
Vegetation Detection for Driving in Complex Environments

David M. Bradley, Ranjith Unnikrishnan, and James Bagnell

Abstract— A key challenge for autonomous navigation in
cluttered outdoor environments is the reliable discrimination
between obstacles that must be avoided at all costs, and
lesser obstacles which the robot can drive over if necessary.
Chlorophyll-rich vegetation in particular is often not an obstacle
to a capable off-road vehicle, and it has long been recognized
in the satellite imaging community that a simple comparison
of the red and near-infrared (NIR) reflectance of a material
provides a reliable technique for measuring chlorophyll content
in natural scenes. This paper evaluates the effectiveness of using
this chlorophyll-detection technique to improve autonomous
navigation in natural, off-road environments. We demonstrate
through extensive experiments that this feature has properties
complementary to the color and shape descriptors traditionally
used for point cloud analysis, and show significant improvement
in classification performance for tasks relevant to outdoor
navigation. Results are shown from field testing onboard a robot
operating in off-road terrain.

I. INTRODUCTION

Current autonomous navigation techniques work well for
environments such as hallways and on roads, where obstacles
are static and usually rigid. In these cases, size and shape are
sufficient for determining which obstacles can be driven over
and which need to be avoided. In off-road driving, however,
the assumption that every obstacle is rigid and would be
lethal to the robot quickly presents problems. In situations
such as a field of tall grass, there may be dense geometric
obstacles on all sides of the robot. In order to plan safe,
efficient paths the robot must be able to reliably discriminate
between vegetation that it can drive through if necessary, and
rigid obstacles such as tree trunks and rocks that can cause
damage (Figure 1). For safe high-speed operation performing
this discrimination at range becomes increasingly important.

Methods have been developed to detect vegetation from
3-D point clouds [1], [2], but there is still significant room for
improvement, particularly at longer ranges where the limited
viewpoint of onboard sensors, reflection of the laser pulses
away from the scanner, laser beam divergence, and partial
occlusion by other objects make it difficult to obtain point
clouds of sufficient quality and density.

Fortunately there are well-established techniques for mea-
suring chlorophyll content using a multi-spectral camera [3],
[4], [5], [6], [7], [8], [9], [10] that have been developed for
satellite-based remote sensing. A simple pixel-by-pixel com-
parison between red and Near-InfraRed (NIR) reflectance,
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Fig. 1. Autonomous mobile robot used for this evaluation. The addition
of NIR data helps in discrimination between the rock on the left and the
bush on the right.

normally referred to as a vegetation index or a band-ratio,
provides a powerful and robust way to detect vegetation.
Further, most CCDs have significant spectral response all
the way out to wavelengths of around 1000nm, meaning that
a standard monochrome CCD can be converted into a NIR
camera simply by covering it with a longpass filter. Although
the viewpoint of a satellite is drastically different from that of
a mobile robot, we show that the technique is still effective
despite additional complications such as views of the sky,
or shadowed areas that are lit by both light reflected off of
other surfaces and light reflected from the sky.

In the mobile robotics community, suprisingly little atten-
tion has been given to the use of multi-spectral information
for ground-based terrain classification for navigation. An
early attempt, [11], used data from a filter wheel camera
to label pixels as chlorophyll-rich vegetation or soil based
on thresholding the ratio of the NIR and red values. Later
work in [12] mentioned the usefulness of NIR in detecting
photosynthetic vegetation, but described the use of a Gaus-
sian mixture model-based classifier with only RGB features.
Aside from the overall speed of the classifier, no quantitative
performance analysis was given, and the role played by the
features in the larger system was largely presented as anec-
dotal. This work is an extension of [13], which provides an
extensive qualitative evaluation of several vegetation indices
across different environments and geographic locations, but
did not incorporate a ladar or stereo system and so could not
evaluate the utility of combining vegetation indices with 3-D
data.

To bridge this gap in understanding, we choose a broad
suite of classification tasks relevant to off-road navigation
using combinations of popularly used shape, density and
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color features and show the effect of augmenting these
features with NIR and NDVI information. In particular for
each task we analyze the reliability of different feature sets
with respect to sensing range. We demonstrate through a
set of experiments that this feature has properties comple-
mentary to the color and shape descriptors traditionally used
for point cloud analysis, and show significant improvement
in classification performance for tasks relevant to outdoor
navigation.

