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Abstract— While there is extensive work on motion planning
and control for navigation tasks with guarantees, there is no
systematic way for human operators to modify the result-
ing plans without losing the guarantees. In this paper we
propose a systematic way of composing behaviors resulting
from human inputs with behaviors derived from navigation
functions. The proposed controller is based on a new class of
navigation function based controllers that posses weak Input-to-
State stability properties. The resulting system has analytically
guaranteed safety and convergence properties. The feasibility of
the proposed methodology is demonstrated through simulation
examples and hardware experiments.

I. INTRODUCTION

Usually when developing automated systems, generally

one only considers the development of safe, fully au-

tonomous systems. However, human intuition is often in-

dispensable and a systematic way of incorporating it while

guaranteeing the safety and liveness properties of the system

is required.

Our approach is based on the concept of navigation

functions [3]. The reason for choosing the class of navigation

functions is due to their favorable analytic properties that can

be exploited for developing the sought controllers. Naviga-

tion functions are a special category of cost functions, that

are free of local minima. The only minimum they possess is

at the target configuration. They provide for guaranteed a.e.1

convergence through a Lyapunov-LaSalle type of argument.

Moreover by their design, they provide for guaranteed safety

properties in terms of avoidance control [4]. Our navigation

function based controllers inherit all of the analytic properties

of the navigation functions and moreover they allow for

interconnections with other systems.

Regarding the composition of human inputs with naviga-

tion tasks, no general approach exists. Results available in

the literature [6] provide for only local guarantees for the

navigation task. We need a general framework, that will be

able to provide global guarantees for safety and convergence.

A composition framework that would be relevant to our

application is the Input-to-State Stability (ISS) framework

[10] under which one can interconnect the input of an ISS

system with the output of a globally asymptotically stable

(GAS) system and get a GAS system, as shown in figure 1.

Due to the topological properties imposed on navigation

functions, a navigation function based controller cannot
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Fig. 1 : The Input to State Stability (ISS) framework

directly accept an ISS characterization. However, in [5] we

show that there exist navigation function based controllers

that accept a weaker form of input to state stability char-

acterization, namely the almost ISS (aISS) characterization

[1]. Our basic approach is to use an aISS navigation function

based controller, similar to the ones proposed in [5], with

its inputs being interconnected to the output of a human

interface system.

The rest of the paper is organized as follows: Section II

presents the necessary notions for the following analysis

while section III analyzes the proposed control framework.

Section IV describes how the proposed control framework

can be utilized in the construction of mixed initiative con-

trollers, while in section V we present experimental results

from the application of our methodology. The paper con-

cludes with section VI

II. PRELIMINARIES

A. The aISS framework

As we have mentioned in the introduction, the composi-

tional framework that motivated our approach was the ISS

framework. We hereby briefly state some definitions and

results from the ISS literature.

Definition 1: [10] Consider a system of the form ẋ =
f (x, u) evolving in finite dimensional spaces R

n with inputs

u ∈ R
m that are measurable essentially locally bounded. The

map f : R
n × R

m → R
n is locally Lipschitz and satisfies

f(0, 0) = 0. The system is input to state stable (ISS) if

‖x(t)‖ ≤ β (‖x(0)‖ , t) + γ (‖u‖∞) (1)

for some β ∈ KL, γ ∈ K∞ and for all t ≥ 0.

Unfortunately almost GAS systems cannot be character-

ized by the above β + γ type of estimate [1]. An equivalent

approach in terms of asymptotic gains is more suitable for

such systems and gives rise to an almost global definition of

input to state stability:
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Definition 2: [1] A system ẋ = f (x, u) evolving on a

smooth manifold M with f : M × U → TM a locally

Lipschitz manifold map satisfying f (x, u) ∈ TxM for all

x ∈ M and all u ∈ U ⊂ R
m is almost ISS (aISS) with

respect to an invariant compact set A ⊂ M , if A is locally

asymptotically stable and

∀u, ∀ a. a. ξ ∈ M, lim sup
t→+∞

|x (t, ξ, u)|A ≤ γ (‖u‖∞) (2)

where γ ∈ K and |·|A denotes the standard point to set

distance.

