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Abstract— This paper introduces an adaptive sampling al-
gorithm for a mobile sensor network to estimate a scalar
field. The sensor network consists of static nodes and one
mobile robot. The static nodes are able to take sensor readings
continuously in place, while the mobile robot is able to move
and sample at multiple locations. The measurements from the
robot and the static nodes are used to reconstruct an underlying
scalar field. The algorithm presented in this paper accepts the
measurements made by the static nodes as inputs and computes
a path for the mobile robot which minimizes the integrated
mean square error of the reconstructed field subject to the

constraint that the robot has limited energy. We assume that
the field does not change when robot is taking samples. In
addition to simulations, we have validated the algorithm on a
robotic boat and a system of static buoys operating in a lake
over several km of traversed distance while reconstructing the
temperature field of the lake surface.

I. INTRODUCTION

Sensor networks provide new tools for observing and

monitoring the environment. In aquatic environments, accu-

rately measuring quantities such as temperature, chlorophyll,

salinity, and concentration of various nutrients is useful to

scientists seeking a better understanding of aquatic ecosys-

tems, as well as government officials charged with ensuring

public safety via appropriate hazard warning and remediation

measures.

Broadly speaking, these quantities of interest are scalar

fields. Each is characterized by a single scalar quantity which

varies spatiotemporally. A characteristic of such scalar fields

is that the sensor readings are only valid locally. That is,

the correlation between the sensors at different locations

decreases rapidly with increasing distance between the sensor

nodes. To estimate the scalar field where no sensor nodes

are deployed, we need to interpolate the data. Intuitively, the

more the readings near the location where a field estimate is

desired, the less the reconstruction error. In other words, the

spatial distribution of the measurements (the samples) affects

the estimation error.

In many cases, it may not be feasible to move the static

sensor nodes after deployment. In such cases, one or more

mobile robots could be used to augment the static sensor

network, hence forming a sensor-actuator network or a

robotic sensor network. Static nodes and mobile robots both
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have their advantages and constraints. Static nodes generally

consume less energy than mobile robots and their batteries

last longer. However, static nodes cannot move and cannot

change the spatial distribution of the sensor readings while

mobile robots are able to move and take sensor readings at

different locations.

The problem of adaptive sampling: An immediate ques-

tion to ask is how to coordinate the mobile robots and the

static nodes such that the error associated with the estimation

on the scalar field is minimized subject to the constraint that

the the energy available to the mobile robot(s) is bounded.

Specifically, if each static node makes a measurement in

its vicinity, and the total energy available to the mobile

robot is known, what path should the mobile robot take to

minimize the mean square integrated error associated with

the reconstruction of the entire field? Here we assume that

the energy consumed by communications and sensing is

negligible compared to the energy consumed in moving the

mobile robot. We also assume that the mobile robot can

communicate with all the static nodes and acquire sensor

readings from them. Finally, we focus on reconstructing

phenomena which do not change temporally(or change very

slowly compared to the time it takes the mobile robot to

complete a tour of the environment).

The domain: In this paper, we develop a general solution

to the above problem and test it on a particular set up de-

signed to monitor an aquatic environment. The experimental

set up is a systems of anchored buoys (the static nodes), and a

robotic boat (the mobile robot) capable of measuring temper-

ature and chlorophyll concentrations. This testbed is part of

the NAMOS (Networked Aquatic Microbial Observing Sys-

tem) project (http://robotics.usc.edu/˜namos),

which is used in studies of microbial communities in fresh-

water and marine environments [1], [2].

Contributions of this paper: In general, the optimality

of the path for the mobile robot depends on the approach

used for estimating the field. Model-based estimation (and

hence optimal sampling design based on linear or non-linear

models) is well studied [3]. In the environmental monitoring

context a prior model is normally unknown and it might even

be the goal of the project to learn a model from the data

collected by the sensor network. Therefore, non-parametric

estimation is appropriate. In this paper, we propose an adap-

tive sampling algorithm based on local linear regression [4],

[5] which is guaranteed to be optimal in the sense of

minimizing the integrated mean square error (IMSE) of the

field reconstruction. The energy consumption model depends

on the dynamics of the robotic boat. The adaptive sampling
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algorithm does not depend on the energy consumption model

but the optimal paths generated by the algorithm do. We

show tests of our algorithm on the robotic boat (henceforth

simply “the boat”) executing optimal trajectories (exceeding

an aggregate of 3 km in length over the course of the trials

reported here) operating with data collected from the buoys.