The paper is organized as follows. Section II gives an
overview of existing approaches to vegetation detection using
spectral and geometric information, and its application to
navigation. Section III describes the overall system im-
plementation on our robot platform including the sensing
modalities available and the design choices made for internal
representation and path planning. Section IV describes the
datasets used and presents results on voxel classification
experiments. Section V describes how improved voxel clas-
sification translates into system level performance gains.
Finally we conclude in Section VI and discuss future work.
A longer version of this paper giving larger figures, as well
as simulation results of NDVI performance on hundreds of
common materials is available from the author’s website.

II. APPROACHES TO VEGETATION DETECTION

This paper combines two complementary approaches to
vegetation detection, vegetation indices (also referred to as
band-ratio techniques) that have long been used in the remote
sensing community, and more recent 3-D structure based
techniques from the mobile robotics community.

A. Vegetation Indices

The spectral properties of chlorophyll-rich vegetation are
primarily determined by the absorption spectra of water and
chlorophyll, and the refraction of light at cell walls [14].
The water present in cells absorbs light with wavelengths
longer than 1400 nm. Chlorophyll strongly absorbs visible
light, especially red and blue wavelengths [3]. The remaining
light is efficiently scattered by the critical internal reflection
caused by the change in refractive index from water to air
at the cell wall. As a result, those wavelengths between 700
nm and 1400 nm that escape both water and chlorophyll are
strongly reflected in all directions.

The sharp difference between the reflectance of vegetation
at 645nm (red) and at 780nm (NIR) has long been exploited
in the field of satellite remote sensing. Kauth and Thomas [7]
noticed that plotting NIR reflectance against Red reflectance
for satellite images produced a scatter diagram with a line of
points formed by pixels containing bare soil, and a cluster
of points from pixels completely covered with vegetation.
Points with a mixture of vegetation and soil appear between
the soil line and the vegetation point. Figure 2 shows this
scatter plot created from one of our images. Because our
camera also includes a view of the sky, our scatter plot
contains a blue sky region ( bottom image, marked in blue) as
well as the soil region (middle image, marked in red) and the
vegetation region (top image, marked in green). Clouds blend
into the soil line, but are still very distinct from vegetation.

Fig. 2. Scatter plot of NIR reflectance vs. red reflectance for all pixels in
a typical image. Different regions in the scatterplot correspond to different
types of materials in the image. Pixels in the green region correspond to
vegetation (top image), pixels in the red region are mainly soil and man-
made structures (middle image), and pixels in the blue region correspond
to sky (bottom image).

Pixels containing vegetation and blue sky are remarkably
well separated from everything else in a natural scene.

One of the most popular ways to use the information
contained in the red and NIR bands for remote sensing appli-
cations is to compute a quantity known as the Normalized
Difference Vegetation Index (NDVI) which varies from -1
(blue sky) to 1 (chlorophyll-rich vegetation) [8].

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(1)

An informative interpretation of the NDVI is given in
[15], where it is shown to be a measurement of the slope
from the origin to the location of the pixel in a 45 degree
rotation of the red-NIR space. Several attempts have been
made in the remote sensing literature to correct deficiencies
in this index [10], [5], [16], [15], particularly in shadows
and underexposed areas. Since the NDVI measures the slope
from the origin, sensor noise and errors in the radiometric
calibration of the red and NIR sensors have a much greater
effect in underexposed areas. Shadows pose a more chal-
lenging problem, since the reflected light that illuminates
shadowed regions can have a spectral distribution that is
significantly different from that of sunlight, usually shifted
towards blue wavelengths because of atmospheric scattering.

The typical use of NDVI in remote sensing is to measure
the Leaf Area Index (LAI), the percentage of the ground
surface that is covered by vegetation. However, when the goal
is linear classification into vegetation and non-vegetation
categories, it is useful to provide the raw NIR and red values
as well as the NDVI to the classifier. This is because a linear
decision boundary based solely on the NDVI corresponds to
a line intersecting the origin of the red-nir space, whereas
a linear classifier operating on the raw pixel values and a
constant bias feature can produce a decision boundary with
an arbitrary intercept. In this paper the NDVI is discussed
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to tie this vegetation detection technique back to its origins
in the remote sensing community, but the actual classifiers
evaluated in section IV use the raw pixel values as well as
the NDVI. Linear classifiers based on NDVI were shown to
be effective for a broad variety of materials in [13], using
the USGS digital spectral library [17].

