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Abstract— We present an “Artificial Neural Tissue” (ANT)
architecture as a control system for autonomous multirobot
tasks. This architecture combines a typical neural-network
structure with a coarse-coding strategy that permits specialized
areas to develop in the tissue which in turn allows such
emergent capabilities as task decomposition. Only a single
global fitness function and a set of allowable basis behaviors
need be specified. An evolutionary (Darwinian) selection process
is used to derive controllers for the task in simulation. This
process results in the emergence of novel functionality through
the task decomposition of mission goals. ANT-based controllers
are shown to exhibit self-organization, employ stigmergy and
make use of templates (unlabeled environmental cues). These
controllers have been tested on a multirobot resource-collection
task in which teams of robots with no explicit supervision can
successfully avoid obstacles, explore terrain, locate resource ma-
terial and collect it in a designated area by using a light beacon
for reference and interpreting unlabeled perimeter markings.
The issues of scalability and antagonism are addressed.

I. INTRODUCTION

One must marvel at the collective behavior of a colony of
ants excavating a network of tunnels or a swarm of termites
building towering cathedral mounds with internal heating and
cooling shafts [1]. Such behavior in the natural world can
both awe and inspire the roboticist [2] when considering the
control of multiagent systems.

Developing a control strategy for an assembly of robots
presented with even a moderately intricate task is a daunt-
ing problem. Model-based control approaches have their
limitations in the face of such complexity. In this work,
we address the problem and seek an approach that draws
heavily from nature. We particularly focus on two aspects:
artificial neural structures and evolutionary algorithms to de-
rive them. The approach presented here involves a machine-
learning paradigm we call the “Artificial Neural Tissue”
framework [3] and we demonstrate its capability in a task
of multirobot resource collection and berm (mound/wall)
formation. Machine-learning systems of the type examined
here can perform task decomposition through “emergent”
(self-organized) behavior.

The artificial neural tissue (ANT) superimposes on a
typical feedforward neural-network structure a coarse-coding
mechanism inspired by the work of Albus [4]. This coarse
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coding allows areas of specialization to develop in the tissue
which in turn facilitate task decomposition. The mechanism
has a biological analogy as neurons can communicate not
only electrically by exchanging signals along axons but also
through chemical diffusion which can selectively activate
neurons. The “genome” of the tissue is evolved in an artificial
Darwinian fashion.

With minimal task-specific assumptions and limited super-
vision, an ANT controller can exploit templates (unlabeled
environmental cues), stigmergy (indirect communication me-
diated through the environment), and self-organization. Be-
cause little preprogrammed knowledge is given, ANT may
discover novel solutions that might otherwise be overlooked
by a human supervisor.

ANT is particularly advantageous for multirobot tasks in
which some global behavior must be achieved without a
centralized controller. Even though each individual has no
“blueprint” of the overall task and must operate with only
local sensor data, an ensemble of robots is able to complete
a mission requiring a global consensus. The desired global
behavior emerges from the local interactions of individual
robots. Designing controllers of this sort by hand can be very
difficult because the process by which local behaviors work
to form a global consensus can be difficult to understand
and even counterintuitive. Previous work in the field such
as [5], [6], [7], [8] rely on task-specific human knowledge
to develop simple “if-then” rules or equivalent coordination
behaviors to solve multirobot tasks. In contrast, the approach
outlined here provides for a generic framework that allows,
by evolutionary computation, decomposition of the task to
emerge naturally. It has already been demonstrated that ANT
can produce emergent controller solutions for a multirobot
tiling pattern formation task, a single-robot phototaxis task
and an unlabeled sign-following task [3]. In this paper, we
look at the resource-collection task, which is motivated by
plans to collect and process raw material on the lunar surface.
Furthermore, we address the issue of scalability; that is,
how does a controller evolved on a single robot or a small
group of robots but intended for use in a larger collective of
agents scale? We also investigate the associated problem of
antagonism.

