level set and quickly drive the mobile

node to this level set.

IV. BACKGROUND

We are inspired by previous work in sensor-based plan-

ning [3]. For simplicity we consider only the situation in a

plane. The Voronoi Graph of a planar environment consisting

of obstacles and free space is the locus of points in free

space that are equidistant from neighboring obstacles. This

is schematically shown by the dotted line in Figure 4.

In [3] the authors propose and prove the convergence

of a control law to drive a robot such that it traces the

Voronoi Graph. We requote the definition of the control law

as applicable to two dimensions. Assume that the robot is at

location x in a workspace W, populated by convex obstacles

C1, .., Cn. The distance between a point x and an obstacle is

defined as the distance between x and c0, the nearest point

on the obstacle to x.

Fig. 4. The Voronoi Graph

Fig. 5. The robot navigating towards the Voronoi Graph based on local
sensor measurements

Fig. 6. Contour parallel to the Voronoi Graph.

This is represented by

di(x) = min
c0∈Ci

‖ x − c0 ‖ (1)

The “gradient” of this function is defined as

∇di(x) =
x − c0

‖ x − c0 ‖
(2)

Assuming a coordinate system (y, λ) such that λ points

along the tangent of the Voronoi Graph edge and the y

coordinate spans Y , the hyperplane orthogonal to the VG,

G(x) is defined as

G(x) = d1(y, λ) − d2(y, λ) (3)

FrB5.4

3667

The control law ([3]) is given by:

ẋ = αNull(∇G(x)) + β∇G(x)† (4)

where α, β are scalar gains, Null(∇G(x)) is the null

space of ∇G(x), and ∇G(x)† denotes the Penrose pseudo-

inverse of ∇G(x).
This law basically solves the roots of the equation

∇G(x) = 0. For the example shown in 5, this results in

balancing vectors d1(x) and d2(x) thus resulting in a path

that is equidistant from both the obstacles. Using this control

law, a robot dropped anywhere in a 2D environment will

move towards the nearest point on the Voronoi line as shown

in Figure 5. Once on the Voronoi line it will stay on the line

since the term orthogonal to the Voronoi line goes to zero.

We make the observation that this law allows a robot

to trace arbitrary contours that are parallel to the VG by

rewriting G as G(x) = d1(x) − d2(x) − K where K is a

constant that determines the distance of the new contour from

the VG. In other words, by setting the appropriate value of

K a robot can trace the contour shown in Figure 6. Any such

contour which is the level set of a fixed offset from the VG

can be traced.

The control law has interesting features:

• It is based on local sensor measurement

• It is memory less and does not need to much memory

to implement

• It does not attempt to estimate the field it is measuring

• It is provably convergent

• Its path is critically damped i.e. the robot does not

overshoot the VG contour and oscillate about it

• Lastly, it is designed to trace the contour of interest

V. OUR APPROACH

We adapt the control law given in Equation 4 to perform

contour tracing in a sensor field. A key difference between

our setting and the environment described in the previous

section, is that we deploy nodes at random discrete points.

Although we do not have walls in our setting which the

robot can range to, there is a continuous scalar field which

can be sensed at discrete points where stationary nodes are

deployed. This is the field whose level set we want the robot

to find and trace.

We recast the function G from the previous section as

follows:

G(x) = (sensor reading at the mobile node) -

(threshold reading defining the contour to be traced)

This is appropriate since the control law tries to drive G(x)
to 0. When the algorithm converges, it results in equalizing

the sensor reading at the mobile node and the desired level,

which is our objective.

