
Learning to Select State Machines using Expert Advice

on an Autonomous Robot

Brenna Argall

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

bargall@cs.cmu.edu

Brett Browning

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

brettb@cs.cmu.edu

Manuela Veloso

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

mmv@cs.cmu.edu

Abstract— Hierarchical state machines have proven to be a
powerful tool for controlling autonomous robots due to their
flexibility and modularity. For most real robot implementations,
however, it is often the case that the control hierarchy is
hand-coded. As a result, the development process is often
time intensive and error prone. In this paper, we explore
the use of an experts learning approach, based on Auer and
colleagues’ Exp3 [1], to help overcome some of these limitations.
In particular, we develop a modified learning algorithm, which
we call rExp3, that exploits the structure provided by a control
hierarchary by treating each state machine as an ’expert’.
Our experiments validate the performance of rExp3 on a real
robot performing a task, and demonstrate that rExp3 is able
to quickly learn to select the best state machine expert to
execute. Through our investigations in these environments,
we identify a need for faster learning recovery when the
relative performances of experts reorder, such as in response
to a discrete environment change. We introduce a modified
learning rule to improve the recovery rate in these situations
and demonstrate through simulation experiments that rExp3
performs as well or better than Exp3 under such conditions.

I. INTRODUCTION

There are a number of established approaches for de-

veloping a control architecture for generating autonomous

mobile robot behavior. A common and powerful approach

is to use hierarchies of finite state machines [2], [5], [6],

whereby control consists of finite state machines that operate

in parallel, or that use other state machines as macros to

generate complex actions. Although many frameworks exist,

they typically require extensive hand-coding when applied

to real robot control problems. That is, the designer is

responsible for creating the state machine hierarchy, and the

control policies and parameters encoded in each control state.

This is a time consuming and error prone process and one

that does not scale well with increasing complexity of the

robot or tasks.

We seek practical learning techniques that can aid, or

replace, this process, thereby enabling more complex robots

and tasks. In this paper, we make two key contributions. First,

we present an experts-based algorithm for learning to select

between state machines that can be integrated with a working

robot control hierarchy, built upon the algorithm Exp3 [1].

Our second contribution extends Exp3 further, which we

here introduce as rExp3, to enable a more rapid response to

changes in expert performance that are of a discrete nature.

To evaluate our approach, we explore the performance of

the algorithm on a real robot platform, and compare its

performance to that of Exp3 in simulation. The real robot im-

plmenentation uses the Segway RMP robots [10] performing

a task integral to robot soccer and makes use of a hierarchy

of state machines that we call skills [6].

Our paper is structured in the following way. In the

ensuing section, we describe hierarchical state machines,

as applied to robot control, that will form the basis for

this paper. We then describe the Exp3 algorithm, and its

extension to integrate within a robot control architecture. We

additionally outline our modified algorithm, called rExp3, for

enhanced responsiveness to discrete environment changes.

Based on this, we present our implementation of rExp3 on a

real robot platform, and compare its performance to that of

Exp3 in simulation. We then close with our conclusions.

II. STATE MACHINES FOR ROBOT CONTROL

In this section, we describe our use of hierarchical state

machines for autonomous robot control. Alternate implemen-

tations of state-based control are described in [12]. We

formally define a state machine for control as consisting of a

set of control states csi ∈ CS. Each control state encodes a

control policy πi, which is a function of the robot’s internal

state and its beliefs about the world (i.e. is a result of its

perception system). This policy πi determines which action

ai ∈ A to take, when in control state csi.

Transitions between different control states occur as a

function of the robot’s beliefs. Additionally, this state ma-

chine may terminate (i.e. enter an absorbing state) with suc-

cess or failure. A state machine may therefore be viewed as

providing deliberative goal-driven behavior, that will either

fail or succeed and achieve the goal. For ease of reference,

and following [6], we will refer to such a state machine as

a skill. Thus, the term skill in this paper is equivalent to a

goal-directed state machine for control, and the two terms

will be used interchangeably.