This paper is organized as follows. We discuss related

work in the following section. In section III, the adaptive

sampling algorithm based on local linear regression is dis-

cussed without considering the constraints from the dynam-

ics/kinematics of the boat. We introduce those constraints

in section IV and propose a breadth first search algorithm

for path planning. The experimental results are discussed in

section V. Concluding remarks are in section VI

II. RELATED WORK

Adaptive sampling has been studied in sensor networks.

Willett [6] proposed an algorithm based on wavelets for

static sensor networks to extend the battery life of sensor

nodes while providing enough estimation accuracy by trying

to keep as many nodes in sleep mode as possible. Rahimi [7]

proposed an algorithm for an actuated sensor network, which

refines the field estimation by taking more readings in

locations where estimation variance is high. This approach is

similar to the adaptive sampling algorithm to be introduced

next, but did not consider a dynamic or kinematic model

of the mobile robot. Krause [8] proposed an near-optimal

algorithm to solve a problem similar to ours. However, he

assumed that many sensors are deployed at the beginning,

the correlations between the value of the scalar field at

different locations are learned from the data collected from

the sensors and then the sensors are redeployed with some

sensors removed.

Optimal experimental design is an area that is closely

related to adaptive sampling; it has been well studied in the

literature of statistics. The goal of optimal experimental de-

sign is to minimized the estimation error with given number

of samples/readings to take. If the model of the phenomenon

is known to be linear or can be transformed to linear, there

exists an algorithm to find the optimal solution [3], [9]. If the

model is known to be non-linear, a sequential design can be

used [3]. If the model is unknown and no prior knowledge

is assumed, the reasonable design is maximin or minimax

design [9]. There are also studies on optimal design based

on local linear regression [10], [11] and Kriging [12], [9].

All these studies on sampling design assume the samples

to be taken manually and the cost related to the design is

strictly a function of the number of samples instead of the

path connecting all the sample locations.

A penalty associated with the path is considered in vari-

ous incarnations of the robot exploration/mapping problems,

which are well studied in the robotics literature [13], [14],

[15], [16]. Roy [13] proposed an Entropy based approach for

path planning so that better localization could be achieved.

Sim [14] proposed an A-optimality criterion for SLAM and a

Breadth First Search algorithm to find the approximate global

optimal path. Mei [15] proposed a orientation based target

selection strategy, where the energy cost for turning is incor-

porated in the optimal criterion. While there are similarities

between the adaptive sampling design problem studied here

and mapping/exploration problems it is important to note

that there are some differences. In robot mapping/exploration

the criterion of optimality is defined as the decrease in the

uncertainty of the map, which normally assumes that the

estimation bias is zero. In adaptive sampling for a scalar

field, interpolation is necessary to estimate the value where

no direct sensing information is available and hence bias is

inevitable. Therefore, a new criterion is needed to define the

optimality of the path.

III. ADAPTIVE SAMPLING BASED ON LINEAR

LOCAL REGRESSION

A. Linear Local Regression

Non-parametric regression has been well studied in statis-

tics and many methods have been proposed. Because it

is easy to understand, analyze and implement on a com-

puter, the kernel estimator is one of the most popular non-

parametric estimators. Kernel estimators include Nadaraya-

Waston, Gasser-Muller and local linear regression estimators.

In this paper, local linear regression is used to estimate the

phenomenon. The asymptotic properties of 1 dimensional

local linear Regression were first studied by Fan [5] and

later extended by Ruppert to the multi-dimensional case [4].

The main take away message from these two studies is that

the Integrated Mean Square Error (IMSE) of the estimator

is related to the second derivatives of the phenomenon

investigated.

If m(x) is the function to be estimated (reconstructed),

we assume the following model

Yi = m(Xi) + v1/2(Xi)ǫi, (1)

where i = 1, ..., n, d is the number of dimensions, Xi

are ℜd-valued predictor variables, Yi are scalar response

variables, v(Xi) = V ar(Y |X = x) is finite and the ǫi

are mutually independent and identically distributed random

variables with zero mean and unit variance and are indepen-

dent of Xi. Then the local linear regression estimator is the

linear estimator that minimizes

n
∑

i=1

{Yi − α − βT (Xi − x)KH(Xi − x)}2, (2)

where H is a d × d symmetric positive definite matrix,

K is a d-variate kernel with
∫

K(u)du = 1 and KH(u) =
|H |−1/2K(H−1/2

u). H1/2 is called the bandwidth matrix.