The mobile node collects the sensed values of the scalar

field from all its neighbors within communication range

along with their location. Using these data, it identifies two

neighbors, one with the highest gain increase ratio and one

with highest gain decrease ratio (with respect to distance

from itself). Having identified these two nodes, two unit

gradient vectors ∇d1(x) and ∇d2(x) are defined in the

direction of each of the two chosen neighbors

∇G(x) = ∇d1(x) −∇d2(x) (5)

These two vectors are used to compute G(x) (using

equation 5) and ∇G(x)(using equation 5). Both G(x) and

∇G(x) are then used to compute ẋ(using equation 4. This

is the velocity that is commanded to the actuators. In our

Algorithm 1 : Algorithm for the mobile node

loop

for i ∈ {Current neighbor list of mobile node} do

loc[i] ⇐ Location of i

sense[i] ⇐ Sensor reading of i

end for

n1 ⇐ Node with best gain increase gradient {using loc[]
and sense[]}
n2 ⇐ Node with best gain decrease gradient {using

loc[] and sense[]}
Compute d1(x) and d2(x)
Compute ∇G(x) and G(x)
Compute ẋ

Command ẋ to actuators

end loop

system, it is assumed that there is a low-level controller on

board the mobile node which is able to achieve the velocity

commanded by the algorithm above. In this paper, we do not

concern ourselves with the details of how that is done.

As a baseline, we also implemented simple gradient de-

scent based on local query. In this technique, the mobile node

queries its neighbors for their locations and sensor values. It

then chooses the maximum intensity gradient towards the

boundary. It then compares this value with the previously

obtained gradient (if any). It then moves one unit towards the

contour in the direction of the node with the highest gradient.

This process continues until the boundary is reached or the

mobile node cannot move any further. We implemented this

simple gradient descent as a baseline so we could compare

our algorithm with it.

VI. SIMULATION

The simulation setup consists of a set of nodes placed

uniformly randomly in an area of 100x100 units. The trans-

mission range of all nodes is arbitrarily assumed to be 20

units. The mobile node is placed at a random location. We

vary the number of stationary nodes placed to study the

behavior of the algorithm for different average degree values.

Prior research has shown that 6 is a good number for the

average degree for the sensor network to be connected [16].

We study the behavior of our algorithm for networks varying

the average degree from 6 to 12.

The simulation setup allows us to randomly instantiate

networks of varying densities. It also allows us to study the

FrB5.4

3668

Fig. 7. Mobile node communicating with two neighbors with best gradients.
The mobile node is the filled circle, the immediate neighbors are filled
squares and the circles are the stationary nodes.

performance of the algorithm when error exists in various

parameters - sensor measurement error, localization error

and actuation error at the mobile node. A trial consists of

initializing a particular static network, an arbitrarily initial-

ized mobile node, a particular setting for sensor noise, and

the execution of the control law by the mobile node. For a

particular deployment we perform 100 trials differing only

in the initial placement of the mobile node and the stochastic

noise. We experimented with a number deployments which

differed in the density of the network (as measure by the

node degree). Each deployment was tested with and without

sensor noise. We also varied the behavior of the phenomenon

being sensed. We attempted to capture any variation in the

behavior of the algorithm for gradients whose fields had

different types of decay. Experiments were performed with

five different types: Linear, Square, Logarithmic, Square

Root and Gaussian.

VII. SIMULATION RESULTS

We measure the performance of our algorithm using two

metrics. The first is the percentage of success. This is defined

as the percentage of the trials in which the node successfully

found the contour. This metric is a rough guide to the

feasibility of our approach. We would like to note that most

failure was due to boundary conditions and lack of static

neighbors.

The second metric is indicative of the quality of the solu-

tion. For each successful trial (where the contour is found),

we measure the ratio of the distance traveled by the mobile

node to the minimum straight line distance between the

mobile node’s initial location and the contour. This metric

has a lower-bound of 1. Values close to 1 are good, and

values significantly higher than 1 indicate poor performance

(i.e. long paths).

Using these metrics we examine the impact of two param-

eters on our algorithm. These are the independent variables

in the experimental trials. The first is static network density

(as measured by the number of neighbors of each node), and

the second is error.