State machines may be arranged into hierarchies. Two

actions types are available for selection by a control policy:

complex or primitive. A complex action consists of calling

another control policy, and thus passing control to another

state machine. This builds a hierarchy of state machines

(equivalently a hierarchy of skills). By contrast, primitive

actions command the robot using its available control prim-

itives (e.g. velocity control). Note, that state machines may

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB3.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2124

also execute in parallel, with or without synchronization

coupling their execution. However, this is beyond the scope

of this paper and will not be considered further.

Fig. 1. An example soccer-related skill hierarchy. The robot will search
for the ball, and then run up and grab it. Transitions are conditioned on the
robot’s perceptual beliefs.

State machines may transition to, or call, other state

machines, thus building a skill hierarchy. Figure 1 shows

a schematic of a small hierarchical state machine for con-

trolling a robot performing a basic soccer skill. The robot’s

task is to grab the nearest ball it can find. It must first search

for the ball, and run up to grab it once found. The power

in a skill hierarchy lies in its task decomposition; that is,

by enabling a larger task to be easily decomposed into sub-

tasks that can be solved as independent problems (namely,

search and get ball within this example). Moreover,

each of the resulting skills may be reused for other similar

problems. It is this ’divide and conquer’ ability that makes

state machines so useful for robot control. The drawback to

this approach is that for a real robot, the control architecture

is often hand coded. Typically, it is not task decomposition

which is difficult. Rather, most of designer effort focuses on

developing the control policies which call primitive actions

(for example, the state go near in Fig. 1 calls a primitive

velocity action before transitioning to grab). Moreover, the

performance of skills using such policies is highly dependent

on robot hardware and the environment.

Fig. 2. Experts learning applied to state machines enables multiple skills
to be developed, and the best one learned for a given environment.

In this paper, we aim to provide adaptability to the robot

through the use of an experts learning algorithm. The key

idea is as follows. Let us first view each state machine,

or skill, as an expert that ’recommends’ a control policy

to achieve a particular goal. Suppose also, that we have

multiple skills available for achieving the same goal. If these

skills vary in their use of perception or more generally in

their control policies, their performance characteristics (ie.

success/failure rates) will be different. Thus, we can use

expert learning to determine which ’expert’ skill should be

executed to maximize performance for the current domian.

In summary, we can free up the designer to create a range of

skills that have varying strengths and weaknesses, and let the

expert learning automatically determine which skill should

be run to achieve maximum performance (see Fig. 2).

III. LEARNING WITH EXPERT ADVICE

Expert learning (or the k-armed bandits problem, orig-

inally proposed by [11]) addresses the issue of choosing

between multiple action recommenders, or experts, at each

time step. Based upon the idea of slot machine gambling, the

agent must choose an arm (expert) to pull , and then receives

an associated pay off (reward). High reward, and therefore

good performance, increases an expert’s probability of being

selected at each round.

We define formally a learning scenario where at each

decision cycle, k, each of the n experts makes a recommen-

dation. The algorithm selects a single expert and executes the

corresponding action, resulting in a payoff of rk ∈ ℜ. After

d decision cycles, a sequence of r1, r2, · · · , rd payoffs have

been rewarded. The aim of expert learning is to select the best

expert over all decision cycles. We formulate this learning

objective in terms of regret, where the regret at decision cycle

k is the difference between the observed reward rk of the

selected action, and the reward rk
b we would have received

from the best expert. Summed over all decision cycles,

Regret =
d

∑

k=1

rk
b −

d
∑

k=1

rk. (1)

The goal of expert learning is to minimize this total regret.
When the chosen action executes on a real robot, how-

ever, only the reward for the recommending expert may

be observed. Fortunately, the algorithm Exp3 (“Exponential-

weight algorithm for Exploration and Exploitation”), intro-

duced by Auer and colleagues in [1], addresses exactly this

issue. Exp3 handles partial information games, where at each

trial only the reward gained by the chosen expert, and not

by every expert, is observed. The algorithm is a modification

of the HEDGE experts learning algorithm [1], [8], which is

founded upon the weighted majority algorithm of [9] and

aggregating strategies of [13].

