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Abstract— We study the problem of designing motion-
planning and sensor assignment strategies for tracking multiple
targets with a mobile sensor network. We focus on triangulation
based tracking where two sensors merge their measurements
in order to estimate the position of a target. We present an
iterative and distributed algorithm for the tracking problem.
An iteration starts with an initialization phase where targets are
assigned to sensor pairs. Afterwards, assigned sensors relocate
to improve their estimates. We refer to the problem of com-
puting new locations for sensors (for given target assignments)
as one-step tracking. After observing that one-step tracking
is computationally hard, we show how it can be formulated
as an energy-minimization problem. This allows us to adapt
well-studied distributed algorithms for energy minimization.
We present simulations to compare the performance of two
such algorithms and conclude the paper with a description of
the full tracking strategy. The utility of the presented strategy
is demonstrated with simulations and experiments on a sensor
network platform.

I. INTRODUCTION

A mobile sensor network is a network of mobile devices

equipped with sensing, communication and computation ca-

pabilities. In this paper, we study a typical application of

mobile sensor networks: tracking multiple targets. Imagine

that we are given (i) a mobile sensor network specified by the

locations of the sensor nodes and (ii) a communication graph

whose edges correspond to nodes that can communicate with

each other. Our goal is to estimate the positions of (possibly

many) targets as they move around in the work space. In this

scenario, the following questions arise:

i) Target-sensor assignment: which sensors should track

which targets?

ii) Motion planning: how should the sensors move, so that

the overall quality of the estimation improves?

In answering these questions, one must address the fol-

lowing issues:

The coupling between assignment and motion planning.

As the sensors move, the optimal target-sensor assignments

will change. Therefore, these assignments must be updated

in a dynamic fashion.

Dependencies between sensors. Sensor network nodes are

typically quite modest in terms of their sensing capabilities.

Consequently, sensor nodes must collaboratively obtain po-

sition estimates. However, this raises the following issue.

Suppose three sensors s1, s2 and s3 are tracking targets t1, t2
and t3. Sensor pair (s1, s2) is assigned to t1, (s2, s3) to

t2 and (s1, s3) to t3. The quality of tracking t1 depends
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Fig. 1. A setup where three targets are tracked by three sensors. Sensors
s1 and s2 are tracking target t1, s2 and s3 are tracking t2, and s3 and s1

are tracking t3.

also on the position of s2. Therefore s1 must negotiate a

good position with s2. But then s2 must negotiate a good

location with s3 (because of t2) who, in turn, must negotiate

a good location with s1 because of t3! Performing these

cyclic negotiations in a distributed fashion while improving

the quality of the estimates is one of the primary issues

addressed in our present work.

Communication and energy constraints. Battery power

is the primary limitation determining the lifetime of the

network. An important source of power consumption is com-

munication. When two nodes are tracking a target, they will

need to exchange information. Therefore, it is desirable that

the energy consumption required to transfer the information

from one node to another is minimized.

Our results and organization of the paper: In this

paper, we study algorithms to compute sensor assignment

and motion planning strategies for mobile sensor networks.

We focus on triangulation based position estimation where

two sensors are utilized to estimate the position of a target.

We start with an overview of related work and continue

with a formal statement of the one-step tracking problem

(Section III) for which we present an iterative and distributed

algorithm. In Section IV-A, we investigate the computational

complexity of one-step tracking and observe that the general

form is not only NP-hard but also hard to approximate.

In Section IV-B, we show how one-step tracking can

be formulated as an energy minimization problem. Even

though energy minimization with pairwise interactions is

hard to approximate, the problem has been extensively

studied and there are algorithms in the literature which work

well in practice. In particular, two algorithms, loopy belief

propagation and tree-reweighted message passing, have been

demonstrated to solve various problems (e.g. data associ-

ation) in sensor-networks efficiently. After demonstrating

the performance of these two algorithms with simulations,
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we present the complete tracking algorithm in Section V.

We conclude the paper with results from real experiments

conducted on a sensor network.

II. RELATED WORK

Tracking is a fundamental problem in sensor networks and

therefore the problem received significant attention recently.

In [1], an information driven sensor query approach was

proposed. In this approach, at any given time, only a single

sensor (leader) is active. After obtaining a measurement,

the leader selects the most informative node in the network

and passes its measurement to this node which becomes the

new leader. In subsequent work, researchers addressed leader

election, state representation, and aggregation issues [2], [3].