A. Success Percentage

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Linear
Inverse Square

Log
Inverse Square Root

Gaussian

Fig. 8. Percentage of completion vs. node degree
(for the simple gradient descent technique)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

Linear
Inverse Square

Log
Inverse Square Root

Gaussian

Fig. 9. Percentage of completion vs. node fegree (our algorithm)

Figure 9 shows the performance of our algorithm by plot-

ting percentage of successful trials as a function of network

density for varying levels of sensor noise. Figure 8 measures

the performance of the simple gradient descent algorithm

using the same metric. As mentioned earlier, we studied

five different types of decay functions for the fading of the

scalar phenomenon - Linear, Inverse Square, Log, Inverse

square root and Gaussian. The performance did not vary

significantly across the different functions. Hence, for future

results we pick inverse square decay as a representative

FrB5.4

3669

function. It is to be noted that our algorithm has more than

80% success rate for network densities greater than 6 and

gets better as the network density goes higher.

B. Effect of sensor error on algorithm success

Fig. 10 shows the effect of sensor noise on the baseline

algorithm. From Fig. 10 it is clear that the algorithm’s perfor-

mance deteriorates rapidly when the sensors are erroneous.

The error introduced is zero mean gaussian noise.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

P
e
rc

e
n
ta

g
e
 o

f
c
o
m

p
le

ti
o
n

Average node degree of static sensor network

5% Error
15% Error
10% Error
20% Error

Fig. 10. Effect of sensor error on success percentage
(simple gradient descent algorithm)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

P
e
rc

e
n
ta

g
e
 o

f
c
o
m

p
le

ti
o
n

Average node degree of static sensor network

No error
5% Error

15% Error
10% Error
20% Error

Fig. 11. Effect of sensor error on success percentage(Our algorithm)

However, our algorithm is fairly resilient to sensor noise.

Even in the presence of the same levels of noise, its perfor-

mance is comparable to the noiseless case (Fig. 11).

C. Optimality of successful routes

Our second metric of performance is the optimality of

route taken to the contour.

The performance of the simple gradient descent algorithm

is suboptimal in comparison with our algorithm (Fig. 12 13).

There is a lot of variance in the performance of the base-

line algorithm. However,our algorithm nicely converges to

optimality as the static network density increases (Fig. 13).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14

R
a
ti
o
 o

f
a
c
tu

a
l
p
a
th

 l
e
n
g
th

 t
o
 s

h
o
rt

e
s
t

p
a
th

 t
o
 c

o
n
to

u
r

Average node degree of static sensor network

No error
5% Error

10% Error
15% Error
20% Error

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14

R
a
ti
o
 o

f
a
c
tu

a
l
p
a
th

 l
e
n
g
th

 t
o
 s

h
o
rt

e
s
t

p
a
th

 t
o
 c

o
n
to

u
r

Average node degree of static sensor network

’dist-n0s2.txt’ using 7:5

Fig. 12. Optimality of route for trials with sensor error
(simple gradient descent algorithm)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14

R
a
ti
o
 o

f
a
c
tu

a
l
p
a
th

 l
e
n
g
th

 t
o
 s

h
o
rt

e
s
t

p
a
th

 l
e
n
g
th

 t
o
 c

o
n
to

u
r

fo
r

s
u
c
c
e
s
s
iv

e
 t

ri
a
ls

Average Node Degree of static sensor network

No error
5% Error

10% Error
15% Error
20% Error

Fig. 13. Optimality of route for trials with sensor error(our algorithm)

In conclusion, our algorithm is fairly resilient against

sensor error and has a graceful loss of success with increase

in error.

Based on our extensive simulations, we draw the following

empirical conclusions about our algorithm:

1) Saturation: The general behavior of our algorithm is

such that the percentage of successful trials increases

and then saturates with increased network density

irrespective of sensor noise. This saturation occurs at

relatively low network densities (node degree approxi-

mately 6-8). For a network of n nodes, a node degree

of 6 is needed to preserve connectivity [16]. For the

network sizes we experimented with, the saturation

we observe is at values less than or equal to those

needed for connectivity. Given that without assured

connectivity, the sensor network is not of much use

for other applications, this seems reasonably practical.