Fig. 3. Small images show the RGB and color appearance of two scenes.
Large images are the RGB image with areas of high NDVI highlighted
in bright green. While generally reliable in natural scenes, NDVI can fail
on synthetic materials such as the paint on the truck in the right image.
In this case 3-D methods would easily classify the side of the truck as a
rigid obstacle instead of vegetation. Note that NDVI correctly classifies the
brown dead grass in the left image as vegetation.

Fig. 4. Left: average RGB values of each voxel in a scene containing cars.
Right: after 3-D classification the voxels containing the flat sides of the
cars are classified as obstacles (blue). Voxels containing curved car surfaces
have more of a vegetation-like signature (green), and voxels corresponding
to ground are marked in red.

B. 3-D Point Distribution

A complementary approach to vegetation detection, pre-
sented in [18], uses the spatial distribution of the local ladar
point cloud to classify the region into surfaces, linear struc-
tures, and a class referred to as scatter, which includes tree
canopy and porous vegetation. This method first computes
the eigenvalues of the covariance matrix of the local point
cloud (defined as all points within a certain distance of the
point of interest), and then classifies the point based on the
relative magnitudes of those eigenvalues. Linear structures

have one dominant eigenvalue. Surfaces have two large
eigenvalues, and an area is declared to be scatter when the
third largest eigenvalue is a significant fraction of the largest
eigenvalue. In addition, the estimated surface normal of the
local area, another useful feature of the local point cloud, is
recovered by this computation as it is simply the eigenvector
corresponding to the smallest eigenvalue of the covariance
matrix.

This 3-D method performs particularly well on certain
man-made structures where the NDVI approach is known
to fail. For instance, certain types of vehicle paint give off a
vegetation-like NDVI signature (figure 3), but the flat sides of
vehicles are easily detected as surface 3-D structures (figure
4). However, the 3-D method does require a relatively dense,
high-quality point cloud, which limits its application to areas
closer to the robot.

III. SYSTEM OVERVIEW

The vegetation index technique for detecting chlorophyll-
rich vegetation can (and has) been implemented in many
different ways, but since this is an experimental paper which
addresses system-level effects we include a brief description
of the specific implementation to aid in analyzing the results.

The robotic system used for this evaluation extends the
approach outlined in [19]. A set of laser scanners and
cameras provide the input to the perception system, which
consists of 3-D points that have been projected into camera
images, and tagged with local properties of the image such
as color and the NDVI value (Figure 5). The local perception
system then discretizes the space surrounding the robot into
a 3-D grid of voxels, and accumulates summary statistics
of the tagged laser points over each voxel. The summary
statistics include the averages of the point tags, eigenvalues
of the local point cloud scatter matrix, the surface normal
(3rd eigenvector of the scatter matrix), and the probability
and strength of laser pulse reflection from the voxel. The
perception system is then responsible for condensing this 3-
D grid of voxels into a 2-D grid of cost values so that the
planner (a variant of A*) can then plan a minimum cost path.
Various interpretations have been proposed for the meaning
of the cost values, such as mobility risk, but due to the
tightly coupled nature of mobile robot systems they have
no fundamental interpretation apart from the paths that they
cause the planner to produce through the environment.

Costs are produced from the voxels by applying a set
of learned classifiers in conjuction with several hand-tuned
rules for combining the classification results in each vertical
column. Linear maximum entropy (multi-class logistic re-
gression) classifiers [20], are used in order to meet the strict
real-time requirements imposed by continuous motion at
several meters per second. These classifiers find a conditional
distribution P (c|d) for the class c(d) of training example
d ∈ D, that has maximum entropy (i.e. makes as few
assumptions as possible) subject to the constraint that the
expected value of each feature fi(d, c) of each example
matches its average value over the training set (2).

1
|D|

∑
d∈D

fi(d, c(d)) =
∑

d

P (d)
∑

c

P (c|d)fi(d, c) (2)
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Fig. 5. Top left: A typical camera image. Inputs to the perception system
consist of 3-D points that have been projected into the camera images and
tagged with local image properties such as color (top right) and the NDVI
value (bottom right). The points are then accumulated in a discretized 3-D
grid of voxels, with the average NDVI of each voxel shown in the bottom
left image.

In practice the empirical distribution of d in the training set
is used to approximate the true distribution P (d), and a weak
Gaussian prior is added to control overfitting. The resulting
maximum entropy conditional distribution takes the form of
a linear classifier over the features (3), that is normalized to
form a probability distribution (4).

