
Scalable Locomotion for Large Self-Reconfiguring Robots

Robert Fitch
National ICT Australia

University of New South Wales
Sydney, NSW Australia

robert.fitch@nicta.com.au

Zack Butler
Department of Computer Science
Rochester Institute of Technology

Rochester, NY USA
zjb@cs.rit.edu

Abstract— For large self-reconfiguring robots, any algorithm
that requires linear amounts of memory per module (with re-
spect to the number of modules) or linear time for computation
or communication per actuation is undesirable. While shape-
forming may require linear amounts of memory, locomotion can
be performed with simpler shape specifications, and therefore
sublinear algorithms are possible. In this paper, we present a lo-
comotion technique that performs both planning and actuation
control in sublinear time and memory. The algorithm is inspired
by reinforcement learning and uses dynamic programming to
plan module paths in parallel. To ensure the physical integrity
of the overall robot during motion, we have developed a novel
localized cooperation scheme which may also be used with other
self-reconfiguration algorithms. Our overall algorithm is able to
direct locomotion over arbitrary obstacles, and the formulation
of the goal used in the planning encourages dynamic stability.

I. INTRODUCTION

Many existing algorithms for self-reconfiguring (SR)
robots require linear time or memory per module (linear
in the number of modules) to achieve their intended goal.
However, as the size of SR systems increases, such algo-
rithms will become impractical. For certain tasks, sublinear
algorithms may not be possible — for example, to achieve
arbitrary configurations, goal configurations must use an
amount of memory proportional to the number of modules.
However, for locomotion, sublinear algorithms are feasible.
A precise goal specification is not necessary for locomotion,
reducing memory requirements, and it is possible for the
modules to move based on only local information, at least in
certain situations [2], reducing the communication required
per move. This paper describes an algorithm for SR loco-
motion that achieves these aims.

There are two critical aspects of any sublinear locomotion
algorithm. First of all, the modules must be able to determine
appropriate motions to take using only local information,
where “appropriate” means both that the motions lead to-
ward the intended location and that the system will remain
connected as a result of the motion. These plans must also
be robust in the face of the constantly changing topology of
the robot. Secondly, the motions must be executed in parallel
without global synchronization, but also without leading to
deadlock or module collision.

Our solution uses simple techniques borrowed from rein-
forcement learning that are able to produce local coordination
and use only constant memory per module to perform

Fig. 1. An example of the locomotion algorithm operating among
obstacles. The robot location and intermediate goal locations (represented
by wireframe boxes) at several different points in time have been overlaid
on the environment.

reliable locomotion among arbitrary obstacles. One result
of executing this algorithm amongst obstacles is shown in
Fig. 1. Planning is done for all modules simultaneously
through distributed dynamic programming, while modules
use local constant-time search and module locking to ensure
physical integrity of the robot while following their paths.
We assume deterministic transitions (i.e. module motion),
but the method naturally extends to stochastic transitions.
Continuous replanning enables the robot to follow moving
goals, and the algorithm prefers locations closer to the
ground to assist with the dynamics of the system. We expect
this sublinear approach will enable locomotion at scales not
previously possible, such as a million-module robot.

A. Related Work

Most algorithms for reconfiguration of lattice-based SR
robots assume an exact specification of the desired shape,
requiring linear amounts of memory, and many restrict ac-
tuation with explicit connectivity checks or gait modulation,
requiring linear time. However, there are some exceptions.
For planning, one exception is the scaffold-based work of
Stoy and Nagpal [6] which uses a collection of bounding
boxes to represent the goal in a way independent of the size

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThB7.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2248



of the system. Our work is similar in that we currently use a
simple bounding box to specify the goal of locomotion, but
could easily allow the goal shape to be more detailed.

In terms of efficient actuation, the work of Yim et al. [10],
specifies exact shapes, but only local control is used to avoid
explicit long-range path planning and allow efficient parallel
actuation. In the PacMan algorithm [3], [9], which is specific
to unit-compressible systems, complete paths are planned,
but in parallel. Actuation is locally controlled, though this re-
quires complex negotiations due to the nature of the modules’
connectivity. Kotay specified a parallelization technique to
make reconfiguration more efficient [5], and the more recent
work of Abrams and Ghrist [1] showed how to optimally
parallelize paths, but these are centralized techniques that do
not scale well to the systems of interest here.

