
A Multi-Vehicle Framework for the Development of Robotic Games:
The Marco Polo Case

Brent Perteet, James McClintock, and Rafael Fierro

Abstract— This paper presents a multi-vehicle platform and
framework for robotics education and research. The system
is designed as an educational tool for introducing children
to engineering and robotics and is composed of hardware
and software components that allow users to easily design
and implement sophisticated robotic behaviors. We formally
introduce the robotic game Marco Polo as a problem that
mimics the pursuit-evasion game often played by children
in swimming pools. Specifically, we address the question of
finding a pursuit strategy under the condition of intermittent
communication. Finally, we present an implementation of the
Marco Polo game.

I. INTRODUCTION

As robots become more ubiquitous in everyday life, hu-
mans must learn to interact and work with these machines.
University engineering curricula have begun to incorporate
robotics as a practical application of theory. However, ad-
ditional work is required to introduce younger students to
the problems and challenges that robotics present. The main
contributions of this paper are twofold: (i) a framework
that has been created as a tool for educational robotics
development; and (ii) a game developed for the platform
called Marco Polo. The original application of the framework
was for a project called “Robotic Games” [1] which has a
goal of introducing elementary school children to robotics
and encouraging their interest in the science, technology, en-
gineering, and mathematics fields. As the framework evolves,
it is also proving to be useful for studying other topics such
as human-robot interaction [2] and motion planning. This
result occurs because many of the same features that are
needed in a teaching platform are also useful for research in
these areas.

The remainder of this paper is organized as follows. We
begin by discussing relevant related work in Section II. In
Section III we present key features of the framework. In
Section IV we describe two of the games that have been
developed on the platform. Section V presents a case study
on Marco Polo including a discussion of a special type of the
pursuit-evasion problem that must be solved to implement
the game. In Section VI we discuss future work. Finally,
concluding remarks are provided in Section VII.

This work is supported in part by NSF grant CAREER #0348637, and by
the U.S. Army Research Office under grant DAAD19-03-1-0142 (through
the University of Oklahoma)

B. Perteet, J. McClintock, and R. Fierro are members of the MARHES
Lab, School of Electrical & Computer Engineering, Oklahoma State Uni-
versity, Stillwater, OK 74078-5032, USA (e-mail: {brent.perteet,
james.mcclintock, rfierro}@okstate.edu).

II. RELATED WORK

Many researchers are actively working in the area of edu-
cational robotics, which focuses on motivating and encourag-
ing students to explore opportunities and careers in science,
technology, engineering, and mathematics. Researchers have
used robotics and developed materials to introduce engi-
neering in general to elementary and secondary students
[3]. Additionally, several researchers have participated in
competitions such as RoboCup and RoboFlag, which involve
robots playing various games including soccer and capture-
the-flag [4].

With respect to the robotic game, Marco Polo, a great
deal of work has been done related to pursuit-evasion and
target tracking. The authors in [5] discuss basic motion
planning and control strategies for multi-robot systems. The
Marco Polo game has motivated a multi-robot localization
problem introduced in [6]. In [7], the authors develop a
decentralized motion coordination algorithm for tracking
groups of dynamic targets. Strategies to search for moving
targets in a two-dimensional plane are considered in [8],
[9]. In [10] the authors show that a pursuer can detect
an arbitrarily fast evader using a randomized strategy. The
evader can be captured by two pursuers solving a lion-and-
man problem assuming that at least one pursuer is as fast as
the evader.

III. THE ROBOTIC GAMES FRAMEWORK

The Robotic Games framework represents the combination
of several hardware and software elements that are integrated
with a flexible software architecture.

A. Hardware Components

The primary hardware components of the platform include
an Evolution Robotics Scorpion Robot and a Toshiba M400
Tablet PC. The architecture also makes use of desktop
computers and other common devices such as a wireless
router and PDA.