In the following section, we present background to the
problem at hand. Section III details the artificial neural tissue
model. This is followed by a description of the simulation
experiments conducted for the resource-collection task. The
results are discussed in Section V. Finally, we offer some
preliminary conclusions in Section VI.
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II. BACKGROUND

Collective robotic tasks can benefit from some of the same
mechanisms that are used by social insects. These include the
use of templates, stigmergy, and self-organization. Templates
are environmental features perceptible to the individuals
within the collective [9]. Stigmergy is a form of indirect
communication mediated through the environment [10]. Self-
organization describes how local or microscopic behaviors
give rise to a macroscopic structure in systems which are
not in equilibrium [11]. These are positive traits of natural
systems which would be advantageous to implement in
robotic systems. However, many existing approaches suffer
from another emergent feature called antagonism [12]. This
describes the effect that arises when multiple agents trying to
perform the same task interfere with one another and reduce
the overall efficiency of the group. Because our approach
is evolutionary in nature, it is able to “learn” how to take
advantage of the techniques identified above. As we will
show, the systems also learns how to mitigate the effects
of antagonism, which is something that is difficult to do in
hand-crafted systems.

In insect colonies, templates may be a natural phenomenon
or they may be created by the colonies themselves. They may
include temperature, humidity, chemical, or light gradients.
In robotic applications, template-based approaches include
the use of light fields to direct the creation of circular
[13] and linear walls [14] and planar annulus structures
[7]. Spatiotemporally varying templates (e.g., adjusting or
moving a light gradient over time) allow the creation of more
complex structures [15].

Stigmergy describes the use of changes in the environment
as a means of indirect communication between agents. In the
natural world, one way in which ants and termites do this is
through the use of pheromone trails. Stigmergy has been used
extensively in collective-robotic construction tasks, including
blind bull dozing [6], box pushing [5], heap formation [16]
and tiling pattern formation [17].

Most of the works cited above rely on either user-defined
deterministic “if-then” rules or on stochastic behaviors. The
goal is to design a simple controller for agents that have
access only to local information, but that are nevertheless
able to work together to achieve an overall objective. This is
difficult to do by hand, since the global effect of these local
interactions is often hard to determine. Existing approaches
can be categorized in one of three groups. The simplest
method is to design a controller that will allow a single agent
to complete the task and have it treat any other agent as an
“obstacle” to be avoided. A more sophisticated solution will
incorporate an extra set of rules to handle the interaction with
other agents gracefully. This usually involves adding some
kind of explicit communication between the agents. Even in
this case, the rules handling interactions between agents are
added as a second step in order to “fix” problems that would
occur if they were omitted. It is rarer to find applications that
fall into a third category, wherein the controllers are designed
from the start with cooperation and interaction in mind.

In [16], a group of robots make use of stigmergy in
performing a clustering task. In [6], robots perform the
opposite task, area clearing, and [13] uses templates to direct
the construction of a wall. In all three cases, a single robot
is capable of performing the whole task. The controllers are
“if-then” rules which treat other robots as obstacles to be
avoided. The authors of [16] note that for more than three
robots, the efficiency begins to decrease. In [6], although
increasing the number of robots increases the efficiency, there
is a reduction in the ability to control the final size and shape
of the area cleared.

The wall-building task described in [14] was originally
designed with a single robot in mind. Because only one
robot can add a block to the end of the wall at a time,
additional arbitration rules had to be added to handle the
situation in which multiple robots arrive with a block to add
at the same time. Here again, performance begins to decrease
after a certain point as more agents are added. The end of the
wall becomes a bottleneck, with multiple agents waiting for
their turn to access the end of the wall. One could argue that
a more efficient solution would have some robots fetching
blocks and depositing them near the end of the wall while
fewer robots stayed near the wall and moved those blocks
into their final positions. In Section V, we describe a task in
which an ANT-based controller is able to evolve a similar
solution.

For the box-pushing task described in [5], a controller
for a two-robot system was designed from the start with
cooperation in mind. This controller is shown to exhibit
superior performance to two non-cooperating robots trying to
perform the same task. However, in this case, the controllers
make use of explicit communication to share complete state
information with one another at each step. This does not
scale well to larger groups of agents.

As we can see, most existing controllers are designed
first with a single agent in mind, and then are enhanced
(based on human knowledge) with arbitration rules when
multiple agents must interact. The result is that the inter-
actions between agents are more often antagonistic than
cooperative. It is more difficult to design controllers by hand
with cooperation in mind, because it is difficult to predict
or control the global behaviors that will result from local
interactions. Designing successful controllers by hand can
devolve into a process of trial and error, especially in the
case of the first two categories described above.