Some of our previous work uses a cellular automata
framework to perform locomotion with constant information
and computation requirements [2] — motion is planned and
controlled using local rule sets independent of the size of
the robot. However, the rule sets used tend to be complex
and disconnections are prevented only by restricting the
initial configuration. Here we use more explicit planning to
direct a robot from any configuration to any location over
obstacles, but by sharing the planning over all modules, the
time required to generate the plans remains low.

Learning methods have also been used to attempt to
automatically determine good rule sets to use to allow sim-
plified controllers [8], however this has also proven difficult
to achieve for complex situations such as arbitrary three-
dimensional motion over obstacles. We are not attempting to
produce general rules for motion, but rather using dynamic
programming to produce paths on the fly for the particular
geometry at hand.

II. ALGORITHM FORMULATION

Our algorithm can be divided into two components: a
parallel planner which computes paths for all modules to
follow toward the goal, and a parallel actuation control
scheme that ensures that the motions are safely performed.
There is no global synchronization assumed, however, so that
various modules in the system will be performing these two
functions continuously and at different times.

To address parallel path planning, we note that the search
space of planning coordinated parallel paths is extremely
large [1] — so instead of creating a set of global paths
at once that will work in concert, we have developed a
novel application of methods from reinforcement learning [7]
that continually replans a large set of paths in an efficient
distributed fashion as the robot moves. The efficiency is
obtained by assuming that all module paths are independent,
and so the plans can be generated in parallel. Since correct
module motions will not be independent, the generated paths
are not guaranteed to avoid conflict or be optimal in a global
sense. However, the use of continuous replanning allows
them to be generally efficient and will always allow the
overall shape to converge. In addition, the replanning means
that the goal can be arbitrarily and safely moved over the

(a) (b)

Fig. 2. Simulation of a large robot system showing the inherent paral-
lelism of our method. (a) shows the initial cube formation and (b) after
(simultaneous) initial motions of the modules.

environment while the robot is moving, giving us the ability
to “joystick” the robot.

We next consider safe path execution. In an SR robot
performing locomotion, individual modules will follow some
path through free space and come to rest in the goal. When
using such a path, a module should only move if it does not
disconnect the structure — in other words, moving modules
may not be articulation points in the connectivity graph.
One common simplification that can be made is to move
modules one at a time, so that the mobility check can be
done via simple graph operations. However, in large systems
serial motion is too slow. We must exploit parallelism. To
address the connectivity problem, we have developed a novel
search technique that is inherently local, therefore requiring
only constant time in most cases, and guarantees to preserve
global connectivity. This allows a large number of modules
to move simultaneously, as shown in Fig. 2.

Any algorithm for SR robots depends strongly on the
hardware that will be used, since systems differ greatly in
their formation and actuation. In this work, as in much of
our previous work in the area, we use the SlidingCube ab-
straction. Under this abstraction, modules are cubes capable
of performing translations across other modules and convex
transitions around another module, as shown graphically in
Fig. 3. We have previously shown how different physical
systems can implement the SlidingCube [2]. We also note
that the formulation of our planning system is not tied to this
abstraction; any lattice-based system for which the motions
can be enumerated and modules can move sufficiently on
their own should be able to use a similar construction.

III. PARALLEL PATH PLANNING

Planning for locomotion is similar to reconfiguration
planning, in that modules move through the system to
change the shape of the robot and reach a goal region at
a distant location while avoiding all obstacles along the
way. Successive overlapping goal configurations drive the
robot through its environment. We define the Parallel Path
Planning problem as finding a path from each mobile module
to a position in a goal region, here defined by a bounding
box. We formulate this problem as a Markov decision process

ThB7.4

2249



(a) (b)

Fig. 3. Action space with respect to a given face for a SlidingCube module.
The wireframe box is the state (lattice position) in question, grey boxes
are adjacent modules. In (a), there are four possible sliding transitions,
indicated by arrows, with respect to the bottom face. Rear arrow not shown.
Similar convex transition actions are shown in (b). Cases are symmetrical
for remaining five faces.