A sensor selection method based on the mutual information

principle is presented in [4]. Recently, an entropy based

heuristic approach was proposed [5] which greedily selects

the next sensor to reduce overall uncertainty. Other aspects

of tracking in sensor networks have received significant

attention as well. In [6], the problem of estimating target’s

location and velocity using minimal information has been

addressed. The problem of assigning n disjoint pairs of

sensors to n targets so as to minimize the overall error

in the estimation has been studied in [7]. The problem of

choosing the best subset of cameras for a given placement

has been studied recently in [8]. A related line of research is

cooperative localization, where a group of robots or network-

nodes localize themselves by collecting information over the

network [9]–[11].

For mobile sensor networks, the problem studied in our

present work is related to the coverage problem. The problem

of relocating sensors to improve coverage has been studied

in [12]. In this formulation, the sensors can individually

estimate the positions of the targets. However, the quality of

coverage decreases with increasing distance. The algorithm

presented in this paper studies a similar problem but for

sensors which cannot estimate the targets’ positions by

themselves.

The problem of controlling the configuration of a sensor

team which employs triangulation for estimation has been

studied in [13] where the authors present a numerical,

particle-filter based framework. A recent related result was

presented in [14] where the problem of relocating a sensor

team whose members are restricted to lie on a circle and

charged with jointly estimating the location of the targets

was studied.

The one-step tracking problem (Section III) has been

studied recently in [15] for the special case where the

communication graph is a tree. In this paper, we present

(i) a solution to the general case and (ii) a full description

of a distributed, iterative tracking algorithm. In solving the

one-step tracking problem we utilize message-passing based

distributed estimation algorithms. These algorithms have

been utilized in solving other problems in sensor networks

and demonstrated to work well in practice [16]–[19].

s1 = (x1, y1) s2 = (x2, y2)

~x = (x, y)

θ

θ1 θ2

Fig. 2. The uncertainty in estimating the position of the target at x is given

by: U(s1, s2, x) =
d(s1,x)×d(s2,x)

sin θ

III. PROBLEM STATEMENT

Let S(t) = [s1(t), s2(t), . . . , sn(t)] be the state of the

sensor network at time t where si(t) is the state (position)

of the ith sensor at the time. Let us construct a dynamic

graph G(t) = (V (t), E(t)) whose nodes V (t) correspond to

the set of sensors at time t and there is an edge between

two nodes if the corresponding nodes in the network can

communicate without spending more energy than a given

budget. This energy budget can be specified as, for example,

the number of hops required to transmit a message.

In this paper, we focus on triangulation based estimation

where two sensors si and sj can estimate the position of an

object at location x. However, the uncertainty in this estima-

tion is given by a function U(si, sj , x). For example if the

sensors measure bearing then U(si, sj , x) =
d(si,x)d(sj ,x)

sin 6 sixsj

where d(si, x) is the Euclidean distance between si and

x and 6 sixsj denotes the angle between the target and

the sensors [20]. Therefore if the target is collinear with

the sensors, the uncertainty becomes infinite which leads to

an arbitrarily bad estimation (Figure 2). We will use this

uncertainty measure throughout the paper to demonstrate our

results.

Suppose at time t we are given the location x(t) of a target,

the uncertainty function, the state of the sensor network S(t)
and the communication graph G(t). We can define a function

assign(x(t), S(t), G(t)) = arg min
(si,sj)∈E(t)

U(si, sj , x(t))

which returns the best sensor pair in the network for

tracking the target at x(t). Similarly, we define the error

in tracking this target as

error(x(t), S(t), G(t)) = U(assign(x(t), S(t), G(t)), x(t))

which is simply the uncertainty achieved by the optimal

selection. Suppose there are m targets and let xi(t) be the

position of the ith target at time t. We are now ready to

define the tracking problem:

Compute an admissible trajectory si(t) for each sensor

in the network so as to minimize the overall uncertainty in

tracking given by:
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1

mT

m∑
i=1

∫ T

t=0

error(xi(t), S(t), G(t)) (1)

where T denotes a (given) terminal time.