While ISS properties are propagated through cascade in-

terconnections and under small gain conditions for feedback

interconnections, propagation of aISS properties through

cascades and feedback interconnections is currently an open

research topic. A weaker result was established by [1]

regarding the interconnection of an almost GAS with an aISS

system stating that the resulting system is almost GAS:

Theorem 1: [1] Consider the cascaded system

ẋ = f (x, y)
ẏ = g (y)

(3)

with state z =
[

xT , yT
]T

∈ M × N where N a smooth

manifold. Assume that f and g satisfy f (0M , 0N ) = 0 and

g (0N ) = 0 for some points 0M ∈ M and 0N ∈ N . Let the

x-subsystem be almost ISS with respect to the equilibrium

0M and the input y and the y-subsystem be almost GAS at

0N . Then the interconnection (3) is almost GAS at 0M×N :=
0M × 0N

B. Navigation Function Based Controllers

Navigation Functions (NFs) are real valued maps, realized

through cost functions, the negated gradient field of which is

attractive towards the goal configuration and repulsive with

respect to obstacles. Considering a trivial system described

kinematically as q̇ = u the basic idea behind navigation

functions is to use a control law of the form u = −∇ϕ(q)
where ϕ(q) is a navigation function, to drive the system to

its destination (figure 2).

Fig. 2 : Navigation Function with three obstacles and the resulting
gradient following path

It has been shown (Koditschek and Rimon [3]) that strict

global navigation (i.e. with a globally attracting equilibrium

state) is not possible and a smooth vector field on any sphere

world, which has a unique attractor, must have at least

as many saddles as obstacles. It has been shown [3] that

navigation properties are invariant under diffeomorphisms

hence any world that can be diffeomorphically transformed

to a sphere world can accept a navigation function [9], [8],

[11].

III. CONTROLLER DESIGN

We will be primarily concerned with systems that are triv-

ially described by first order kinematic models. Without loss

of generality the treatment is performed on the sphere model

world where the destination configuration is considered to be

the origin. The following result will be useful in transferring

our results from simple systems to more complicated ones:

Proposition 1: Consider the systems:

ẋ = f(x) + r(x)u(t) (4)

and

ẏ = k(y, t)f(y) + k(y, t)r(y)u(t) (5)

where the functions f : R
n → R

n ,r : R
n → R, u : R

+ →
R

n, k : R
n × R

+
0 → R are Lipschitz continuous in x (or

y respectively) and measurable in t. Moreover we require

k(y, t) ≥ ε > 0 for some fixed ε. Then the trajectories of

system (5) are the same with the trajectories of system (4)

up to a time parametrization.

Proof: See Appendix A

Based on the above result we can state the following

stability equivalence between two aISS systems:

Proposition 2: If there exist a, ε > 0 such that a ≥
k(y, t) ≥ ε then the aISS property of system (4) implies

the aISS property of system (5) and vice versa.

Proof: See Appendix B

Motivated by the results in [5], let us define the following:

S0 : ẋ = −K∇ϕ(x) + r(x)u(t) (6)

where r : R
n → R

+
0 is a positive, Lipschitz function and K

is a positive scalar. Function u : R
+ → U is the input to the

system and ϕ a navigation function.

Let F ⊂ En be a compact Riemannian manifold denot-

ing the system’s workspace. We have the following result

regarding the safety of the system:

Proposition 3: (Safety) The trajectories of system S0 for

any measurable u satisfy: x(t, x0, u(t)) ∈ F for all t ≥ 0,

x0 ∈ F as long as r (∂F) = 0.

Proof: See Appendix C

Regarding the characterization of the stability of system

S0, we have the following:

Proposition 4: With r upper bounded, system S0 is aISS

with respect to the origin.