Fig. 4. Graphical representation of a policy in our MDP formulation,
with the robot shown in cross-section. Each square represents a state, grey
squares are occupied by modules, and the dashed-line box is the goal.
Arrows indicate the optimal action to be taken by a module in that state.
Straight arrows are sliding transitions, and right-angle arrows are convex
transitions. Any module taking the indicated actions follows a shortest path
to the goal.

(MDP) and solve it using dynamic programming (DP). This
MDP will be stored in a distributed fashion; state updates
are computed by adjacent module pairs. Because the DP
updates (Bellman backups) execute in parallel, the policy
converges in sublinear time in the size of the robot. As
modules move, the underlying MDP also changes and we
update the policy. Iterating this process, all modules reach
the goal region. In practice, this process converges rapidly.
The resulting policy yields a path from all open positions in
the current configuration to a position in the goal region. It
is important to note that the policy does not map modules
to actions, or local neighborhood configurations to actions.
Instead, the policy maps lattice positions, which are points in
space, to actions. A given module may follow a path to the
goal by following the optimal action associated with each
lattice position it traverses, as depicted in Fig. 4.

A. MDP Formulation

To be more precise, an MDP is a 4−tuple < S,A, T, R >,
where S is the set of states, A is the set of actions, T is
the transition function, and R is the reward function. In our
MDP formulation, a state s ∈ S is a lattice position, and an
action a ∈ A is a primitive module actuation. The transition
function T maps each (s, a) pair to the resulting lattice
position s′. T is deterministic and known by all modules.

State-action pairs that result in collision with an obstacle or
another module transition to a state with a large negative
reward. Otherwise, a reward of -1 is given for each action
that does not transition into the goal region. For s′ in the
goal region, the reward is 0 plus a small negative value
determined by the height of the lattice position above the
ground, decreasing from 0 towards -1. This reward function
results in modules moving first into the goal region and then
towards the ground as far as possible. This represents a goal
ordering that avoids creating unreachable holes in the goal
configuration.

The state space S is essentially that of the gridworld
common in the reinforcement learning literature, but in
three dimensions. These are world-centered coordinates – as
the robot locomotes, its modules move through this state
space. At the beginning of a locomotion task, a coordinate
frame is attached arbitrarily to the robot. Since they know
the transition function, modules can easily maintain their
coordinates in this frame subsequently. Although the set of
all lattice positions is infinite, the MDP only considers a
small finite portion of it: lattice positions occupied by or
adjacent to modules in the robot.

The action space A is determined by the primitive actions
available to a module in a particular state. The total number
of actions for a SlidingCube module disregarding symmetry
is 48. With respect to a certain neighbor, the possible moves
are sliding or convex in each of the four cardinal directions,
as seen in Fig. 3. The other faces are symmetric. Therefore
we have 8 × 6 = 48 possible actions. Many of these
transition to the same destination however, and only a subset
are available at any given state. In particular, sliding and
convex transition moves are mutually exclusive for a given
neighbor and direction. This is determined by what modules
are in the local neighborhood. Therefore we may reduce the
action space to four actions per neighbor, or equivalently,
per face. It is also possible to make no move at all, so
the null action is always valid. Our set of actions then is
{f iaj | 0 < i ≤ 6, 0 < j ≤ 4} ∪ {do nothing}.

The MDP is formulated as if there were a single module,
or agent. We know that in reality we have multiple agents,
but a flat representation of their collective state grows
exponentially in the number of agents. To overcome this
problem, we use a multi-agent abstraction where all agents
share the same policy and are assumed to be independent.
Of course, agents are in fact dependent on each other in
avoiding collisions and preserving global connectivity. We
use a separate process to deal with this issue, described in
the next section. Furthermore, as modules move, the structure
of the MDP changes. This corresponds to barriers changing
location in gridworld terms. This is why DP updates are
processed continuously in response to module movements.

B. MDP Implementation

Since the action-value function is defined over lattice
positions, considering only those adjacent to module faces, it
is natural to store it within the modules and propagate value
updates in a parallel distributed fashion. The policy therefore

ThB7.4

2250



Fig. 5. Two cases for computing DP updates. Module m1 stores action-
values for state s1. For action a1, module m2 must supply the value for the
resulting state. However, action a2 is simpler because the required value is
already stored in m1’s memory. All other cases are symmetrical.

is represented in a distributed manner throughout the robot.
This sort of distributed representation is not standard in the
RL literature. Each module does not store the complete set
of action-values for a particular state, but it stores a subset
of action-values for a number of states. Conversely, the set
of action-values for a given state is stored across multiple
modules. Specifically, values for the four actions f1aj are
stored in the module adjacent to face f1, and so on. This
can also be thought of as each module storing four values
for each of its six adjacent states, or 24 in total. Values for
doing nothing do not need to be stored.