1) The Scorpion Robot: The robotic platform used to
implement this framework is the Scorpion Robot from Evo-
lution Robotics [11]. The robot features a variety of simple
sensors for gathering information about the environment
including infrared range-finding sensors, a contact-sensing
bumper, a camera, and high-resolution optical encoders on
the motors. All sensors except for the camera connect to a
central controller called the Robot Control Module (RCM).
A servo controlled differential drive system, which is also
controlled using the RCM, provides locomotion. High-level
control is accomplished by a Tablet PC that is mounted on

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB7.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3717

the robot and connects to the RCM and camera by USB.
Other USB devices such as a wireless joystick or other USB
sensors may be connected to the Tablet PC as well.

2) A Tablet PC Computer: A Toshiba M400 Tablet PC
is mounted on the Scorpion Robot to provide high level
processing and control functions. Though the Scorpion may
be used with any suitable notebook computer, a Tablet
PC has features that are particularly useful on a platform
designed for education. Because the screen rotates, the
display is visible while the robot is running such that a 3D
face that displays emotions and reacts to the environment
might be rendered on the screen. This feature allows the
robot to interact with humans in a more natural way, which
enhances its capabilities as a educational tool. Also, the
Tablet PC supports pen input, which provides another method
for interacting with the robot.

3) Other Hardware: Many applications of this framework
benefit from other common devices. Specifically, the games
that we have developed use desktop computers, wireless
joysticks, a wireless access point, and a PDA. The access
point allows for centralized communication and enables the
robots to communicate with desktops for user input. In
some games, desktops are not needed but a mechanism to
coordinate all of the robots (start, stop, pause the game,
etc.) is required. In these instances, a PDA with wireless
communication capabilities works well.

B. Software Components

This framework combines the powerful robotics pro-
cessing and control algorithms available in the Evolution
Robotics Software Platform (ERSP) with the Trolltech Qt
application framework. These two libraries are integrated
using an architecture that we designed to allow developers
to easily create new games and demonstrations.

1) The ERSP Library: The ERSP library is an extensive
software platform for developing high-level controllers while
abstracting the developer from the underlying hardware.
The platform consists of an advanced API for the C++
programming language. The API is available for both the
Microsoft Windows and Linux platforms. We have chosen
to use the Windows version for development of the Robotic
Games.

The ERSP API includes a comprehensive set of advanced
algorithms particularly for vision and navigation. At the
center of the vision module is the ViPRTM (Visual Pattern
Recognition) algorithm. Among other things, this algorithm
provides behaviors which handle object recognition, motion
flow, and color segmentation which are useful for detecting
objects and their pose, movement, and skin color. The
most significant component of the navigation module is the
implementation of the vSLAMTM (Visual Simultaneous Lo-
calization and Mapping) algorithm [12]. This algorithm uses
input from the wheel encoders and camera to accomplish the
simultaneous localization and mapping function. The naviga-
tion module also contains support for path planning, obstacle
avoidance, exploration, and population of an occupancy grid
map.

2) The Qt Application Framework: Qt is an open-source,
C++ application framework that is produced by Trolltech.
The library supports several platforms including Windows,
Linux, and MacOS and provides a rich set of classes for
application development. For example, the Qt library con-
tains object models for XML processing, multi-threading,
networking, GUI design, and plug-in development. Qt also
allows window based GUIs to be developed easily. Classes
for common window interface controls such as menus and
buttons may be combined to create advanced, event-driven
interfaces.

3) The Robotic Games Library: The Robotic Games
library consists of a set of software modules that are designed
to manage games which conform to the Robotic Games
software architecture. Specifically, games are designed using
C++ with the support of the Qt and ERSP libraries. The
architecture uses Qt’s plug-in capabilities to manage the
games. Thus, new games should provide a plug-in interface
which includes a set of common methods (start, stop, pause,
etc.) The software architecture defines and manages two
categories of hardware: Displays (desktop computers); and
Robots (Scorpion and Tablet PC). As part of the plug-in
interface, each game specifies the number of displays and
robots that are required.