A means of reducing the amount of effort required in
designing controllers by hand is to encode controllers as
behavioral look-up tables and allow a genetic algorithm to
evolve the table entries. This approach is used to solve a
heap formation task in [18] and a 2×2 tiling formation task
in [17].

A limitation with look-up tables is that they have poor
sensor scalability, as the size of the look-up table is exponen-
tial in the number of inputs. Look-up tables also have poor
generalization. Neural network controllers perform better
generalization since they effectively encode a compressed
representation of the table. Neural controllers have been used
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to solve 3× 3 tiling tasks [19] and to build walls, corridors,
and briar patches [20], and have been used for multirobot
communication and coordination [21]. When using fixed-
topology networks, the size of the network must be specified
ahead of time. Choosing the wrong size may lead to a
network that is either unable to solve the problem or difficult
to train [3].

The ANT framework presented here simultaneously ad-
dresses both the problems in designing rule-based systems
by hand and the limitations inherent in fixed-topology evolu-
tionary systems. Since it is a variable-length neurocontroller
model, it provides good scalability and generalization of
sensory input [3]. In addition, ANT does not rely on detailed
task-specific knowledge. It evolves controllers to optimize
a user-specified global fitness function. The evolutionary
selection process is able to discover for itself how to make
use of templates and stigmergy and to mitigate the effects of
antagonism.

III. ARTIFICIAL NEURAL TISSUE MODEL

The ANT architecture Fig. 1(a) presented in this pa-
per consists of a developmental program, encoded in the
“genome,” that constructs a three-dimensional neural tissue
and associated regulatory functionality. The tissue consists
of two types of neural units, decision neurons and motor-
control neurons, or simply motor neurons. Regulation is
performed by the decision neurons that dynamically exhibit
or inhibit motor-control neurons within the tissue based on a
coarse-coding framework. Let us discuss the computational
mechanism of the tissue first and then outline the process by
which the tissue is created.

A. Computation

We imagine the motor neurons of our network to be
spheres arranged in a regular rectangular lattice in which the
neuron Nλ occupies the position λ = (l,m, n) ∈ I3 (sphere
centered within cube). The state sλ of the neuron is binary,
i.e., sλ ∈ S = {0, 1}. Each neuron Nλ nominally receives
inputs from neurons Nκ where κ ∈⇑(λ), the nominal input
set. Here we shall assume that these nominal inputs are the
3× 3 neurons centered one layer below Nλ; in other terms,
⇑(λ) = {(i, j, k) | i = l−1, l, l+1; j = m−1,m,m+1; k =
n − 1}. (As will be explained presently, however, we shall
not assume that all the neurons are active all the time.) The
activation function of each neuron is taken from among four
possible threshold functions of the weighted input σ:

ψdown(σ) =
{

0, ifσ ≥ θ1
1, otherwise

ψup(σ) =
{

0, ifσ ≤ θ2
1, otherwise

ψditch(σ) =
{

0, min(θ1, θ2) ≤ σ < max(θ1, θ2)
1, otherwise

ψmound(σ) =
{

0, σ ≤ min(θ1, θ2) or σ > max(θ1, θ2)
1, otherwise

(1)

The weighted input σλ for neuron Nλ is nominally taken
as

σλ =

∑
κ∈⇑(λ) w

κ
λsκ∑

κ∈⇑(λ) sκ
(2)

with the proviso that σ = 0 if the numerator and denominator
are zero. Also, wκ

λ ∈ R is the weight connecting Nκ to
Nλ. We may summarize these threshold functions in a single
analytical expression as

ψ = (1− k1)[(1− k2)ψdown + k2ψup]
+ k1[(1− k2)ψditch + k2ψmound] (3)

where k1 and k2 can take on the value 0 or 1. The activation
function is thus encoded in the genome by k1, k2 and the
threshold parameters θ1, θ2 ∈ R.

It may appear that ψdown and ψup are mutually redundant
as one type can be obtained from the other by reversing the
signs on all the weights. However, retaining both increases
diversity in the evolution because a single 2-bit “gene” is
required to encode the threshold function and only one
mutation suffices to convert ψdown into ψup or vice versa as
opposed to changing the sign of every weight.