DP updates can be computed by a module for the state-
action pairs for which it is responsible, as explained in Fig. 5.
This is possible because the values of resulting states are
stored either within itself, in the case of a convex transi-
tion, or within a neighbor module in the case of a sliding
transition. These values are propagated to neighbor modules
via message passing. Whenever a module receives a new set
of values from its neighbor, it performs DP updates for its
faces as appropriate. Updates are triggered by any change
in the goal region as well as by any module movement.
Values propagate back from the goal, exploiting best case DP
behavior, and empirically the MDP converges quite quickly.
A module moves toward the goal by querying its neighbors
at each step and choosing the action with maximal value
if a unique one exists, or else chooses randomly from the
maximal set. As indicated, this mechanism does not prevent
disconnection or collisions with other moving modules. We
next describe a powerful method for local motion control
that solves these problems.

IV. PARALLEL ACTUATION

When moving a single module in a fixed configuration,
disconnection can be avoided with simple graph analysis.
The connectivity graph of the modules is a graph with a node
for each module and an edge between adjacent modules.
Articulation points in the connectivity graph correspond to
non-mobile modules (those which are not safe to move) and
can be easily detected. However, this test takes linear time,
and finding a set of mobile modules that can safely move in
parallel, which corresponds to finding a maximal set of nodes
that can be removed simultaneously without disconnection, is
significantly more difficult. Furthermore, the topology of the
robot is constantly changing as modules move. It is desirable
to use an approach that requires local information only. Here
we describe a method that can be executed in a parallel

(a) (b)

Fig. 6. Examples of connecting cycles. The module attempting to move
is shaded grey and its neighbor modules are those with dots. (a) In a dense
structure, the connecting cycle joining all neighbors through other modules
(shown as a dark line) is short. (b) In a chain of modules, the connecting
cycle may be much longer, or not exist at all.

distributed manner, prevents disconnection and collision, and
allows modules to follow the specified paths.

By definition, the connectivity graph is connected if there
exists a path between all nodes. If we remove a module from
the connectivity graph and the graph remains connected,
then the removed module is mobile. Equivalently, it can
be removed if all its neighbors are connected by a path
not passing through it (if it has only one neighbor, then it
is immediately known to be mobile). We call these local
connecting paths connecting cycles. A simple example of a
connecting cycle (and a situation in which one might not
exist) is given in Fig. 6. In sparse graphs, the connecting
cycles can be long (up to length n in a ring of modules),
but in dense graphs where modules are tightly packed, they
are likely to be short. We can therefore identify a module
as mobile by using a local search that attempts to find such
a cycle. The search begins at each neighbor, using iterative
deepening search implemented with message passing. Depth
is initially limited to a constant so that short cycles will be
found, but is allowed to increase to guarantee finding paths
in cases where they exist but the local density is low.

Since actuation is not instantaneous, the modules along
the search path are locked to preserve connectivity. We
must also lock the immediate destination position to prevent
collision with another moving module. This is implemented
using message passing to simulate a test-and-set operation.
After actuation, the locked modules are free to attempt their
own motions. All modules execute this complete process in
parallel, allowing parallel actuation. This is a conservative
test in that the depth limit means we do not find all mobile
modules, but we expect to find many mobile modules in
dense configurations. Also, the depth limit gives a tight
constant bound on the time it takes to do mobility checking.

Modules continuously attempt to move, guided by the
value function. Motion control and path planning are exe-
cuted until the robot achieves the goal configuration. Then,
the bounding box is shifted either by a human operator or
by some higher-level process and locomotion continues.

V. EXPERIMENTS

Our goal is to implement this algorithm in a system with
one million modules. We have implemented our approach
in simulation using the SRSim simulator [4]. To experiment
with large robots simulated on a serial computer, we used a

ThB7.4

2251



TABLE I
SIMULATION RESULTS FOR CUBE-SHAPED ROBOTS OVER COMPARABLE

DISTANCES ON FLAT GROUND. ONE TIME STEP IS THE TIME REQUIRED

FOR A SINGLE ACTUATION.