The Robotic Games library consists of two software
components: the Game Manager and the Coordinator. A
block diagram of the system architecture is shown in Figure
1. The Game Manager runs on robots and displays. This
application is able to load and configure games that conform
to the plug-in interface. The Coordinator, on the other hand,
may run on either a desktop computer or on a PDA. This
application is used by game referees to manage the games.
Communication between the Coordinator and Game Man-
agers is accomplished with simple text messages which are
sent on top of the standard UDP/IP and TCP/IP networking
protocols. Upon execution and at the referee’s request, the
Coordinator queries the network using the UDP protocol for
robot and display client discovery. Clients running the Game
Manager listen for these discovery queries and respond by
broadcasting their presence on the network. The Coordinator
receives these responses and registers each robotic node
in an internal database. Using the Coordinator application,
the referee may select a game for the system to run. The
Coordinator then queries the game’s plug-in for a list of
configuration parameters and dynamically creates forms to
configure the game. Finally, the referee may select a button
to begin the game and the Coordinator instructs each Game
Manager to configure and begin execution.

IV. GAME EXAMPLES

Using the framework discussed, several games have been
developed for the Robotic Games project. The games are
designed to be educational, demonstrating various aspects of
the state-of-the-art in robotics and engineering.

FrB7.2

3718

Fig. 1. The Robotic Games System Architecture.

Fig. 2. The Obstacle Course game uses hand movement for robot control.

A. Obstacle Course

In the Obstacle Course game, teams of children guide a
robot through a game area filled with obstacles. Obstacles
might include cones to traverse, traps to avoid, or objects to
locate. The goal of the game is to complete the course as
quickly as possible. Each robot is given a limited amount of
energy E. The game artificially limits the robot’s speed to

v� = Evmax/Emax,

where Emax and vmax are constants representing the robot’s
maximum energy and linear velocity respectively. As the
robot moves, its energy is depleted as

Ė = −(v/v�)2,

where v is the robot’s current velocity. Thus, driving as fast
as possible, v = v�, reduces the robot’s energy the fastest.
When the robot’s energy is depleted, it must “rest.” While
resting, the robot cannot move, but its energy is restored
at a constant rate. To make the game more interesting, we
have integrated a vision based hand recognition system to
maneuver the robot. This system uses the HandVu library
[13] to determine the pixel location of a hand’s centroid
within a camera frame. A vector vh is calculated from

the center of the image to this point. This vector is first
normalized to the display size and then the angle φh is
calculated as shown in Figure 2. To control the robot, values
for its linear speed v and angular speed ω are taken as

v = vh sinφh

ω = vh cosφh.

This mapping is designed to simulate joystick control. For
example, when the hand is at the top of the image and
horizontally centered, the robot moves forward. If the hand
is on the left side of the image and vertically centered, the
robot spins left in place.

B. Marco Polo

Marco Polo is a pursuit-evasion game in which the pursuer
receives information about the evaders’ location in random
time intervals. The game uses two Scorpion robots operating
in a leader-follower configuration. The pursuer robot is
autonomous while the evader robot is controlled by a partici-
pant using a wireless joystick. The goal for the human player
is to evade capture by the autonomous pursuer robot for as
long as possible. In this game, the evader robot is defined
as “caught” when the separation distance between the two
robots’ centers falls below a threshold value for some length
of time. At the beginning of the game, the two Scorpion
robots are placed together at random locations within the
game area. The player is given a wireless joystick, informed
about the rules of the game, and instructed begin moving.
Once the game is running, the evader robot immediately be-
gins responding to commands from the player’s joystick. At
a constrained random interval, the pursuer robot announces
“Marco” over its laptop computer’s speakers and uses the
computer network to request the position of the evader. Once
the pursuer receives the evader’s location for the first time, it
begins moving. Following this, the communication process
described above is repeated. The human player, generally
attempts to maneuver around the pursuer robot in such a way
as to maximize the distance between the two. The strategy for
a pursuer with incomplete information based on intermittent
cooperation is a challenging research problem that is relevant
to this game.

V. A MARCO POLO CASE STUDY

In this section, we present a formal definition of the
Marco Polo problem together with a pursuit strategy when
the evader is constrained to straight-line motion. We also
describe an experimental implementation of the game using
the framework discussed above.