In Exp3, the reward earned at decision cycle k is scaled

inversely with the expert’s selection probability Pr(xk =
i) for that decision cycle, to compensate the fact that in

a partial information game, experts with low probability

are infrequently chosen and therefore have fewer observed

rewards. Thus the reward earned at trial k by expert i is

r̂k
i =

rk
i

Pr(xk = i)
(2)

for the selected expert, and zero for all other experts. [1]
proved that this regret approaches zero in the limit, assuming

opponents with static policies.

More concretely, the probability of choosing expert i at

time step k is governed by the normalizing equation

Pr(xk = i) =
wk−1

i
∑

j wk−1
j

. (3)

where wk−1
i ≡ e

P

k
r̂

k−1
i is the weight of expert i at time

ThB3.5

2125

k−1. Weights are initialized to be equal across experts, and

the weight of an executed expert i is updated according to:

wk
i = wk−1

i (mk
i)

1

P r(xk=i) . (4)

Here the multiplier mk
i ≡ erk

i follows the notation of [3]
for update simplicity. Note that the product of the weight at

decision cycle k−1 and the exponentiated multiplier at cycle

k is the same as adding r̂k
i to

∑

k r̂k−1
i , and thus represents

the cumulative reward received by expert i up to trial k.

IV. EXPERTS LEARNING FOR SKILL SELECTION

We now examine how to utilize expert learning in a

hierarchical state machine (or skill hierarchy) for robot

control. Concretely, we address the problem of learning to

select the best skill, which we call skill selection. That is,

from within our current execution of a skill, and given its

current control state, which is the best state machine to call

next (see Fig. 2). The idea behind this approach is that if a

designer creates multiple skills to accomplish the same task,

the robot will then be able to automatically determine the

best skill to use given the current conditions.

We define the higher-level skill as the parent skill, and the

state machines which it may call as the child skills. At each

decision cycle, the parent skill chooses a new child skill

to execute. Upon termination of the child skill, a reward

is assigned to that skill. Its execution is evaluated based

on success or failure; that is, the two absorbing states are

assigned a payoff. Futhermore, each binary reward may be

modified to incorporate a measure of execution quality. In

our particular implementation, a quality measure based on

execution time was added; faster executions earned more

reward than slower executions. This modification was applied

to the binary success reward exclusively, since the failure

absorbing state was only entered after a timeout and thus all

failed executions performed equally by this measure.

We thus have a framework ameniable to the experts

learning approach; namely, each child skill is an expert that

we select with some probability. In particular, we exploit the

hierarchical state machine structure by tagging termination

conditions with a reward. It is the existence of this structure

which enables our learning. Based on the payoff from the

selected expert/skill, we modify its future selection proba-

bility using equation (4). We validate this approach on a real

robot in Section 5.

A. Adapting to Discrete Performance Changes

The algorithm Exp3 has an additional feature, that it

promotes adaptability within non-stationary environments.

In particular, we consider situations that cause a discrete,

non-continuous change in the probability distribution which

describes expert performance. That is, some change in the

world causes the performance of each expert to change such

that it reorders their relative selection probability ranking.

For example, suppose expert A recommends command ve-

locities for the robot which are best suited for smooth ground,

while the recommendations of expert B are best suited for

rough terrain. When operating indoors on a flat surface, the

probability of selecting A should outrank that of selecting B.

If the robot then goes out of doors and onto bumpy grass, this

change in the world would alter each expert’s performance.

As expert B outperforms expert A, the learning algorithm

should respond by eventually ranking the probability of

selecting B above that of selecting A.

Within Exp3, experts which have performed poorly in

the past are rewarded more strongly for good performance

than experts which performed well in the past. This occurs

because of the ratio, within the weight update (4), which

scales reward inversely with selection probability. For an

expert with low selection probability (indicating poor past

performance), this ratio is larger than that of an expert

with high selection probability (indicating good past perfor-

mance). An expert with a previously low probability of being

selected, but which now performs well, may therefore have

its weight increased quickly in this manner.