Robot Total Time Average Average CPU
size number of steps parallel surface time per

actuations actuations modules motion
125 (53) 1012 53 18.2 46.0 4.6 ms

1000 (103) 23327 243 96.0 345.3 8 ms
8000 (203) 616493 930 663 2928 16 ms

centralized implementation. We are also currently working
on extending this to a cluster-based implementation in the
near future, and incorporating higher-fidelity simulation of
message passing between modules through the use of mul-
tiple threads of execution.

We instrumented the simulation to measure total elapsed
time for locomotion as well as the amount of parallelism in
the actuation. Results presented here are for robots of various
sizes moving the same relative distance over flat ground. That
is, for a cube of n× n× n modules, we measured the time
and number of moves required to move the length of n− 1
modules. This experiment thus explores the dependence on
module size (using smaller modules to create an overall robot
of the same size to go a given distance). Table I shows results
for robots of increasing size n.

Table I also presents the average number of simultaneous
motions made. This is compared to the average surface area
of the robot as it moves, which represents an upper bound on
the possible amount of parallelism. We note that for simple
cubic shapes, the surface area of the robot goes up as n2/3, so
in fact we should expect parallelism relative to n to decrease
as the robot gets bigger. For less compact shapes, such as
flattened rectangles, parallelism should be closer to linear as
the robot gets larger, since a larger fraction of the modules
will be on the surface, and locomotion faster.

Since we are running the parallel algorithm on a serial
computer, we also present running time normalized by the
number of module motions. This is more conservative than
simply dividing the total computation time by the number
of modules, and we believe this is a good measure of
the computation required for the algorithm. Note that these
numbers are for a simulation run on a high-end workstation
and that we would expect modules to use somewhat slower
processors. Under this metric, the experimental data confirms
the running time grows approximately with 3

√
n for cubic

robots with n modules, as predicted. For larger robots, we
were not able to run full-length experiments due to time and
memory limitations, however we did obtain results for the
initial steps of motion for cubic robots up to 75 modules on
a side, presented in Table II. We believe these to be generally
indicative of the overall time and parallelism of the system
in a relative sense. The times per move in Table II are lower
than in Table I because the motion is at its most efficient in
the beginning, when a small number of modules are already
in the goal region and the robot’s surface area is large. We

TABLE II
SIMULATION RESULTS FOR 10 TIME STEPS OF MOTION OF VARIOUS

LARGE CUBE-SHAPED ROBOTS.

Robot Average Average CPU
size parallel surface time per

actuations modules motion
15625 (253) 1090 4534 1.1 ms

125000 (503) 4520 19254 1.4 ms
421875 (753) 10213 43674 1.9 ms

expect that a multiprocessor implementation will allow us to
extend these results on very large systems.

A. Rough terrain

From a qualitative standpoint, we also wish to verify that
the algorithm correctly produces paths and motion in the
presence of obstacles. We chose two types of obstacles to
representative of potential challenging situations. In the first,
the robot is driven under a concave obstacle and then asked
to move beyond it, which may be difficult for a greedy
algorithm to achieve. Figure 7 shows successful locomotion
in this case. The second was a comb-shaped obstacle, to test
the ability to locally break apart to use multiple thin gaps in
the obstacle without globally disconnecting the robot. This
was also successful, as shown in Fig. 8.

We also ran a number of experiments with robots of
various sizes over randomized “bumps” such as those shown
in Fig. 1, and found that as long as the bounding box was
allowed to be sufficiently large when intersecting obstacles,
the robot would correctly perform the locomotion task.

VI. ANALYSIS

Since our approach comes from a well-studied area, we
can borrow much of that analysis to prove properties of our
algorithm. For instance, the convergence properties of MDPs
are generally well understood. The formulation we are using
assumes a known (deterministic) state transition model, so
the dynamic program will converge to the optimal result for
an individual module. We do note that it does not assign
modules to goals, so that many modules may initially try to
reach the same goal point if that is optimal for all of them.