P (c|d) =
1

Z(d)
e

P
i λifi(d,c) (3)

Z(d) =
∑

c

e
P

i λifi(d,c) (4)

The classifiers are trained from labeled data sets that are
gathered by either driving the robot over areas of different
terrain type (and labelling everything that passes under the
robot), or in the case of obstacles, by hand-labelling their
locations in a set of point clouds using a simple paint-like
interface. Currently there are two ways that classifiers are
used in the system. The classification of a voxel as obstacle,
vegetation, or ground influences how the data it contains is
used in estimating the ground plane. Also, the rigid/non-
rigid obstacle classifications of the voxels in each column
are used to compute an overall rigid/non-rigid flag for the
column, which allows for the assignment of different costs
to rigid and non-rigid obstacles in the 2-D costmap.

Because the beamwidth of the ladar we use is approx-
imately 10x the angular resolution of the cameras, ladar
points tagged with the center point of the ladar beam may be
incorrectly tagged with pixels from the sky. Because of this
effect voxels straddling vegetation/sky image boundaries can
have average NDVI values that look like non-vegetation (blue
sky is particulary bad because of its exceptionally low NDVI
value). To reduce this problem, the exposure on the cameras
is controlled to correctly expose only those portions of the
image where ladar returns were received, which generally
means that sky pixels are marked as overexposed and their
NDVI tags do not contribute to the voxel’s classification.

IV. VOXEL CLASSIFICATION RESULTS

A. Data Set
The system was trained and tested using data from two sig-

nificantly different physical environments. Training examples
of rocks, bushes, grass, trees, and man-made structures such
as cars, telephone poles, and barrels were gathered from a
site in Western Pennsylvania. More examples of rocks and
bushes were collected several weeks later in natural terrain in
the foothills of the Colorado Rockies. Voxels were labeled
by either hand-labelling the point cloud, or in some cases
labeling everything the vehicle drives over. In both cases the
features (density, surface normal, scatter matrix eigenvalue,
RGB1, NIR, and NDVI) of each labeled voxel were recorded
every time a new laser point in that voxel was observed.

B. Classification Results
We start our evaluation with quantitative results on the

effects of using NDVI for several important discriminative
tasks. The leftmost column of Figure 6 considers the task
of discriminating between non-rigid voxels (grass, bushes,
etc...) and rigid voxels (Tree trunks, rocks, cars, telephone
poles, bare ground, etc...). It shows that when the training
and testing environments and lighting conditions are similar
(but physically separate), laser features are of little value and
either RGB or NDVI features provide better performance. As
discussed in Section III, this task is crucial to the way the
robot generates a costmap for path planning.

The ladar features become crucial, however, in the more
complicated three-way classification task used by the robot
to estimate the true ground plane of the scene. This task
is similar to the previous task, with the exception that the
rigid voxel class is divided into an obstacle class and a
road class (horizontally oriented bare ground surfaces). In
the center column of Figure 6 we see that combining the
camera features with the ladar features boosts the total clas-
sification accuracy by approximately 10%. This performance
boost is almost entirely from improvements in the ability to
discriminate between the obstacle and road classes, as shown
in Table I. Again in this task we see that the camera features
are very helpful in discriminating between non-rigid voxels
and the other two classes.

Finally, in the rightmost column of Figure 6, we investigate
the generalization ability of the different feature sets across
different geographic environments on the task of discriminat-
ing between rocks and bushes. For this test the training set
is from Pennsylvania, and the test set is from Colorado. The
NDVI features do not overfit to the training environment, and
their performance degrades only slightly. The RGB features,
on the other hand, allow the classifiers that include them
to overfit to the specific lighting and flora of the training
set, leading to vastly degraded performance in the novel
environment.

Fortunately, it is not necessary to have many NIR sen-
sors to benefit from the generalization ability of the NDVI
features. As long as a representative sample of RGB-NIR
tuplets are available for the current environment and lighting

1Our RGB feature vector also includes the HSV colorspace representation
of the RGB values, as they are often more useful for linear classification.
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Fig. 6. Voxel classification accuracy vs range for several example classification problems. The top row displays training set performance and the bottom
row gives test set performance. LEFT COLUMN: Rigid obstacles (rocks, tree trunks, telephone poles, cars, etc...) vs non-rigid obstacles (grass and bushes).
Inclusion of RGB or NDVI features provides a clear performance boost over ladar features alone. CENTER COLUMN: Rigid obstacles vs. non-rigid
vegetation vs. ground. This task, which is used in ground plane estimation, benefits from combining ladar and RGB or NDVI features. RIGHT COLUMN:
Rocks vs. bushes. The training set for this task was collected in Pennsylvania, and the test set was collected in Colorado. The NDVI features show superior
generalization to the novel environment.