Proof: See Appendix D

IV. MIXED INITIATIVE CONTROLLER

A. Concept

In composing a human input with a navigation function

based controller, we assume that the human user can use

an interface to provide direction and velocity commands to

the system. We can assume that the output of the human -
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interface system is globally asymptotically stable, since at

some point the human user will stop providing inputs to

the system. By using a navigation function based system,

we seek to interconnect it with a human interface system

by means of of Theorem 1 as shown in figure 3. This

interconnection will then have global stability and safety

properties.

Fig. 3 : Interfacing Human inputs with navigation function based
controllers

B. Feedback Linearization Controller

Consider the differential drive robot schematically de-

picted in figure 4. Its kinematics are described by the

following model:

ẋ = r
2 (wl + wr) cos(θ)

ẏ = r
2 (wl + wr) sin(θ)

θ̇ = r
L (wr − wl)

(7)

x

y

L

r

(x, y)

wl

wr

θ
l

z = (zx, zy)

r

Fig. 4 : Differential drive robot

Using the transformations: u = r
2 (wl + wr) and w =

r
L (wr − wl), the differential drive model is transformed to

the equivalent representation of the non-holonomic unicycle

model:
ẋ = u cos(θ)
ẏ = u sin(θ)

θ̇ = ω
(8)

In order to be able to apply navigation function based

techniques to the non-holonomic system (8) we can use a

feedback linearization approach to drive a point z of the

robot located at a distance l from the wheel axis central

point. Consider the transformation:

[

zx

zy

]

=

[

x
y

]

+

[

cos(θ)
sin(θ)

]

· l (9)

where point z = (zx, zy) is located in distance l from the

wheel rotation axis as shown in figure 4. Taking the time

derivative of (9) and substituting (8) we get:

ż = A(θ) ·

[

u
w

]

(10)

where A(θ) =

[

cos(θ) −l sin(θ)
sin(θ) l cos(θ)

]

. Matrix A(θ) is

invertible as long as l > 0 . The inverse is given by

A(θ)−1 =

[

cos(θ) sin(θ)

− sin(θ)
l

cos(θ)
l

]

so equation (10) can be

written as
[

u
w

]

= A(θ)−1 · ż (11)

The importance of equation (11) is that we have now a

way to transform any vector field to appropriate linear and

angular velocities of the system (8) and effectively drive

point z of the robot to any location of the free workspace.

In this approach we are not interested in achieving a specific

orientation of our system but just to ensure that the angular

velocity goes to zero when the position of our system

converges. This transformation has this property since due

to the non-degeneracy of matrix A(θ), when ż = 0 then

u = w = 0.

Since for the applications we are considering the achiev-

able linear and angular velocities of the system are bounded,

we need to also consider the velocity constraints in our

controller design. Assume that

|u| ≤ umax, |w| ≤ wmax (12)

Define the matrix M =

[ 1
umax

0

0 1
wmax

]

and define the

expression µ(x, θ) = max

([

1
...

∣

∣MA(θ)−1 · x
∣

∣

T
])

which

returns the maximum element of the augmented vector
[

1
...

∣

∣MA(θ)−1 · x
∣

∣

T
]

where x ∈ R
2 and θ ∈ R.

Setting ż = vµ(v, θ)−1 in (11), we get:

[

u
w

]

= A(θ)−1 ·
(

vµ(v, θ)−1
)

(13)

Regarding the velocity constraints satisfaction of system (8)

we can state the following:

Lemma 1: System (8) with its input defined by the trans-

formation (13), satisfies the velocity constraints (12) for any

input vector field v

Proof: See Appendix E.
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C. Navigation Function Based Controller

Now that we have a way of translating the velocity of point

z of the robot to appropriate linear and angular velocities, we

want to design an appropriate vector field to drive the robot.

This vector field will be created based on the navigation

functions framework. Assume that we have a workspace

with radius rw and a set obstacles in the workspace with

radii rOi
with i ∈ {1, . . . , NO} where NO the number of

obstacles. However the navigation functions framework deals

with point robot. This constraint can be overcome in our

case, by modifying the workspace and obstacle radii so as

they can accommodate the volume of the robot and the robot

will appear as a point in this modified workspace. This is

achieved by setting r′w = rw − r for the workspace radius

and r′Oi
= rOi

+ r for the i’th obstacle’s radius. The center

of the robot is considered to be the z point (see figure 4)

we used in the feedback linearization and its radius r the

maximum distance of z from the robot’s boundary.