Clearly, the value given by the Equation 1 for the optimal

solution of the tracking problem is the best possible error

that can be achieved by the network. However, in practice,

there are significant challenges in computing trajectories that

achieve this value. First of all, the target trajectories may

not be available. Second, the sensor pair for a target can

change from one sensor pair to another instantaneously and

hence computing the best pair for the next time instance in

a distributed fashion can be very difficult. A related issue

is that the graph G(t) depends on the locations of the

nodes as well as the environment (occlusions may prevent

communication) and the nodes may not have access to the

entire graph at all times.

To deal with these issues, we propose a solution where the

time interval [0, T ] is divided into epochs of possibly varying

length. Each epoch starts with an initialization phase, where

the network computes target/sensor-pair assignments based

on the estimated positions of the targets and its current state

(we defer the details of initialization and a full description of

the sequence of events in an epoch to Section V). Once the

initialization phase is complete, we ask the question: Given

target/sensor-pair assignments, where should each sensor

move to minimize the error until the end of the epoch? We

call this problem the one-step tracking problem. Formally,

the one-step tracking problem is to compute a location si

for each sensor such that si is reachable within the epoch,

so as to minimize

m∑
i=1

U(s1
i , s

2
i , xi) (2)

where xi is the position of target i at the beginning of the

epoch and s1
i and s2

i are the computed locations of the two

sensors assigned to target i during this epoch.

In essence, we force the target/sensor-pair assignments

to remain static within an epoch. This is justified, because

as we will see shortly, the length of an epoch is required

to be only long enough to pass a few rounds of messages

across the network – which is much shorter than the time

it takes for either the sensor nodes or the targets to travel

a significant distance. Therefore, the solutions to one-step

tracking problems can be combined into a filter to solve

the tracking problem: compute the assignments, compute the

next locations, repeat.

Before we present the details of the overall algorithm, let

us start with the one-step tracking problem.

IV. ONE-STEP TRACKING PROBLEM

In this section, we first establish the computational com-

plexity of the one-step tracking problem. Next, we show

how to formulate the problem as an instance of energy

minimization with pairwise constraints. This allows us to

utilize distributed message passing algorithms for energy

minimization. We show how two of these algorithms which

have been extensively studied in the literature can be adapted

to solve the one-step tracking problem and compare them in

the context of one-step tracking with simulations.

A. Hardness results

In this section, we present computational lower bounds

on the hardness of the one-step tracking problem. One-step

tracking is closely related to the well-known graph coloring

problem.

In the graph k-coloring problem, we are given a graph

G = (V,E) and the goal is to choose one of the k available

colors for each vertex in such a way that adjacent vertices

receive different colors. The coloring problem is NP-hard.

Further, unless P = NP , it is not possible to find efficient

algorithms to approximate coloring within a factor better than

o(|V |) [21].

Graph coloring can be reduced to one step-tracking as

follows: Given a graph G with n vertices, we produce an

instance of one-step tracking with n sensors. The communi-

cation graph is identical to G. We assign a target for each

edge. There are k available locations where sensors can move

(each location corresponds to a color). The cost of tracking

a target is infinite if the sensors move to the same location.

It is zero otherwise. It is easy to see that G is k colorable

if and only if there is a solution to the one-step tracking

problem that achieves zero error.

Since graph coloring can not be approximated in general, it

is also not possible to find a general solution to solve the one-

step tracking problem. In the next section, we show how one-

step tracking can be formulated as an energy minimization

problem.

B. Energy minimization formulation

Energy minimization with pairwise constraints, also

known as the graph labeling problem is defined as follows.

We are given a graph G = (V,E) and a finite set of labels

L = {l1, . . . , lk}. The objective is to assign labels to the

nodes of the graph to minimize the energy given by

∑
v∈V

E1(v, l(v)) +
∑

(u,v)∈E

E2(u, l(u), v, l(v)) (3)

In the equation above l(v) denotes the label of node v.

The function E1 is the cost of assigning a label to a node

and is known as the data cost. The function E2 is the

smoothness term which is a function of the labels assigned

to the endpoints of edges.

We express the sensor placement task as a graph labeling

problem as follows: the labels are possible locations for

nodes to travel until the end of an epoch. The data cost is the

energy spent in traveling from the node’s current location to

the assigned location. The smoothness function is obtained

by summing the quality of coverage U(·) on all targets for a

given placement of the sensors (see Figure 2 for an example

uncertainty function).