The sensor data are represented by the activation of
the sensor input neurons Nαi

, i = 1 . . .m, summarized
as A = {sα1 , sα2 . . . sαm}. Similarly, the output of the
network is represented by the activation of the output neurons
Nωj

, j = 1 . . . n, summarized as Ω = {sω1
1
, sω2

2
. . . sωb

n
},

where k = 1 . . . b specifies the output behavior. Each output
neuron commands one behavior of the agent. (In the case of
a robot, a typical behavior may be to move forward a given
distance. This may involve the coordinated actin action of
several actuators. Alternatively, the behavior may be more
primitive such as augmenting the current of a given actuator.)
If sωk

j
= 1, output neuron ωj votes to activate behavior

k; if sωk
j

= 0, it does not. Since multiple neurons can
have access to a behavior pathway, an arbitration scheme
is imposed to ensure the controller is deterministic where
p(k) =

∑nk

s�,j=1 sωk
j
/nk and nk is the number of output

neurons connected to output behavior k resulting in behavior
k being activated if p(k) ≥ 0.5.

As implied by the set notation of Ω, the outputs are
not ordered. In this embodiment, the order of activation is
selected randomly. We are primarily interested here in the
statistical characteristics of relatively large populations but
such an approach would likely not be desirable in a practical
robotic application. However this can be remedied by simply
assigning a sequence a priori to the activations (as shown in
Table II for the resource collection task).

We moreover note that the output neurons can be re-
dundant; that is, more than one neuron can command the
same behavior, in which case for a given time step one
behavior may be “emphasized” by being voted multiple
times. Neurons may also cancel out each other such as
when one output commands a forward step while another
a backward step. Finally, not all behaviors need be encoded
in the neural tissue. This is left to the evolutionary process.
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(a) Synaptic connections

(b) Coarse-coding

Fig. 1. Synaptic connections between motor neurons and operation of
neurotransmitter field.

B. The Decision Neuron

The coarse-coding nature of the artificial neural tissue is
provided by the decision neurons. Decision neurons can be
thought of as rectangular structures occupying nodes in the
lattice as established by the evolutionary process (Fig. 1).
The effect of these neurons is to excite into operation or in-
hibit (disable) the motor control neurons (shown as spheres).
Once a motor control neuron is excited into operation, the
computation outlined in (2) is performed. Motivated as we
are to seek biological support for ANT, we may look to the
phenomenon of chemical communication among neurons. In
addition to communicating electrically along axons, some
neurons release chemicals that are read by other neurons,
in essence serving as a “wireless” communication system to
complement the “wired” one.

In ANT, the state of a decision neuron Tµ, µ is binary
and determined by one of the same activation functions 1
that also embedded within the motor control neurons. The
inputs to Tµ are all the input sensor neurons Nα; i.e.,
sµ = ψµ(sα1 . . . sαm

) where σµ =
∑

α v
µ
αsα/

∑
α sα

and vµ
α are the weights. The decision neuron is dormant if

sµ = 0 and releases a virtual neurotransmitter chemical of
uniform concentration cµ over a prescribed field of influence
if sµ = 1. Motor control neurons within the highest chemical
concentration field are excited into operation. Only those
neurons that are so activated will establish the functioning
network for the given set of input sensor data. Owing to the
coarse-coding effect, the sums used in the weighted input
of 1 are over only the set ⇑(λ) ⊆⇑ (λ) of active inputs
to Nλ. Likewise the output of ANT is in general Ω ⊆ Ω.
The decision neuron’s field of influence is taken to be a
rectangular box extending ±dr

µ, where r = 1, 2, 3, from µ
in the three perpendicular directions. These three dimensions
along with µ and cµ, the concentration level of the virtual
chemical emitted by Tµ, are encoded in the genome.

Fig. 3. Genes are “read” by constructor proteins that transcribe the
information into a descriptor protein which is used to construct a cell. When
a gene is repressed, the constructor protein is prevented from reading the
gene contents.