Solving the previous optimization problem, we have the

following LLR estimator:

m̂(x, H) = e1 · (X
T
x WxXx)−1XT

x WxY, (3)

where Xx =





1 (X1 − x)T

· · · · · ·
1 (Xn − x)T



, Y = [Y1, · · · , Yn]T ,

Wx = diag{KH(X1 − x), · · · , KH(Xn − x)} and e1 =
[1, 0, · · · , 0].
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If the kernel satisfies µ2(K)I =
∫

uu
T K(u)du and

∫

ul1
1 · · ·uld

d K(u)du = 0 for all non-negative integers

l1, · · · , ld such that their sum is odd, it has been proved

that the estimation error associated with the local linear

regression is given by the following equation [4]:

MSE{m̂(x; H)} =
R(K)v(x)

n|H |1/2f(x)

+
1

4
µ2(K)2tr2{HHm(x)}

+op{n
−1|H |−1/2 + tr2(H)}. (4)

where R(k) =
∫

K(u)2du, f(x) is the density function with
∫

f(x)dx = 1, and Hm(x) is the Hessian matrix of m(x).

B. Optimal Design for Linear Local Regression

In equation 4, when n|H |1/2 is big enough and H is

small enough, the infinitesimal op{n
−1|H |−1/2+tr2(H)} is

negligible and the IMSE can be approximated as following
∫
{

R(K)v(x)

n|H |1/2f(x)
+

1

4
µ2(K)2tr2{HHm(x)}

}

dx (5)

If we assume the Hessian matrix of m(x) is known, we

can determine the optimal bandwidth and optimal density

function by minimizing the IMSE with the constraint that
∫

f(x)dx = 1. By applying the Lagrange-Euler differential

equation, we have the optimal bandwidth and density func-

tion as follows:

h∗ =

(

dR(K)v(x)

nf(x)µ2(K)2tr2{Hm(x)}

)
1

d+4

, (6)

f∗(x) ∝ (µ2(K)tr{Hm(x)})
2d

d+8 (R(K)v(x))
4

d+8 , (7)

where we assume the bandwidth matrix is defined as

H = h2
I. f∗(x) is called the optimal design. When the

cost of moving from one sample location to another is small

compared to the cost of taking sensor readings, we can use

f∗(x) to generate the sample locations. Assume that there

are a small number of initial sensor readings available, the

Hessian Matrix can be estimated by using local polynomial

regression. Then new samples can be drawn according to the

optimal density function computed from the Hessian Matrix.

Figure 1 compares the performance of the optimal design

and a random design. The comparison is based on the water

surface temperature data taken in the field using a raster scan

of the environment. From the figure, it is obvious that the

optimal designs outperform the random design.

IV. PATH PLANNING FOR THE MOBILE ROBOT

A. Objective Function for Path Planning

When samples are to be taken by a mobile robot, optimal

design alone is not feasible because now the constraint is not

the number of samples to be taken but the distance that the

mobile robot can travel. This limits how many samples can

be taken and where those samples can be taken. For instance,

in the worst case, the sample locations generated by optimal

design are all far away so that energy available to the mobile

node is not enough even to reach one of those locations.
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9.5
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Number of additional samples

IM
S

E

Adaptive Sampling
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Fig. 1. A comparison between Adaptive Sampling and Random Sampling.
No energy consumption model is considered here.

Assume that initially there are n0 readings from static sen-

sor nodes (X1, Y1), . . . , (Xn0
, Yn0

), the path of the mobile

robot passes through the points Xn0+1, . . . ,Xn0+n, then the

optimal path should minimize IMSE, which can be estimated

as follows

IMSE(X1, . . . ,Xn0+n) ∝

∫

(

trd{Hm(x)}v2(x)

n2f̂2(x)

)
2

d+4

dx,

(8)

where f̂(x) = n−1
∑n

i=1
KH(Xi − x) is the estimation of

density function. Similar to the information gain defined in

robot exploration literature, we define the gain for each point

as

G(x) = IMSE(X1, . . . ,Xn0
) − IMSE(X1, . . . ,Xn0

,x),
(9)

and the gain of a whole path p as

G(p) = IMSE(X1, . . . ,Xn0
) − (10)

IMSE(X1, . . . ,Xn0
,Xn0+1, . . . ,Xn0+n).