With this in mind we construct a navigation function ϕ on

the modified workspace F . Then by Proposition 4 the vector

field

v = −K∇ϕ(z) + r(z)u(t) (14)

provides an aISS controller for the system ż = v for an

appropriate choice of r(z). The significance of r(z) is that

is has to be zero on the workspace boundary and close

to the unit away from it in order to allow for meaningful

inputs from the user. In order to increase the robustness of

our system to noise, we have selected the following smooth

function:

r(z) =
υ (β(z) − rs)

υ (β(z) − rs) + υ (ε + rs − β(z))

where ε > 0, rs ≥ 0, β(x) is the obstacle function for

the navigation function ϕ (see [3] for the construction),

that denotes the distance of the robot from the workspace

boundary and υ (t) ,

{

e−1/t t > 0
0 t ≤ 0

. Figure 5 shows

a plot of the function. rs is the safety margin of b(z) below

which r(z) is identically zero and r(z) is identically 1 for

β(z) > rs + ε.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

β(z)

r(
z
)

r
s

ε

Fig. 5 : Plot of the chosen r(x) function

We can immediately observe that 0 ≤ r(z) ≤ 1 and its

Lipschitz continuity is implied from it’s smoothness property.

However the vector field provided by ż = v does not

satisfy the constraints (12). This can be fixed by setting

ż = vµ(v, θ)−1 (15)

with v as defined in (14).

In view of Proposition 2 we can state the following:

Proposition 5: System (15) is aISS

Proof: See Appendix F

Corollary 1: System 15 is safe, i.e. its trajectories for any

measurable u satisfy: z(t, z0, u(t)) ∈ F for all t ≥ 0, z0 ∈ F
Proof: See Appendix G

V. EXPERIMENT

A. Setup

The experimental setup consists of a custom made au-

tonomous differential drive mobile robot (see figure 6)

developed in the GRASP lab. The software architecture is

based on the Player framework [2]. The localization system

is vision based and uses 4 overhead cameras to extract the

posture of the robot and the obstacles in the workspace using

fiducial marks. These measurements are then fused with

odometry measurements from the robot wheel encoders using

an extended Kalman filter with outlier rejection. The client

code for the controller was developed in C++. For the user

interface we used a commercially available joystick. Due to

the relatively low speeds achievable by the mobile robot and

due to the nature of the motors and the motor control system,

the kinematic description of the robot proved to be adequate

for our purposes without the need to consider the dynamics

of the robot.

B. Results

To verify the feasibility of proposed scheme, we have

set up an experiment with the Merl robotic platform in a

workspace with three obstacles as shown in figure 6.

Fig. 6 : Snapshot: Human interaction in a navigation scenario in
an obstacle cluttered environment
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The robot was initially placed at it’s destination configura-

tion, when the user started applying an input to the system.

Under the influence of the user input and the navigation

vector field, the robot initially headed towards the obstacles,

avoiding collisions. The user continued providing input to the

system until the robot was placed behind an obstacle, where

the user stopped providing any input to the system. The

system, under the influence of the navigation field was guided

to it’s destination configuration and was stabilized there.

Figure 7 depicts the trajectory of the robot in the obstacle

cluttered environment. Notice that human interaction with

the planner introduced paths that are not homotopically

equivalent to the paths that are normally produced by the

flows of the navigation function.
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Fig. 7 : Trajectory of the robot

In figure 8 we can see the evolution of the z− zgoal error

variables and the evolution of the robot’s angle. As we can

see the robot after the user input vanishes, converges to its

destination configuration.
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Fig. 8 : X-Y error and robot orientation

Figure 9 depicts the levels of input in each direction

provided by the used during the evolution of the system.