This adaptability idea, however, is fully captured by the

Exp3 algorithm only when an expert succeeds. For example,

consider instead a high probability expert which now fails,

and so no longer performs as it had in the past. Its weight

should represent performance under the current world condi-

tions, and should therefore decrease. To follow the reasoning

above, this decrease should occur quickly. However, in this

case the scaling ratio decreases the effect of poor reward on

the weight update, and the weight will actually change only

minimally.

We generalize this adaptability idea by saying that ex-

pected expert performances should result in small weight

changes, while unexpected expert performances should result

in large weight changes. Concretely, we catagorize expert

performances sk as successful (1) or failed (0), and selection

probabilities as high Pr(xk = i) > δh or low Pr(xk = i) <

δl, 0 < δl ≤ δh < 1. We then define expert performance

classifications according to Table 1.

Expected Unexpected

Pr(xk = i) > δh ∧ sk = 1 Pr(xk = i) > δh ∧ sk = 0
Pr(xk = i) < δl ∧ sk = 0 Pr(xk = i) < δl ∧ sk = 1

TABLE I. Classification of Expert Performance

Note the similarity between this idea and the Win or Learn

Fast (WoLF) approach presented by [4] for learning agents

participating in zero sum competitive games. In WoLF,

agents that are loosing (ie. not performing as expected) learn

at a faster rate, while those that are winning (ie. performing

as expected) learn at a slower rate.

B. The rExp3 Algorithm

To further enhance adaptability, we want expert weights to

update based upon whether they reflect the expected perfor-

mance of their recommendation. We introduce the algorithm

rExp3 (responsive Exp3) to encourage swift reactions to

unexpected expert performances. In particular, our goal is

to strengthen the link between selection probability and

expected performance. To accomplish this, rExp3 modifies

Exp3 to depend the weight updates explicitly upon expert

failure or success.

ThB3.5

2126

Key to our algorithm modification is to introduce two

distinct formulations for the weight update multiplier, one

each for whether an expert succeeds or fails. This distinction

occurs in two places within the weight update; the exponent

on the multiplier mk
i and the reward earned by the expert

performance.

The weight update of a chosen expert i at trial k is

determined according to the following rule,

wk
i = wk−1

i (mk
i)

1
g (5)

g =

{

Pr(xk = i) if success

1 − Pr(xk = i) if failure

Furthermore, we incorporate two distinct reward metrics,
allowing their specific formulation to be task-determined, but

requiring that a failure case reward be strictly less than 0,

and a success case reward be strictly greater than 0. In this

manner a failed execution always reduces the weight of a

given expert, while a successful execution always increases

the weight of a given expert. Recalling that mk
i ≡ erk

i ,

the strength of the exponent on this multiplier therefore

determines the strength of the reward’s ability to reduce or

increase expert weight.

Failure-case expert outcomes are now properly represented

within the weight update, such that unexpected performances

have larger changes in weight than expected ones. Returning

to our example of the unexpected failure of an expert with

high probability, within its weight update the multiplier

exponent (1
g

= [1 − Pr(xk = i)]−1) will be large. Since

0 < mk
i < 1 (due to negative reward), a larger exponent

on this multiplier means a larger reduction in weight. Thus,

the unexepected performance results in a significant weight

reduction, as we intended.

In contrast to other learning frameworks, our direct objec-

tive is not to learn the best action for a given state. Discrete

segmentation of real robot worlds can quickly produce a

computationally inhibatory number of states. Instead, we

learn the best expert to achieve a goal and expect that what

is ’best’ will change with state, without reasoning explicitly

about our current state. We respond to discrete changes in

state by responding to changes in expert performance. Doing

so quickly is the motivation for extending Exp3 to rExp3.

V. ALGORITHM VALIDATION ON REAL ROBOTS

We now present results from the integration of our ap-

proach into the control architecture of a robot doing a task

drawn from robot soccer. To clarify, we refer to a single

execution of an expert as a trial, and to a series of trials

over which learning is performed as a run.