2) Sensitivity to Noise: The simple gradient de-

scent algorithm is extremely sensitive to noise (Fig-

ures[8](a)[8](b)). This is because the mobile node

bases its decisions on the readings of one sensor.

Sensing error thus dramatically skews the boundary

FrB5.4

3670

detection mechanism. Our algorithm is nowhere near

as sensitive to noise (Figure 11).

We measured the effectiveness of our algorithm when

it terminates successfully. We measure the ratio of the

distance traveled by the mobile node to the straight

line distance from the start point to the nearest point

on the boundary. The optimality gradually increases

with increase in network density(Fig. 13.

3) Type of Gradient: We observe that the algorithm is

independent of the type of decay experienced by the

scalar field (Fig. 9). This advocates in favor of the

algorithm as it is very hard to determine the exact

model of decay of the scalar field in advance.

The results regarding solution quality (Fig. 13) follow a

similar trend to the percentage completion graphs discussed

earlier. However, they seem to follow two distinct but ex-

pected trends.

1) Dependency on node density: For node degrees

greater than six, the ratio of actual distance traveled

to straight line distance saturates to approximately 1.1,

which is very close to the best possible value (1). Thus

our approach is near optimal if the sensor network has

a reasonable average node degree.

2) Dependency on sensor noise: As the percentage of

sensor noise increases in the network, the ratio of

distance traveled also increases. This is coupled with

an increase in the variance of this ratio. This indicates

that in high noise scenarios our scheme might perform

sub optimally, causing the mobile node to travel a

longer distance than needed to reach the boundary.

VIII. EXPERIMENTAL RESULTS

Our experimental setup uses the Robomote [4](Figure 14)

on a table-top testbed [12](Figure 14). The testbed is a 4ft

by 10ft table. The Robomote is a small mobile robot which

interfaces with the mote [8]. Components have been written

in TinyOS such that only the mote needs to be programmed

to control the Robomote. We use a laptop connected to a

mote via serial port as a base-station. We interface through

java and matlab to simulate parts of the experiment.

The first hardware experiment tests the validity of our

algorithm in the presence of odometry error. We simulated

the static node deployment and the scalar field in matlab. We

simulated 20 nodes deployed in 4ft by 8 ft area.

Based on the current robomote location, its local sensors

are queried for their values(assuming a radio range of 2 ft).

These readings are then used along with the locations of the

sensors to compute the control law. This determines the next

destination for the robomote. It is observed that the robomote

converges to the boundary with good consistency. Listed

below are the distance traveled and the optimal distance of

travel to the boundary for five cases when the robomote

converged to the boundary. Although the ratio of distance

traveled to the optimal distance is higher than that obtained

by simulation, the feasibility of our algorithm is evident.

Fig. 14. (a)The Testbed (b) The Robomote

Optimal Distance Traveled Distance Ratio

5.5 8.3 1.509

5 6.1 1.22

5 7.6 1.52

3 5.5 1.83

5 7.8 1.56

We are in the process of performing experiments with sensor

boards and using light as the scalar field.

IX. CONCLUSIONS

We described an algorithm which detects and traces a

contour of a scalar field. A network of sensor nodes is

deployed in a planar environment along with a mobile node

which can both sense and move. Our algorithm causes the

robotic node to move in a way which positions it on the

desired contour, and keeps it there. The algorithm uses local

communication between the robotic node and its immediate

neighbors. Simulation results indicate that the paths gen-

erated by our algorithm are near-optimal in terms of their

lengths. Simulation results also indicate that the contour is

found reliably. Comparison with a simple gradient following

algorithm indicates that our algorithm is significantly more

robust to sensing noise. The algorithm is demonstrated to

work reliably at network densities where each node has 6 or

more neighbors.