A. Problem Statement

From a game design standpoint, the goal of Marco Polo
is to capture a group of intelligent evaders as quickly as
possible using a team of autonomous pursuers that have
intermittent knowledge of the evaders’ locations. The re-
mainder of this section presents a formal definition of this
problem including the assumptions that will be made and the
terminology that will be used to describe the game.

FrB7.2

3719

Let the game area be referred to as S and its boundary
as ∂S. We assume that S ⊂ R

2, and that it is convex
and bounded. Associated with S is a fixed coordinate frame
FS . The pursuers or mobile sensor agents are nonholonomic
vehicles that can be modeled using the unicycle model

ẋi
p = vi

p cos θi
p,

ẏi
p = vi

p sin θi
p, (1)

θ̇i
p = ωi

p,

where (xi
p, y

i
p, θ

i
p) ∈ SE(2) is the position and orientation of

pursuer i with respect to FS and ui
p = [vi

p ωi
p]

T represents
the input to pursuer i. In addition, pursuers are bound by
certain kinematic and dynamic constraints. Specifically, we
assume that the maximum linear velocity Vp max and angular
velocity Ωp max of all pursuers is known.

The model of the evader or target agents is given by

ẋj
τ = vj

τ cos θj
τ ,

ẏj
τ = vj

τ sin θj
τ , (2)

where (xj
τ , y

j
τ) ∈ R

2 is the position of target j, vj
τ is

uniformly distributed in [0, Vτ max] and θj
τ is uniformly

distributed in [0, 2π). In our experimental implementation,
the evader is tele-operated by a human. In this case, uniform
distributions may not be the best choice. This human-robot
interaction is a topic of further research.

Obstacles may be placed in the game area as long as
certain conditions are met. Suppose the jth obstacle obstructs
a certain region in R

2 denoted as Oj . Valid obstacles will
meet the following conditions: (i) Oj is a convex region in
R

2, (ii) Oj ⊂ S, and (iii) the minimum distance from any
point p ∈ Oj to a point q ∈ Oi (i �= j) or to a point s ∈ ∂S
is greater than W . Here W refers to the diameter of the
smallest circle which can completely surround the largest
participating robot’s projection onto R

2. This ensures that
there are no regions in the game area that can be reached by
some robots but not by others.

Let N be the total number of pursuers and M the total
number of active targets that are participating in the game.
All targets are considered active at the beginning of the game.
Once a target is caught, it becomes inactive. Inactive agents
must either move to a position where they represent valid
obstacles and remain still or be removed from the playing
field S. Let pi (τi) = [xi

p(τ) yi
p(τ)]

T ∈ R
2 refer to the

position of the ith pursuer (target) robot with respect to FS .
When there is no danger of confusion, pi (τi) may simply
be used to refer to the robot itself as well. The notation
P = {p1, p2, p3, . . .} is used to refer to the set of all pursuers
and T = {τ1, τ2, τ3, . . .} refers to the set of all targets. All
agents in P and in T must have initial positions within S
and cannot leave S. Let eji be the Euclidean distance from
the jth target position, τj , to the closest pursuer, i.e., eji =
min d(τj , pi). Then the pursuer i is said to capture the target
j when eji < ε. The threshold value ε is called the capture
threshold for an interval Δc called the capture timeframe.

The pursuers receive information about the position of
each target intermittently. Let σi be a random variable

Fig. 3. Interception of target

representing the time period between communications for
the ith target. At the instant of communication from target
i, its exact position within S is known by the pursuer
agent. Following this, the target may continue to move but
the sensor agent receives no updated information until the
next communication from target i. Based on the previous
discussion, the problem in Marco Polo can be stated as
follows:

Problem 5.1: Given a set P of N pursuers and a set T of
M target robots within a specified game area S and meeting
all of the assumptions outlined in this section, choose values
ui

p = [vi
p ωi

p]
T for all pursuers in P subject to the pursuers’

dynamic and kinematic constraints which minimize the time
tc required to capture all targets in T .

B. Pursuit Strategy

In this section we propose two very simple potential
pursuit strategies for the single pursuer, single target pursuit
problem described in the previous section. These solutions
include (i) moving to the last known target location and (ii)
assuming the target is moving in a straight line with constant
velocity and intercepting along that line.