A. Robot Implementation

The robot learning data was collected on a Segway

RMP [10]. The Segway RMP is a dynamically balancing

robot which in this case was outfitted to play soccer [7].

Included in our augmentations are two cameras for sensing

(Fig. 3), which identify the ball for our example skill.

To illustrate the effectiveness of rExp3 on a robotic system,

we applied the algorithm to the example task of learning the

best ball searching routine. Seven experts were implemented,

which were distinguished by the cameras from which they

drew perception information to identify the ball.

Fig. 3. Our Segway RMP soccer playing robot.

Data were collected under two world conditions. In the

soccer scenario the ball was passed around the robot by

human riding a Segway HT, to relate learning back to the

robot soccer domain. The ball therefore appeared at varying

distances and states of occlusion, possibly stopped or in

motion. In the occlusion scenario a controlled switch in

camera occlusion was performed, to examine appropriate and

quick adaptability to an environment change. By physically

blocking the camera lens, the ball was visible to exclusively

one camera for the first portion of a learning run, and

exclusively the other for the remainder.

The reward metric for our implementation was dependent

upon both expert success and execution speed. Within the

context of our example skill, this represents the importance

of not only finding the ball, but finding it quickly. The initial

determination of success or failure was binary. The success

case reward was then further subject to discounting by λ for

the t time steps of execution,

mk
i =

{

1 + λtds if success

df if failure.

To guarantee that expert weights strictly increase with
successful executions, and strictly decrease with failed ex-

ecutions, we require ds > 0 and 0 < df < 1 (here λ =
0.98, ds = 0.3, df = 0.7). For implementation simplicity,

we dealt directly with the multiplier mk
i ≡ erk

i present in

our weight update, rather than the actual reward rk
i .

B. Robot Results

The algorithm rExp3 was able to properly and flexibly

learn which ball search routines to execute.

Within the soccer scenario, the experts preferred by

the learning algorithm agreed with those which performed

fastest, as determined by baseline data collected without

learning. From this baseline data we qualitatively classify

the experts into three performance catagories, where Experts

0-2 perform well, Experts 3-4 perform moderately, and

Experts 5-6 perform poorly. Note that these classifications

apply only to soccer scenario world conditions, and will

not necessarily hold when cameras are obstructed within

ThB3.5

2127

the occlusion scenario. Figure 4A presents a single example

learning run, where the learned expert (Expert 1) was also

one which performed well during baseline data collection.

Fig. 4. Single rExp3 robot learning runs, soccer (A) and occlusion (B)
scenarios. The vertical line in B indicates a discrete environment change.

In the occlusion scenario, the algorithm rExp3 was able to

recover from the switch in occluded camera (1.75±0.5 trials

to recover). Figure 4B presents a single example learning

run, where at first Expert 5 dominates. Expert 5 is an expert

which depends upon the camera which will be occluded after

the switch (vertical line). Following the switch, accordingly,

an expert which does not depend upon this camera (Expert

1) comes to dominate.

VI. ALGORITHM VALIDATION IN SIMULATION

To further test the performance of rExp3, both of the

algorithms rExp3 and Exp3 were implemented in simulation.

Our goal was that the modification introduced in rExp3

would compare to Exp3 in the following manner:

• Faster recovery (defined below), when the performance

was unexpected.

• Lower regret, when the performance was unexpected.

• Similar regret, when the performance was expected.

A. Simulation Implementation

Within our simulation implementation, experts recom-

mended actions in worlds constructed such that their perfor-

mance might clearly be classified as expected or unexpected.

Specifically, our simulation mimicked the ball searching

task of the real robot implementation. There were again

seven experts distinguished by the camera combinations from

which they drew perception information. Each expert had

an associated failure probability Pr(xk = 0), which was

determined by the world and based upon whether a currently

occluded camera was depended upon by the expert. All learn-

ing parameters were set as in the real robot implementation.

Our intent was to gather data at a simulated environment

switch, but to do so in a controlled manner. We therefore

began our data collection at this switch, and simulated prior

learning by biasing the initial selection probabilities to favor

a single expert. Each expert consequently had an associated

initial selection probability Pr(x0 = i) as well as its failure

probability, the combination of which determined the clas-

sification of expert performance as expected or unexpected

according to Table 1.