Energy minimization on graphs with cycles is NP-hard (it

is harder than the graph coloring problem.). Nevertheless,

FrA5.3

3285



the problem has been extensively studied and researchers

have designed algorithms which work well in practice by

exploiting substructures in the graph. In particular, two algo-

rithms, loopy belief propagation (LBP) and tree-reweighted

message passing (TRW), have been demonstrated to solve

various problems (e.g. data association) in sensor-networks.

Descriptions of the LBP and TRW algorithms can be found

in [22] and [23] respectively. In Section III, we evaluate

the performance of these algorithms for the one-step tracking

problem using simulations. We first describe the full tracking

algorithm in the next section.

V. FULL TRACKING ALGORITHM

The tracking algorithm consists of a series of epochs. The

sequence of events within an epoch is shown in Figure 3.

We assume that during an epoch a spanning tree T of

the communication graph is available and, further, that this

tree is rooted at an arbitrary node to establish child-parent

relationships. Building a spanning tree in distributed manner

is a well-studied problem. We refer the reader to [16] for

details.

We use the notation T (u) to denote the subtree of T rooted

at node u.

Move to x

from all children

send "epoch over" to parent

if idle nodeIf assigned node

Compute one−step tracking location x

Wait until "epoch over" received

Negotiate target assignment

If no target assigned, "sleep"
Else move toward the target
      until epoch ends

Initialization: compute target assignments

Fig. 3. Sequence of events in an epoch.

The first step in an epoch is initialization. All nodes

contribute to the initialization phase. The process starts from

the leaves. Let u be a leaf node and v be its parent. Node

u passes a message to v. The message consists of u’s own

location along with a list of targets that u can contribute in

tracking. The initialization process propagates up to the root

as follows: Let w be an internal node and U = {u1, . . . , uk}
be its children. Node w will compute a list Lw which has an

entry for each target that can be tracked by nodes in T (w).
The entry Lw(x) for a target at x contains the best pair in

T (w) to track x and the expected error in tracking x with

this pair. The value of the error is computed by the position

of the target and the sensor at the time of the computation.

The computation of Lw(x) is achieved as follows: Let

G(w) be the subgraph of the communication graph G

induced by the vertex set U ∪ {w}. Upon receiving tables

Lui
from all of its children, node w compares the values

in Lui
with the values obtained from the pairs in G(w) and

picks the best among them. When all entries of Lw are filled,

node w passes Lw to its parent.

After the root node computes its table, the best sensor pair

for each target has been computed. The root propagates these

assignments downwards toward the leaves. Nodes which are

assigned to targets begin the one-step tracking algorithm

described in Section IV. When a node reaches its destination,

and receives “epoch over”signals from its children, it passes

the “epoch over” signal to its parent. The epoch ends when

the root has reached its destination and received “epoch over”

signals from its children. Nodes which are not assigned may

be kept idle to conserve power, or commanded to move

toward targets which may lead to favorable configurations

in the future.

VI. SIMULATIONS

In this section, we compare the performance of LBP

and TRW for the one-step tracking problem. In the first

simulation, the targets remained stationary throughout the

simulation. In this experiment, the target assignments were

not updated dynamically. The evolution of the total un-

certainty as a function of the number of epochs in the

networks is shown in Figure 4-left. In this experiment, LBP

achieved near optimal performance and in fact converged to

the value achieved by OPT: the optimal solution obtained by

enumeration.

In the next simulation, we updated the target assign-

ments as the sensors moved. Comparing the results with the

previous simulation, we observed that target reassignment

improves the performance of tracking. The evolution of the

total uncertainty as a function of the number of epochs in

the networks is shown in Figure 4-middle.

Finally in the last simulation we studied a scenario where

the targets are moving. The evolution of the total uncertainty

as a function of the number of epochs in the networks is

shown in Figure 4-right.

In all these experiments we observed that LBP consistently

outperformed TRW and its performance was close to OPT.

To further test this observation, the outcomes of 25 randomly

generated tracking instances is reported in Figure 5. It is

seen that when target reassignment was not utilized, on the

average LBP was within factor 1.2 of OPT’s performance

whereas TRW’s average performance was a factor of 1.35

(in these experiments OPT did not utilize reassignment as

well.) With reassignment, LBP was within a factor of 1.45

which is better than TRW’s performance of 2.1.