Preliminary experimental results show the feasibility of

the algorithm. Future work will include an analysis of the

energy consumption and study of convergence properties

of the modified control law. One of the assumptions of

our algorithm is that the decay function is monotonically

FrB5.4

3671

decreasing. However, this might not be the case in reality.

This introduces the possibility of local minima in the sensing

which might prevent the mobile node from driving to the

contour. It is also possible for the mobile node to drive to a

location with no neighbors. This would result in breaking of

the algorithm.

We are working on improving our algorithm to avoid both

the above cases.

REFERENCES

[1] N. Bulusu, J. Heidemann, D. Estrin, and T. Tran. Self-configuring
localization systems: Design and experimental evaluation. Trans. on

Embedded Computing Sys., 3(1):24–60, 2004.
[2] K. Chintalapudi and R. Govindan. Localized edge detection in sensor

fields. Ad Hoc Networks, 1(2-3):273–291, 2003.
[3] H. Choset, I. Konukseven, and A. Rizzi. Sensor based planing: A

control law for generating the generalized voronoi graph. In IEEE

International Conference in Advanced Robotics, pages 333–338, 1997.
[4] K. Dantu, M. H. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. S.

Sukhatme. Robomote: Enabling mobility in sensor networks. In
IEEE/ACM Fourth International Conference on Information Process-

ing in Sensor Networks (IPSN-SPOTS), pages 404–409. IEEE, Apr
2005.

[5] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the
physical world with pervasive networks. IEEE Pervasive Computing,
1(1):59–69, 2002.

[6] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century
challenges: scalable coordination in sensor networks. In MobiCom ’99:

Proceedings of the 5th annual ACM/IEEE international conference on

Mobile computing and networking, pages 263–270, New York, NY,
USA, 1999. ACM Press.

[7] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping with
irregular spatio-temporal sampling in sensor networks. SIGCOMM

Comput. Commun. Rev., 34(1):125–130, 2004.
[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.

System architecture directions for networked sensors. In ASPLOS-

IX: Proceedings of the ninth international conference on Architectural

support for programming languages and operating systems, pages 93–
104, New York, NY, USA, 2000. ACM Press.

[9] J. Liu, P. Cheung, F. Zhao, and L. Guibas. A dual-space approach
to tracking and sensor management in wireless sensor networks. In
WSNA ’02: Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, pages 131–139, New York,
NY, USA, 2002. ACM Press.

[10] R. Nowak and U. Mitra. Boundary estimation in sensor networks:
Theory and methods. In F. Zhao and L. J. Guibas, editors, IPSN,
volume 2634 of Lecture Notes in Computer Science, pages 80–95.
Springer, 2003.

[11] G. Pottie and W. Kaiser. Embedding the internet: wireless integrated
network sensors. In Communications of the ACM, pages 43(5):51–51,
May 2000.

[12] M. Rahimi, R. Mediratta, K. Dantu, and G. Sukhatme. A testbed for
experiments with sensor/actuator networks. In USC/IRIS Tech Report

IRIS-02-417, 2002.
[13] M. Schwager, J. McLurkin, and D. Rus. Distributed coverage control

with sensory feedback for networked robots. In Proceedings of

Robotics: Science and Systems, Philadelphia, PA, August 2006.
[14] G. S. Sukhatme, D. Estrin, D. Caron, M. J. Mataric, and A. Requicha.

Proposed approach for combining distributed sensing, robotic sam-
pling, and offline analysis for in situ marine monitoring. In Proceed-

ings of Advanced Environmental and Chemical Sensing Technology -

SPIE, pages 278–287, November 2000.
[15] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler.

An analysis of a large scale habitat monitoring application. In SenSys

’04: Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 214–226, New York, NY, USA, 2004.
ACM Press.

[16] F. Xue and P. R. Kumar. The number of neighbors needed for
connectivity of wireless networks. Wirel. Netw., 10(2):169–181, 2004.

FrB5.4

3672