The first solution moves the pursuer to the last known
point of the target. This strategy may be most useful when the
pursuer is far from the target and the communication interval
is small enough. That is, this strategy would be employed to
move the pursuer close enough to the evader to employ a
more sophisticated strategy. The second approach shown in
Figure 3 is a simple solution based upon the geometry of
the problem taking into account the kinematic constraints
of the pursuer. This approach is strongly dependent on the
controller used to guide the nonholonomic vehicle to a
target waypoint. In this case, the assumed controller is based
on the potential field controller (PFC) presented in [14].
The strategy also assumes that the target is moving with
both constant velocity and heading. The strategy attempts to
intercept the target at a point δ which is a function of the
interception time tc which is the time for the pursuer and
target to reach that point. The initial states of the pursuer
and target are p0 = (xp, yp, θp) and τ0 = (xτ , yτ , θτ),
respectively. The interception point is defined as

δ(tc) =
[
xτ + tcvτ cos θτ

yτ + tcvτ sin θτ

]
, (3)

FrB7.2

3720

and the time to interception becomes

tc =
rψ(tc) + ‖c− δ(tc)‖ cosα(tc)

vp
,

where the distance traveled by the pursuer is the distance
along the arc p0p1 plus the straight line distance between
p1 and δ. The arc radius is the same as the turn radius of
the pursuer and is defined as r = vp

ωp
. Using the geometric

definition, the interception point δ in (3) which is passed to
the controller may be solved numerically using an iterative
algorithm such as that presented in [15] or a Newton method.

C. Simulation Results

In order to test the performance of these individual strate-
gies, a Matlab/Simulink simulator is developed for the single
pursuer, single target case. The simulator is able to use a
joystick input such that an intelligent driver may control the
target agent.

Several basic maneuvers were performed using the joy-
stick and a simple waypoint extraction algorithm. These
maneuvers, which are performed by the target in each
simulation, include (i) a “figure 8”, (ii) a spiral, and (iii)
random walk. For the simulations, the pursuer and target
agents are given maximum linear and angular velocities with
the pursuer’s greater than the target’s. Also, in order to
guarantee that the simulation ends in finite time, the velocity
of the target is reduced with time as vτ = vτ0e

− t
µ where μ

is the time constant and vτ0 is the target’s initial maximum
linear velocity. The broadcast interval of the target’s position
to the pursuer is a random variable σ whose distribution is
uniform in [σmin, σmax].

A total of 100 simulations were performed for each
strategy/maneuver pair. Time to capture is the metric used
for comparison in each case. Simulation data is omitted here
due to space limitations; however, in each of the maneuvers
by the target, the line interception strategy outperformed the
more native strategy of moving to the last known location.

D. Experimental Implementation

Marco Polo requires two robots; however, the evader robot
is relatively simple using only a wireless joystick to set
the robot’s velocity inputs. Since the pursuer robot is au-
tonomous, its implementation is more challenging requiring
an answer to the three fundamental questions in autonomous
mobile robotics: 1) Where am I? 2) Where am I going? and
3) How do I get there? This experimental implementation
as well as the pursuit strategy is shown in the paper’s
accompaning video.

1) Where am I?: Section V indicates that the pursuer
robot receives information about the location of the evader at
a random interval. The Scorpion’s encoder based odometry
alone cannot accurately provide this information over long
distances. Marco Polo uses the vSLAMTM algorithm that is
included with ERSP. The algorithm extracts distinguishing
features from camera images to correct odometry error. To
ensure that robots communicate in the same reference frame,
each use a common vSLAMTM map. Thus, this common map

of the game area is generated first. At the beginning of each
game, all pursuers wander around the room attempting to
determine their positions in the game area by watching for
scenes in the map. After the pursuer determines its location,
it begins tracking the evader. Evaders also watch for scenes
in the map as game participants maneuver them. In summary,
the vSLAMTM module provides a method for accurately
tracking each robot’s location throughout the game even if
they start at random locations within S.