B. Simulation Results

In the comparison of rExp3 to Exp3, our simulation results

show both faster recovery and lower regret for unexpected

performances, as well as similar regret for expected perfor-

mances. Data were collected over 100 runs of 50 trials each

for expected and unexpected scenarios, as well as 50 runs

of 50 trials with no learning, to provide a baseline against

which each learning algorithm might be compared.

Fig. 5. Average results of baseline (no learning), Exp3 and rExp3

simulation learning data. Unexpected performance, trials to recovery (A)
and average regret (B); expected performance average regret (C). Error bars
for all show one standard deviation.

1) Faster Recovery (Unexpected Performances): Signifi-

cantly fewer time steps were required for rExp3, compared

to Exp3, to respond to a previously well performing expert

which now fails (trials to recover for rExp3 = 7.74 vs.

Exp3 = 12.52, t = 4.14, 99.9% confidence interval > 3.26,

Fig. 5A). Recovery was defined as the time step at which a

favored expert no longer had the highest probability of being

selected.

2) Lower Regret (Unexpected Performances): The overall

regret of rExp3 was significantly lower than that of Exp3

when an expert performed unexpectedly, particularly when

an expert which previously performed well began to fail

(regret on rExp3 = 2.33 vs. Exp3 = 3.21, t = 3.1, 99.5%
confidence interval 2.68 − 3.26, Fig. 5B). Both learning

algorithms perform significantly better than the baseline

data which utilized no learning (rExp3 t = 18.39, Exp3

t = 9.24, 99.9% confidence interval > 3.26).

ThB3.5

2128

3) Similar Regret (Expected Performance): The difference

in regret between the two algorithms was not significant

when experts exhibited expected performances and required

no relearning (regret on rExp3 = 0.44 vs. Exp3 = 0.39,

t = 0.81, 75.0% confidence interval 0.68 − 1.30, Fig. 5C).

By contrast, the difference in regret between each learning

algorithm and the baseline data which used no learning

was significant for each (rExp3 t = 39.05, Exp3 t =
38.82, 99.9% confidence interval > 3.26).

VII. DISCUSSION

The algorithm rExp3 modifies Exp3 by addressing expert

failure or success explicitly within the weight update. In

adopting two distinct reward scalings and exponent formu-

lations, our intent is to strengthen the link between expert

performance and selection probability.

Relating this modification back to the original inverse

scaling motivation of Auer and colleagues, the failure case

scaling for a high probability expert might be seen as a

prediction on future reward frequency. A high probability

expert which begins to fail also begins to drop in selection

probability. Scaling with 1
1−Pr(xk=i)

> 1
Pr(xk=i)

in a sense

already begins to compensate for the predicted fewer future

selections of this expert, and therefore also for the decrease in

future reward observations. The same may be reasoned about

the inverse scaling with Pr(xk = i) in the low probability

success case, present within both algorithms.

Past work with Exp3 tested the algorithm in environments

different to those presented here, namely against an all-

knowing adversary [1]. If tested in similar environments to

the past work of Exp3, we expect dExp3 would perform at

least as well as Exp3. Our reasoning is twofold. First, in our

simulation results for scenarios with no explicit unexpected

performances, the algorithms responded similarly. Second,

particularly within the context of an all knowing adversary,

dExp3 would adapt quicker to those changes in the adver-

sary’s strategies which resulted in the poor performance of

a previously successful expert. Worst case scenario would

be if the adversary altered strategy at a rate such that the

change in relative expert weights was strong within rExp3,

but relatively stable within Exp3. Under such circumstances,

however, we expect that the strategy of the adversay would

be changing too quickly for any learning to prove useful, in

which case we again would expect similar performances.

It is possible during execution that an expert might oscil-

late between failure and success. Within the weight update

of the rExp3 formulation, this will then induce an oscillation

in exponent formulation. One argument might favor such an

oscillation, as it represents the true behavior of the expert.