Figure 10 depicts the linear and angular velocity com-

mands applied to the robot. As we can see the controls are
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Fig. 9 : User input

bounded and they saturate at their maximum values.
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Fig. 10 : Control signal

VI. CONCLUSIONS

We have proposed a novel technique of composing hu-

man inputs with navigation function based controllers. The

technique is based on the new concept of almost Input to

State Stability property of a class of navigation function

based controllers. The proposed methodology provides the-

oretically guaranteed properties of safety and convergence,

while allowing the human operator to deviate from the

planned path. Experimental results from the implementation

of our algorithms confirmed the feasibility of the proposed

methodology.

Our future research will include extending the aISS NF

framework to several novel classes of navigation func-

tions including decentralized navigation systems for robotic

swarms.

REFERENCES

[1] D. Angeli. An almost global notion of input-to-state stability. IEEE
Transactions on Automatic Control, 49:866–874, 2004.

[2] B. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. Proceedings
of the 11th International Conference on Advanced Robotics (ICAR),
pages 317–323, 2003.

[3] D. E. Koditschek and E. Rimon. Robot navigation functions on
manifolds with boundary. Advances Appl. Math., 11:412–442, 1990.

[4] G. Leitmann and J. Skowronski. Avoidance control. Journal of
optimization theory and applications, 23(4):581–591, 1977.

[5] S.G. Loizou and V. Kumar. Weak input-to-state stability properties
for navigation function based controllers. Proc. of IEEE Int. Conf. on
Decision and Control, pages 1800–1805, 2006.

[6] S. P. Parikh, V. Grassi Jr., V. Kumar, and J. Okamoto Jr. Incorpo-
rating user inputs in motion planning for a smart wheelchair. IEEE
International Conference on Robotics and Automation, 2004.

[7] A. Rantzer. A dual to Lyapunov’s stability theorem. Systems and
Control Letters, 42:3:161–168, 2001.

WeE4.1

1435



[8] E. Rimon and D. E. Koditschek. The construction of analytic
diffeomorphisms for exact robot navigation on star worlds. Trans.
of the American Mathematical Society, 327(1):71–115, 1991.

[9] E. Rimon and D. E. Koditschek. Exact robot navigation using
artificial potential functions. IEEE Trans. on Robotics and Automation,
8(5):501–518, 1992.

[10] E.D. Sontag. The ISS philosophy as a unifying framework for
stability-like behavior. In A. Isidori, F. Lamnabhi-Lagarrigue, and
W. Respondek, editors, Nonlinear Control in the Year 2000, volume 2
of Lecture Notes in Control and Information Sciences, pages 443–468.
Springer-Verlag, 2000.

[11] H. G. Tanner, S. G. Loizou, and K. J. Kyriakopoulos. Nonholonomic
navigation and control of cooperating mobile manipulators. IEEE
Trans. on Robotics and Automation, 19(1):53–64, 2003.

[12] http://www.seas.upenn.edu/˜sloizou/ ˙visited, 2007.

APPENDIX

A. Proof of Proposition 1

Proof: Let y(y0, t) be a solution to (5) for the

initial condition y0. Then at any time instant the solu-

tion y(y0, t) satisfies: ẏ(y0, t) = k(y(y0, t), t)f(y(y0, t)) +
k(y(y0, t), t)r(y(y0, t))u(t). Setting km(t) = k(y(y0, t), t)
we can write the equation as

ẏ(y0, t) = km(t)f(y(y0, t)) + km(t)r(y(y0, t))u(t) (A-1)

Let us now choose a different time parametrization to tra-

verse the solution: y(y0, τ(t)). Taking the time derivative we

get
d (y(y0, τ(t)))

dt
=

dy(y0, τ(t))

dτ
τ̇(t) (A-2)

Combining equations (A-2) and (A-1) we get:

ẏ(y0, τ)τ̇(t) = km(τ)f(y(y0, τ)) + km(τ)r(y(y0, τ))u(τ)
(A-3)

Setting τ(t) =
t
∫

0

k(σ)dσ and since k > 0, equation (A-3)

becomes:

ẏ(y0, τ) = f(y(y0, τ)) + r(y(y0, τ))u(τ) (A-4)

Note that since k(σ) ≥ ε > 0 it implies that
∫ ∞

0
k(σ)dσ =

∞ hence we do not have pathological conditions where

system (5) stops along some non-stationary point of the

trajectory of (4). Now since this holds for any feasible initial

conditions, we can omit the initial condition from (A-4) and

get:

ẏ(τ) = f(y(τ)) + r(y(τ))u2(τ) (A-5)

which is equivalent to equation (4).