It is interesting to note that both LBP and TRW occa-

sionally converged to a better value than OPT. Therefore

optimal local performance does not necessarily imply the

best performance in time.

Since the average performance of LBP is better than our

implementation of TRW, LBP seems to be a better choice

for the one step tracking problem in our experiments.

VII. EXPERIMENTS

The experiments were conducted on a sensor network

platform consisting of Acroname Garcia robots equipped

with Intel Stargate boards and Ambicomm wireless cards.

Logitech Pro 4000 webcams were mounted on each of these
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Fig. 4. Each figure shows the evolution of total uncertainty for the three algorithms OPT, LBP and TRW. The leftmost figure corresponds to the case
when the targets are static. The second figure from the left shows the total uncertainty over successive epochs when the sensor assignment were updated
at the end of every epoch. The rightmost figure shows the total uncertainty over epochs for moving targets with sensor assignments being updated at the
end of each epoch.
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Fig. 5. LEFT TWO FIGURES: Static targets, no reassignment. Performance of LBP (left) and TRW (right). RIGHT TWO FIGURES: Static targets,
with reassignment. Performance of LBP (left) and TRW (right). The numbers on the x-axes indicate the performance of an algorithm normalized with the
performance of OPT.

robots and used as the sensor. A Point Grey Bumblebee

camera was mounted on the ceiling and was used to localize

the robots.

The setup for the experiment consisted of three robots

(r1, r2, r3) tracking one target (t) as shown in Figure 7. The

communication graph for the robot network was static and

had links between r1 and r2 and r1 and r3. There were no

loops in the network. The tracking algorithm was run for the

case where the target is stationary over consecutive epochs.

The robots were placed such that 6 r1tr2 was approximately

90 degrees and 6 r1tr3 was approximately 45 degrees. The

robots were localized using an external stereo camera and

triangulation was performed using correspondences in the

images of the target obtained from webcams mounted on

the robots. Using the estimated positions of the target due to

the two robot pairs got from the triangulation step and the

positions of the robots from the stereo camera, the tracking

algorithm (using Loopy Belief Propagation) was run and the

best position to move to in the next epoch was estimated.

This was done by calculating the distances of the robots to

the estimated position of the target and calculating 6 r1tr2

and 6 r1tr3.

The uncertainty measure was calculated for each robot pair

and the target (t) was assigned to the pair having minimum

uncertainty. The experiment showed that the robots r1 and r2

were assigned to track target t since the uncertainty in esti-

mation due to these robots was the lowest. The ground truth

for the position of the target was obtained from the stereo

camera. The errors between the estimated target position and

the ground truth for the target were calculated for both the

robot pairs. It was seen that the error in triangulation due

to the robots r1 and r2 was less than that due to robots r1

Fig. 7. The experimental setup in which a network of three mobile robots
with webcams are tracking a target (checkered board)

and r3. The experimental results also clearly showed that the

uncertainty due to r1 and r2 was less than that due to r1 and

r3. The robots then moved to the calculated best position for

the next epoch and the experiment was repeated using the

new positions of the robots and the pictures taken from the

webcams from the new positions.

VIII. CONCLUSION

In this paper, we studied the problem of designing motion-

planning and sensor assignment strategies for tracking mul-

tiple targets with a mobile sensor network. We presented a

distributed strategy for triangulation based tracking where

two sensors merge their measurements in order to estimate

the position of a target.

An important problem for future research is to incorporate
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Fig. 6. The leftmost figure shows the path for the robots r1, r2 and r3 for the experiment where the target is stationary. The center figure shows the
path of the robots from simulation and those that are obtained from experiments taking into account the error in robot motion. The rightmost figure shows
the plot of the distance between the ground truth for the position of the target and the estimate of the target position obtained from triangulation over
successive epochs for the two robot pairs.

Fig. 8. Snapshots of the robot positions at each epoch superimposed on one
another. This figure corresponds exactly to the leftmost figure in Figure 6.
The target used is the checkered board.

target dynamics into the strategy. Currently, we treat the

targets as static within an epoch. However, if accurate

representations of the targets’ motion are available, then the

strategy can be optimized in the time dimension as well. We

plan to address this issue in the context of tracking humans

in our future work. We are currently conducting extensive

experiments using different network configurations.
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