Note that the gain of the whole path is not the sum of

the gain of all points on the path because the gain at each

location is not independent with each other. On the one hand,

one new sampling point not only increases the sampling

density at/near that point. On the other hand, MSE is not

linear in the density function. The higher the initial density

function at the location x, the less the gain that is achieved

by taking one more sample at x. Figure 2 illustrates the

effect of this dependency. Figure 2(a) shows the gain for

each location after the initial sensor readings are taken and

Figure 2(b) shows the gain for each location after one more

sensor reading is taken at location (35,35). From the figure,

we can see that not only is the gain at (35,35) decreased,

the gains of the locations close to (35,35) also decrease. As

a result, at some stage of the plan if two competing paths

A and B reach exactly the same state (same location, same

direction and same energy level), and A has higher gain than
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B, one cannot prune B because A might already decrease

the gains of other unvisited locations so much that B has

the potential to catch up. This suggests that the state of the

mobile robot depends on the whole path, not just current

gain and position.
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Fig. 2. (a) The gain of each location before taking one more reading
at (35,35); (b) The gain of each location after taking one more reading at
(35,35). Once a location has been visited it value (and the values of points
in its vicinity) drops.

However, if the whole path is taken as the state, the size

of the state space is exponential in the available energy and

hence is computationally intractable. By examining the effect

of dependency closely, we find that the effect is local and

the range it affects depends on the bandwidth. Therefore,

if we discretize the sensing field sparsely enough, we can

approximate the gain of the path by using the sum of the

gains of all the points on the path. In this case, the state can

be represented by the position of the node, current energy

available to the robot, and the gain achieved. Now the search

space is linear in both the size of the environment and the

energy level and a breadth first search can be applied to find

the optimal path.

It is possible that when the mobile robot reaches the

location with the maximum gain it stays in the same location

thereafter since it can achieve maximum gain there. Because

of the non-linear properties of the MSE, the gain achieved

by taking a second reading at the same location is much less

than the first one. So, we explicitly disallow the mobile robot

to go back to the locations it already visited. We represent

the state of the mobile robot as S = (x, y, θ, e), where x, y

are the coordinates of the mobile robot, θ is its direction and

e is the energy available to it. Note that θ and e do not have

a direct effect on the estimation error, but they affect how

many samples would be taken given that the initial energy

available is fixed. Suppose {x0,y0,θ0,e0} is the initial state of

the mobile robot, R0, X0, Y0 are the initial sensor readings

and corresponding coordinates, X1, Y1, Θ1 are the sequence

of stated the mobile robot should follow, i.e., the path, the

breadth search algorithm is shown as follows:

Algorithm 1: Breadth First Search Algorithm for Path

Planning

input : x0, y0, θ0, e0, X0, Y0, R0

output: X1, Y1, Θ1

Initialize all G(x, y, θ, e) = 0;

Q = MakeQueue();

enqueue(Q, x0, y0, θ0, e0);

while Q is not empty do

x, y, θ, e = dequeue(Q);

for each vertices x’, y′, θ′, e′ adjacent to x, y, θ, e

do

gain = ComputeGain(x’, y′, X0, Y0, R0);

if G(x, y, θ, e) + gain > G(x′, y′, θ′, e′) ∧ {x′,

y′, θ′, e′} is not one of the ancestors of {x, y,

θ, e} then

G(x′, y′, θ′, e′) = G(x, y, θ, e) + gain;

φ(x’, y′, θ′, e′) = x, y, θ, e;

enqueue (Q, x’, y′, θ′, e′) with priority

G(x′, y′, θ′, e′);
end

end
end

{x, y, θ, e} = argmax{x,y,θ,e}G(x, y, θ, e);
while x, y, θ, e is not {x0, y0, θ0, e0} do

push x into X1;

push y into Y1;

push θ into Θ1;

{x, y, θ, e} = φ(x, y, θ, e);
end

return X1, Y1, Θ1;