Ladar Features Only
True Class

Predicted Class obstacle vegetation ground
obstacle 88.7 11.4 3.1
vegetation 9.5 64.0 27.9
ground 1.8 24.6 68.9

Camera Features Only
True Class

Predicted Class obstacle vegetation ground
obstacle 78.7 0.2 21.1
vegetation 6.7 95.1 21.4
ground 14.6 4.7 57.5

All Features
True Class

Predicted Class obstacle vegetation ground
obstacle 88.1 0.2 4.7
vegetation 6.4 95.1 21.2
ground 5.5 4.7 74.1

TABLE I
CONFUSION MATRICES FOR DIFFERENT FEATURE SETS

condition, a RGB-based classifier can be trained to predict
the NDVI values. This representative sample might come
from a single NIR camera whose field of view overlaps with
that of an existing RGB camera on the robot. Figure 7 shows
the results of predicting the NDVI value at each pixel in
an image using simple features computed from the local
RGB values consisting of the RGB, HSV, and Lab values
of the pixel when blurred with a gaussian at four scales

(sigma of 1, 2, 4, and 8 pixels). The 100-node regression
tree used for the prediction was trained on a random sample
from a 4-color (RGB and NIR) image with a field of view
covering a separate portion of the same scene. Classifiers
were re-trained every 25 images using an image that was
20 seconds old (which corresponds to approximately 30m
of travel in this sequence, enough to ensure a significant
viewpoint difference). The regression tree produced less than
8% of the error obtained by predicting the mean NDVI value.

V. SYSTEM-LEVEL PERFORMANCE GAINS FROM
IMPROVED VEGETATION DETECTION

The increase in voxel classification accuracy from adding
RGB and NDVI features improves the robot’s overall ability
to autonomously avoid rigid obstacles without being overly
afraid of bushes or tall grasses. Figure 5 shows the robot’s
view of two barrels that it is avoiding during a 2 m/s
autonomous run. Figure 8 shows the classification maps the
robot generates from this position with and without the NDVI
features. The tall grass behind the barrels creates many false
obstacles for the ladar-only perception system. With NDVI
information the barrels stand out clearly as the two large blue
blobs, and there is only one small false-positive obstacle. To
show generalization across environments, this run took place
in Colorado using classifiers that were trained exclusively on
data collected in Pennsylvania.

VI. CONCLUSIONS AND FUTURE WORK

The near-infrared and red color bands provide a robust
method for discriminating between rigid obstacles and non-
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Fig. 7. NDVI can be predicted from RGB for a given environment and
illumination condition, meaning the benefits of NDVI can be captured even
if the NIR sensors on the robot have a much more limited field of view
than the RGB sensors. The 4-color image (RGB & NIR, only RGB shown)
at top left is used to train a classifier that predicts the NDVI image (bottom
right) for the RGB image at top right. The ground truth NDVI image is
shown at bottom left. Note how the vegetation behind the cars is detected
against the dark green portion of the building.

Fig. 8. Left: classification map using ladar features only. Right: adding
NDVI information allows the system to be more selective, and display
the barrels from Figure 5 clearly in the classification map without also
picking up non-rigid vegetation. The barrels are the two large white blobs.
White indicates obstacle classification (high cost), green indicates vegetation
classification (low cost), and red indicates road classification (very low cost).
The position of the robot is represented as a gray rectange.

rigid vegetation that thus far has been underutilized on
mobile robotics systems. By showing how it contributed to
performance improvements in a field tested robotic system,
we hope to encourage more widespread use of this technique

More work is needed in the area of color constancy, or
compensating for the effect of differences in the illuminants
encountered. The general problem of color constancy is
underdetermined, however robotic systems that use ladars
in conjuction with NIR and color cameras have a crucial
advantage in that they often have access to information such
as laser remission, surface normal, and surface shape that can
be used to help deduce the approximate spectral distribution
of the illumination.
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