2) Where am I going?: This is the question that motivated
most of the research related to Marco Polo. However, one
key issue here relating to the experimental implementation of
Marco Polo is the method used for communication between
the two robots. Since both robots have Tablet PC with
wireless network interfaces, using TCP/IP over a standard
wireless network is simple and effective. Also, both ERSP
and Qt provide networking modules that make communi-
cation relatively easy. We use the ERSP networking in our
implementation.

3) How do I get there?: Answering this question involves
designing a low-level controller that is capable of generating
values of v and ω that will maneuver the robot from its
current location to a goal location within the game area.
Since the goal location depends on the low-level controller
that is chosen, a high-level control strategy must take into
account the low-level controller that is used or supply the
needed control values rather than the goal location. The
pursuit strategy presented above is designed for use with an
attractive potential field controller [14]. Suppose that pursuer
i is located at (xi

p, y
i
p) and must travel to the goal location

ri = (xi
r, y

i
r) ∈ S. We define the distance error i = d(pi, ri)

as the Euclidean distance between pursuer i and its target.
Let φi = arctan2(yi

r − yi
p, x

i
r − xi

p) represent the angle of a
vector connecting the pursuer to its target. Then, we define
the angular error as ψi = θi

p − φi where ψi ∈ (−π π].
Based on this notation, the proportional control law is given
by

ui
p = Kpζi, (4)

where ζi = [i ψi]T is the error vector and Kp =
diag(kv, kω) is a diagonal matrix of control constants.

4) Software Integration: To complete the game, the design
techniques discussed above are integrated into a Qt plug-
in DLL that may be configured and managed using the
Robotic Games Coordinator and Game Manager. The plug-
in is designed using four modules including: a vSLAMTM

module, a networking module, a joystick control module,
and an autonomous control module. The game referee uses
the Coordinator to specify which of the two robots will be
the pursuer and which will be the evader. Both robots load
the vSLAMTM and networking modules together with one
of the control modules. All three modules run in separate
threads and communicate using a thread-safe event system
that is built into ERSP.

The autonomous control design is best described using the
notation of a hierarchical hybrid system [5]. An automaton
representation of this system is shown in Figure 4. This

FrB7.2

3721

Read Discrete LOCALIZED

Localization

Wandering Obstacle Avoidance

Boundary Avoidance

BoundaryDetected == true
ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false
ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false
ObstacleDetected == false

BoundaryDetected == true
ObstacleDetected == false

Game Play

LOCALIZED == true
LOCALIZED == false

Read Discrete ObstacleDetected, BoundaryDetected

Read Discrete ObstacleDetected, BoundaryDetected

Tracking Obstacle Avoidance

Boundary Avoidance

BoundaryDetected == true
ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false
ObstacleDetected == false

ObstacleDetected == true

BoundaryDetected == false
ObstacleDetected == false

BoundaryDetected == true
ObstacleDetected == false

Fig. 4. A hybrid automaton representing the autonomous control module.

design consists of two outer states that switch based on the
vSLAMTM module’s confidence in its location estimation.
If this value is below a threshold, the Localization state is
active. Otherwise, the robot switches to the Gameplay state.
Each outer state contains three inner states including obstacle
avoidance, boundary detection, and goal seeking. The goal
in the Localization state is simply wandering. This state is
implemented using an ERSP behavior and is used to enhance
the vSLAMTM module’s ability to localize. In the Gameplay
state, the goal is to approach a goal point that is calculated
based on the pursuit strategy as discussed above. When one
of the obstacle avoidance or boundary avoidance states is
active, the current goal is ignored and v and ω are adjusted
to prevent leaving the boundary or colliding with an obstacle.

VI. FUTURE WORK

We plan to add support for additional sensors to the plat-
form. The framework will support any hardware that has a
driver for the ERSP framework. Currently, we are integrating
the Evolution Robotics NorthStar sensor which may be used
for more accurate indoor localization. Additionally, we are
investigating integrating the designed framework with open-
source robot control libraries to be compatible with other
multi-vehicle platforms. Finally, because the platform is an
excellent resource for studying issues related to human-robot
interaction, we plan to continue research in this area.