B. Energy Consumption Model

In the algorithm described in the previous subsection, an

energy consumption model is necessary to determine if two

states are adjacent to each other. The energy model we

use is based on the boat, which is part of the NAMOS
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Fig. 3. The robotic boat in the NAMOS project.

system. NAMOS, Networked Aquatic Microbial Observing

System [1], is a sensor-actuator network for freshwater and

marine monitoring. The system consists of 10 static sensor

nodes and one boat as shown in Figure 3, which is the mobile

node we use in all tests reported here. Unlike wheeled mobile

robots, the boat tends to keep moving when the propeller

stops because of the low friction of the water. Additionally,

the boat makes turns by using a rudder and hence it cannot

turn in place. If the boat is moving at a certain speed, there

exists a minimum turning circle and the radius depends on

the speed of the boat.
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Fig. 4. The trajectories considered for the energy consumption model. See
Table I

With the above limitations in mind, we propose the energy

consumption model for the boat as depicted in Figure 4. The

position of the robot is represented as (x, y, direction). At

each location (x, y), the robot can be in 4 directions: North,

East, South and West. From each state, there are 5 states the

boat can transit to. For examples, if current state of the boat

is (0, 0, North), it is able to transit to state (1, 0, South), (1, 1,

East), (0, 1, North), (-1, 1, West), and (-1, 0, South). Note that

the boat cannot transit directly to the states behind it, such

as (-1, -1, South), but it is able to reach those state through

other state, such as (-1, 0, South). We assume that the energy

caused by state transition is proportional to the distance the

robot traveled. The ideal curve connecting two states should

TABLE I

THE ENERGY CONSUMPTION TABLE

Destination State Energy consumed

(1, 0, South) 1.6

(1, 1, East) 1.6

(0, 1, North) 1

(-1, 1, West) 1.6

(-1, 0, South) 1.6

be the one with minimum length but the minimum radius of

curvature is not less than the radius of the minimum turning

circle. In this paper, we use circular arc to approximate the

optimal curve. The energy consumed when the robot transits

from (0, 0, North) to other state is listed as Table I, where

we assume the energy cost from (0, 0, North) to (0, 1, North)

is 1 unit.

V. EXPERIMENTS
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Fig. 5. (a) The raster scan data set; (b) The interpolated temperature field
by using the whole raster scan data set.

Our algorithm has been tested with the raster scan data

taken by the robotic boat in Lake Fulmor, CA, during a
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period of 40 minutes in the afternoon of May 9th, 2006.

Figure 5(a) shows the points in the entire raster scan data

set. The solid curve is the boundary of the sensing field

and the black dots are the data points. Temperature readings

are used in the tests and Figure 5(b) shows the temperature

field interpolated with the whole data set. We mine this

data set (the ground truth) as follows to test the algorithm

via a data-denial simulation. We assume that the boat is

able to follow the optimal path generated by the adaptive

sampling algorithm accurately. When one sampling location

x is generated, we search in the raster scan data set for the

point closest to x and take the corresponding temperature

reading as the sensor readings at location x. Once the process

of sampling is done, the temperature field is estimated and

the result is compared with the raster scan data instead of

current temperature on the surface of the lake. As a result,

even if the temperature field change during the time when

the robotic boat is doing raster scan, the data set still can be

used as taken from a static field. It is also assumed that

there exist 15 static nodes to provide the initial data set

and the locations of those static nodes are shown as small

circles in Figure 5(a). Because we are going to use some

of the temperature readings in the raster scan data set as the

readings of the static sensors, the locations of the static nodes

are picked so that they coincide with some of the points in

the raster scan data set.

Fig. 6. The square of the trace of the estimated hessian matrix

We assume that the boat starts from the top right corner of

the lake. The initial direction of the boat is west, i.e., facing

toward the center of the lake. Figure 6 shows the trace of the

estimated Hessian matrix. The higher the trace, the higher the

gain can be achieved by taking a reading there. As shown in

Figure 6, the trace of the estimated Hessian matrix is higher

in the bottom left part of the lake than in the top right part.