Deterministic state transition models are rare in RL ap-
plications; a main strength of RL is its ability to handle
stochasticity. If transition probabilities are stochastic but
known, our algorithm works as is. Otherwise, the transition
model can be learned from experience using Monte Carlo
or other standard RL methods. This is important since real
robots always exhibit uncertainty.

In addition, the dynamics of any SR system are important,
and the reward structure tends to enforce good dynamic
structure, as modules will preferentially move toward goal
locations lower to the ground. While this does not guarantee
anything about the overall shape during motion, we can
trivially show that the rewards will allow the modules to not
leave any holes in the goal area. For any given location to be
a hole in the structure, there must be a module directly above

ThB7.4

2252



(a) (b) (c) (d)

Fig. 7. Simulation of a small robot escaping from under an overhanging obstacle. (a) The robot’s initial position. (b) The robot has been directed under
the obstacle. (c) The goal is moved forward by the human operator such that it still overlaps the current robot location but is also taller than the obstacle;
the robot starts to escape. (d) Successful traversal of the obstacle.

(a) (b) (c) (d)

Fig. 8. Simulation of a small robot through a comb-shaped obstacle with single-module width gaps. (a) The robot’s initial position. (b) First encounter
of the obstacle. (c) The modules use several of the gaps to move through the obstacle. (d) Successful traversal of the obstacle.

it. However, this module will immediately move into the
hole, since the reward at the hole location will be better than
the module would get by remaining in its current location.
Thus, eventually all holes will be filled by the module(s)
above it. This holds for systems over flat ground or over any
obstacles that do not contain overhangs.

VII. DISCUSSION

The development of this algorithm has pointed out inter-
esting issues with large, dense systems relative to smaller,
sparse ones. For example, the mobile module detection
process is ideally suited to dense configurations, and may
work reasonably for regular structures like scaffolds, but
gracefully degrades in sparse structures, such as a single ring
of n modules, where moving the first module requires O(n)
time. Similarly, the DP propagation takes time proportional
to the diameter of the shape, which can be anywhere from
3
√

n for a cube or similar shape to n for a single line
of modules. On the other hand, moving a large cube of
modules by having each module move in turn from the
back to the front while maintaining a generally cubic shape
turns out to take a very large number of individual motions
which are not as parallelizable as they would be in stringier
shapes. We believe it is critical for any algorithm for SR
robots to consider its configuration dependence, that is, under
what circumstances it performs well, and in general to not
only shape the robot to the task, but choose an algorithm
appropriate to the particular configurations and vice versa.

Acknowledgment

National ICT Australia is funded by the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part
through the Australian Research Council. Special thanks go
to fellow SMLKA Program members at NICTA for general
discussion of the MDP formulation.

REFERENCES

[1] A. Abrams and R. Ghrist. State complexes for metamorphic robot
systems. Intl. J. of Robotics Research, 23(7-8):809–824, 2004.

[2] Z. Butler, K. Kotay, D. Rus, and K. Tomita. Generic decentralized
locomotion control for lattice- based self-reconfigurable robots. Int’l
Journal of Robotics Research, 23(9):919–38, 2004.

[3] Z. Butler and D. Rus. Distributed motion planning for modular robots
with unit-compressible modules. Int’l Journal of Robotics Research,
22(9):699–716, 2003.

[4] R. Fitch. Heterogeneous Self-Reconfiguring Robotics. PhD thesis,
Dartmouth College, 2004.

[5] K. Kotay. Self-Reconfiguring Robots: Designs, Algorithms, and
Applications. PhD thesis, Dartmouth College, Computer Science
Department, 2003.

[6] K. Stoy and R. Nagpal. Self-reconfiguration using directed growth.
In 7th International Symposium on Distributed Autonomous Robotic
Systems (DARS’04), 2004.

[7] R. Sutton and A. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[8] P. Varshavskaya, L. Kaelbling, and D. Rus. Learning distributed
control for modular robots. In Proc. of IROS, pages 2648–53, 2004.

[9] S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel
reconfiguration algorithm for cube style modular robots. In Proc. of
IEEE ICRA, pages 117–22, 2002.

[10] M. Yim, Y. Zhang, J. Lamping, and E. Mao. Distributed control for
3D shape metamorphosis. Autonomous Robots, 10(1):41–56, 2001.

ThB7.4

2253