B. Proof of Proposition 2

Proof: Since the solutions of the two systems are

equivalent as shown in Proposition 1 and since k(y, t) > 0
we will only have forward time progression for both systems

across their solution. Since asymptotic stability describes the

limit behavior as t → ∞ the asymptotic stability of the one

system implies the asymptotic stability of the other system.

Now assume that system (4) is aISS, i.e. in addition to the

asymptotic stability the following property of Definition 2

holds:

∀u, ∀ a. a. ξ ∈ M, lim sup
t→+∞

|x (t, ξ, u)|A ≤ γ (‖u‖∞)

since we are examining the limit behavior of the two systems

and their trajectories are equivalent we can write for system

(5) that:

∀u, ∀ a. a. ξ ∈ M, lim sup
t→+∞

|y (t, ξ, u)|A ≤ γ (a ‖u‖∞)

By setting γa(‖u‖∞) = γ (a ‖u‖∞)) we note that γa(·) ∈ K
since γ(·) ∈ K. Hence all the requirements of definition

2 are satisfied and system (5) is aISS. The opposite direc-

tion is proved in a similar way by selecting γε(‖u‖∞) =
γ

(

1
ε ‖u‖∞

)

) and noting that γε(·) ∈ K.

C. Proof of Proposition 3

Proof: The navigation function ϕ is by definition

[3] uniformly maximal over the workspace boundary, i.e.

ϕ(q) = 1 for q ∈ ∂F . This implies that −∇ϕ is trans-

verse across the workspace boundary and points inwards.

Taking the inner product of −∇ϕ with ẋ we have that

ẋT (−∇ϕ) = k(x, t)K ‖∇ϕ‖
2
− k(x, t)r(x)u1(t)

T∇ϕ But

for x ∈ ∂F we have that r(x) = 0 hence we get

ẋT (−∇ϕ) = k(x, t)K ‖∇ϕ‖
2

> 0 since ∇ϕ and k(x, t) are

non-zero across the workspace boundary and the workspace

is positive invariant.

D. Proof of Proposition 4

Proof: A similar proof can be found in [5] and is

based on the concept of combining primal and dual Lyapunov

techniques [7]. Please refer to [12] for an extended version

of this paper with a detailed proof.

E. Proof of Proposition 1

Proof: Assume that

[

u0

w0

]

= A(θ)−1v. If |u0‖ ≤

umax and |w0| ≤ wmax then µ(v, θ) = 1 and u = u0 and

w = w0 and the constraints are satisfied. If |u0| > umax or

|w0| > wmax, let m = max(|u0| /umax, |w0| /wmax). Then

µ(v, θ) = m and u = u0/m < umax and w = w0/m <
wmax and the constraints are satisfied.

F. Proof of Proposition 5

Proof: Our selection of the k(z, t) = µ(z, t)−1 (we

write µ = µ(z, t) with slight abuse of notation since v =
v(z, t)) function satisfies the Lipschitz continuity require-

ments in z due to the smoothness of ϕ(z) and r(z). It is

by construction bounded above by 1 and due to smoothness

and compactness arguments for the considered workspace

and due to the assumption that u is measurable, µ(z, t)−1 is

also below bounded by a = min(umax,wmax)
K max

z∈F
‖∇ϕ‖+max

t

u(t) > 0. Since

by Proposition 4 system ż = v is aISS, invoking Proposition

2 and noting that all its requirements are satisfied, we have

the result.

G. Proof of Proposition 1

Proof: System ż = v is safe since it satisfies all the

requirements of Proposition 3. By Proposition 1 system (15)

has the same trajectories up to a time parametrization, hence

it also satisfies z(t, z0, u(t)) ∈ F for all t ≥ 0, z0 ∈ F
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