As a result, the boat tends to take more samples in the bottom

left part. the Figure 7(a) and Figure 7(b) show two typical

paths generated by the algorithm. The triangles indicate the

directions of the boat. The Figure 7(a) shows the path with

initial energy 25 units and Figure 7(b) shows the path with

the initial energy 50 units. When the initial energy is high,

the path planner tends to allow the boat to wander a little

on its way to the place with maximum gain so that it does

not have to move back later. When the initial energy is low,

the path planner requires the boat to go straight to those
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Fig. 7. Paths generated by adaptive sampling. (a) Initial energy is 25; (b)
Initial energy is 50.

locations with maximum gain.

Our algorithm is compared to a random walk with same

initial state. For each method, we generate a set of new

data points and then estimate the temperature with the new

data set together with the initial readings from the static

sensors, which are still part of the raster scan data. Then

the estimation is compared to the whole raster scan data set

assuming that the raster scan is the ground truth. The IMSE

is approximated by summing the square error at each data

point of the raster scan. For each initial energy value, the

random walk runs for 50 trials and the IMSE reported is the

average over these 50 trials. Figure 8 shows the comparison

of the IMSE between the two methods with the initial energy

being varied from 5 to 60 units. From the figure, we can see

that with the adaptive sampling algorithm, the IMSE is about

20% less than a random walk. Since IMSE ∝ n− 2
3 for the

best case in 2D problem, a 20% improvement is significant.
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Fig. 8. Comparison between adaptive sampling and random walk

Our algorithm has also been tested on the boat in a lake

in Echo Park in Los Angeles and the the target scalar field

is the temperature field. Once again, we use the raster scan

data as the ground truth. The boat was first used to quickly

perform a raster scan in a 40m x 70m area, which is part of

the lake. We assume that the temperature field did not change

significantly during the period when the experiments are

carried out. Figure 9 shows the results of two experiments.

The solid lines in Figures 9(a) and 9(c) show the boundary

of the test area and the circles are the locations where initial

temperature readings are available.

The boat starts from the right bottom corner facing north

in the first experiment and top right corner facing west in

the second experiment. The triangles in Figure 9(a) and

Figure 9(c) are the planned locations where the boat should

go and take temperature readings and the dots show the GPS

record of the boat, which show the actual track. Note that

the actual track did not follow the planned path strictly.

This is due to the GPS resolution and the effect of the

wind. Currently, there is no battery monitor on the boat and

hence we cannot measure the energy consumed by the boat

directly. However, during the experiments, the speed of the

propeller on the boat is approximately constant. That is, the

thrust generated by the propeller is approximately constant

and hence we can approximate the energy consumption by

measuring the distance the boat traveled. With the dense

GPS readings along the track, it is easy to compute the

distance. Figure 9(b) and Figure 9(d) show the IMSE of

the estimation vs. the distance the boat traveled in both

experiments respectively.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an adaptive sampling algorithm for a

mobile sensor network consisting of a set of static nodes

and a mobile robot tasked to reconstruct a scalar field. Our

algorithm is based on local linear regression. Sensor readings

from static nodes (a set of buoys) are sent to the mobile robot

(a boat) and used to estimate the Hessian Matrix of the scalar

field (the surface temperature of a lake), which is directly

(a)

(b)

(c)

(d)

Fig. 9. (a) and (c) show the planned path and the GPS trace of the actual
track the boat took. (b) and (d) show estimation error v.s. distance the boat
traveled (the energy consumed by the boat is approximately proportional to
the distance traveled).
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related to the estimation error. Based on this information,

a path planner generates a path for the boat such that the

resulting integrated mean square error (IMSE) of the field

reconstruction is minimized subject to the constraint that the

boat has a finite amount of energy which it can expend on

the traverse. Data from extensive (several km) traverses in

the field as well as simulations, validate the performance of

our algorithm.

We are currently working on how to determine the appro-

priate resolution to discretize the sensed field. One interesting

observation from the simulations and experiments is that

when the initial available energy is increased, the estimation

errors decrease rapidly and level off instead of decreasing to

zero. Theoretically, when the energy available to the mobile

node increases, more sensor readings can be taken and hence

the estimation errors should keep decreasing. By examining

the path generated by the adaptive sampling algorithm,

we found that when the initial energy is enough for the

mobile node to go through all the ’important’ locations,

increasing the initial energy does not have much effect on

the estimation error. We plan to investigate advanced path

planning strategies and alternative sampling design strategies

in future work.
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