VII. CONCLUSIONS

In this paper, we have presented a framework for robotics
education and research. The benefits of using this framework
include providing a uniform hardware and software interface
for all applications and simplfying the procedure for giving
demonstrations. The hardware available on the Scorpion

robot makes it flexible enough for exploring a wide variety
of robotics related issues. Furthermore, the software libraries
provide native support for this hardware including built-in
robotics behaviors and algorithms that can be combined to
create sophisticated robotics applications.

Although the framework was originally intended for edu-
cation, we quickly discovered that a designer who is writing
a robotic “game” faces many of the same challenges and
problems as a someone that is creating real-world robotics
applications. In fact, several of the questions that we encoun-
tered while creating the games motivated ongoing research
projects. Marco Polo is an excellent example where the
main research issue centers on how to control a pursuer
robot given intermittent knowledge of the evaders. We have
provided some preliminary results based on constrained
evader motion. Finally, we have successfully implemented
Marco Polo using this framework. Surveys from a recent
science camp rated Robotic Games the most educational
and informative activity of the day. Additional information
related to Robotic Games may be found on the MARHES
web site [1].

REFERENCES

[1] (2007) MARHES laboratory. [Online]. Available:
http://marhes.okstate.edu

[2] J. Chestnutt, P. Michel, K. Nishiwaki, J. Kuffner, and S. Kagami,
“Intelligent joystick for biped control,” in Proc. IEEE Int. Conf. Robot.
Automat., Orlando, FL, May 2006, pp. 860–865.

[3] M. Mataric̀, “Robotics education for all ages,” in Proceedings, AAAI
Spring Symposium on Accessible, Hands-on AI and Robotics Educa-
tion, Palo Alto, CA, March 22-24 2004.

[4] B. Browning, J. Searock, P. E. Rybski, and M. Veloso, “Turning
segways into soccer robots,” Industrial Robot, vol. 32, no. 2, pp. 149–
156, 2005.

[5] R. Fierro, L. Chaimowicz, and V. Kumar, “Multi-robot cooperation,”
in Autonomous Mobile Robots: Sensing, Control, Decision Making and
Applications, S. Ge and F. Lewis, Eds. Boca Raton, FL: CRC Press,
2006, ch. 11.

[6] E. B. Martinson and F. Dellaert, “Marco polo localization,” in Proc.
IEEE Int. Conf. Robot. Automat., vol. 2, Taipei, Taiwan, September
14-19 2003, pp. 1960–1965.

[7] T. H. Chung, J. W. Burdick, and R. M. Murray, “A decentralized
motion coordination strategy for dynamic target tracking,” in Proc.
IEEE Int. Conf. Robot. Automat., Orlando, Florida, May 2006, pp.
2416–2422.

[8] Z. Tang and Ümit Özgüner, “On non-escape search for a moving target
by multiple mobile sensor agents,” in Proc. American Control Conf.,
Minneapolis, MN, June 14-16 2006, pp. 3525–3530.

[9] T. G. McGee and J. K. Hedrick, “Guaranteed strategies to search
for mobile evaders in the plane,” in Proc. American Control Conf.,
Minneapolis, MN, June 14-16 2006, pp. 2819–2824.

[10] V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a
polygonal environment,” IEEE Trans. on Robotics, vol. 21, no. 5, pp.
875–884, 2005.

[11] (2007) Evolution robotics. [Online]. Available:
http://www.evolution.com

[12] N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian,
and M. Munich, “The vSLAM algorithm for robust localization and
mapping,” in Proc. IEEE Int. Conf. Robot. Automat., Barcelona, Spain,
April 2005, pp. 24–29.

[13] (2007) Handvu: Hand gesture recognition. [Online]. Available:
http://www.movesinstitute.org/˜kolsch/HandVu/HandVu.html

[14] J. Clark and R. Fierro, “Cooperative hybrid control of robotic sensors
for perimeter detection and tracking,” in Proc. American Control Conf.,
vol. 5, June 2005, pp. 3500–3505.

[15] D. Le, “An efficient derivative-free method for solving nonlinear
equations,” ACM Trans. Math. Softw., vol. 11, no. 3, pp. 250–262,
1985.

FrB7.2

3722