Indeed, as our intent for this algorithm is very domain

specific, we value swift responses to our dynamic soccer

environment. By contrast, other approaches might attempt to

minimize responses to domain instability. Note, however, that

an oscillation in exponent formulation will not necessarily

cause an oscillation in the actual weight. In fact, such a

weight oscillation will only occur if the selection probability

of an expert lies at either extreme. From our empirical

observations, such extreme oscillations rarely occured.

VIII. CONCLUSIONS

We have presented an adapted experts approach for learn-

ing the execution control loop on a robot system, and demon-

strate its effectiveness on a real robot system. We introduce

a modified experts learning algorithm, which we call rExp3,

based upon the Exp3 algorithm of Auer and colleagues [1],

to enhance responsiveness to discrete environment changes.

The effectiveness of this modification is presented with

comparisons between rExp3 and Exp3 within simulation,

in addition to the implementation of rExp3 on a Segway

robot. When a learned good expert begins to fail, we have

shown rExp3 to both accumulate smaller overall regret and

’unlearn’ this expert faster, and to behave similarly to Exp3

otherwise. In future work, we intend to apply this algorithm

to skill selection in other soccer scenarios, particularly when

in response to strategy decisions of the opponent team.

IX. ACKNOWLEDGMENTS

This work was supported by United States Department of

the Interior under Grant No. NBCH-1040007. The content of

the information in this publication does not necessarily reflect

the position or policy of the Defense Advanced Research

Projects Agency (DARPA), US Department of Interior, US

Government, and no official endorsement should be inferred.

REFERENCES

[1] Peter Auer, Nicol‘o Cesa-Bianchi, Yoav Freund, and Robert E.
Schapire. Gambling in a rigged casino: The adversarial multiarm
bandit problem. In 36th Annual Symposium on Foundations of

Computer Science, pages 322–331, Milwaukee, WI, 1995.
[2] T. Balch, G. Boone, T. Collins, H. Forbes, D. MacKenzie, and

J. Santamaria. Io, ganymede and callisto: A multiagent robot trash-
collecting team. AI Magazine, 16(2):39–53, 1995.

[3] Michael Bowling, Brett Browning, and Manuela Veloso. Plays as
effective multiagent plans enabling opponent-adaptive play selection.
In Proceedings of International Conference on Automated Planning

and Scheduling (ICAPS’04), 2004. in press.
[4] Michael Bowling and Manuela Veloso. Convergence of gradient

dynamics with a variable learning rate. In Proceedings of ICML-2001,
pages 27–34, Williams College, MA, June 2001.

[5] R. A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal on Robotics and Automation, RA-2(1), 1986.

[6] B. Browning, J. Bruce, M. Bowling, and M. Veloso. STP: Skills,
tactics and plays for multi-robot control in adversarial environments.
IEEE Journal of Control and Systems Engineering, 2004.

[7] B. Browning, P. Rybski, J. Searock, and M. Veloso. Development of
a soccer-playing dynamically-balancing mobile robot. In Proceedings

of International Conference on Robotics and Automation, May 2004.
[8] Yoav Freund and Robert E. Schapire. A decision-theoretic general-

ization of on-line learning and an application to boosting. Journal of

Computer and System Sciences, 55:119–139, 1997.
[9] Nick Littlestone and Manfred K. Warmuth. The weighted majority

algorithm. Information and Computation, 108:212–261, 1994.
[10] H. G. Nguyen, J. Morrell, K. Mullens, A. Burmeister, S. Miles,

K. Thomas, and D. W. Gage. Segway robotic mobility platform. In
SPIE Mobile Robots XVII, October 2004.

[11] Herbert Robbins. Some aspects of the sequential design of experi-
ments. Bulletin American Mathematical Society, 55:527–535, 1952.

[12] Reid Simmons and David Apfelbaum. A task description language for
robot control. In Proceedings of Conference on Intelligent Robotics

and Systems, Vancouver Canada, October 1998.
[13] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the

Third Annual Workshop on Computational Learning Theory, pages
371–383, 1990.

ThB3.5

2129