C. Evolution and Development

A population of ANT controllers is evolved in an artificial
Darwinian manner [22]. The “genome” for a controller
contains a “gene” for each cell with a specifier D that is
used to distinguish the functionality (between motor control,
decision and tissue). A constructor protein (an autonomous
program) interprets the information encoded in the gene and
translates this into a cell descriptor protein (see Fig. 2). The
gene “activation” parameter is a binary flag resident in all the
cell genes and is used to either express or repress the contents
of gene. When repressed, a descriptor protein of the gene
content is not created. Otherwise, the constructor protein
“grows” the tissue in which each cell is located relative to
a specified seed-parent address. A cell death flag determines
whether the cell commits suicide after being grown. Once
again, this feature in the genome helps in the evolutionary
process for a cell, by committing suicide, still occupies a
volume in the lattice although it is dormant. In otherwise
retaining its characteristics, evolution can decide to reinstate
the cell by merely toggling a bit.

In turn mutation (manipulation of gene parameters with
uniform random distribution) to the growth program results
in new cells being formed through cell division. The rate at
which mutation occurs to a growth program is also specified
for each tissue and is dependent on the neuron replication
probability parameter. Cell division requires a parent cell
(selected with highest replication probability relative to the
rest of the cells within the tissue) and involves copying m%
of the original cell contents to a daughter cell (where m is
determined based on uniform random distribution), with the
remaining cell contents initialized with a uniform random
distribution. The cell type of each new cell is determined
based on the ratio of motor control to decision neurons
specified in the tissue gene. The new cell can be located in
one of six neighboring locations (top, bottom, north, south,
east, west) sharing a common side with the parent and is not
occupied by another cell.

IV. SIMULATION EXPERIMENTS

The effectiveness of the ANT controller is demonstrated
in simulation on the resource-collection task. A team of
robots collects resource material distributed throughout its
work space and deposits it in a designated dumping area.
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Fig. 2. Gene map.

TABLE I
SENSOR INPUTS

Sensor Variables Function Description
V1 . . . V4 Resource Detection Resource, No Resource
C1 . . . C4 Template Detection Blue, Red, Orange, Floor

S1, S2 Obstacle Detection Obstacle, No Obstacle
LP1 Light Position Left, Right, Center
LD1 Light Range 0-10 (distance to light)

TABLE II
BASIS BEHAVIORS

Order Behavior Description
1 Dump Resource Move one grid square back; turn left
2 Move Forward Move one grid square forward
3 Turn Right Turn 90◦ right
4 Turn Left Turn 90◦ left

5, 7, 9, 11 Bit Set Set memory bit i to 1, i = 1 . . . 4
6, 8, 10, 12 Bit Clear Set memory bit i to 0, i = 1 . . . 4

The workspace is modeled as a two-dimensional grid envi-
ronment with one robot occupying four grid squares. For this
task, the controller must possess a number of capabilities in-
cluding gathering resource material, avoiding the workspace
perimeter, avoiding collisions with other robots, and forming
resources into a berm at the designated location. (In the
present experiment, a berm is simply a mound of the resource
material.) The berm location has perimeter markings on the
floor and a light beacon mounted nearby. The two colors on
the border are intended to allow the controller to determine
whether the robot is inside or outside the berm location.
Though solutions can be found without the light beacon,
its presence improves the efficiency of the solutions found,
as it allows the robots to track the target location from
a distance instead of randomly searching the workspace
for the perimeter. The global fitness function for the task
measures the amount of resource material accumulated in the
designated location within a finite number of time steps, in
this case T = 300. Darwinian selection is performed based
on the fitness value of each controller averaged over 100
different initial conditions.

For this task, inputs to the ANT controller are shown in
Table I. The robots are modeled on a fleet of rovers designed
and built at the University of Toronto Institute for Aerospace
Studies. They have access to a pair of webcams and a set
of sonar sensors. All raw input data are discretized. The

Fig. 4. Input sensor mapping, with simulation model inset.

Fig. 5. 2D grid world model of experiment chamber.

sonar sensors are used to determine the values of S1 and
S2. One of the cameras is used to detect resource material
and colored floor templates (see Fig. 4). The other camera is
used to track the light beacon. In order to identify resources
and colored floor templates, a naı̈ve Bayes classifier is used
to perform color recognition [23]. Simple feature-detection
heuristics are used to determine the values of V1 . . . V4 and
C1 . . . C4 based on the grid locations shown. For detection
of the light beacon, the electronic shutter speed and gain
are adjusted to ensure that the light source is visible while
other background features are underexposed. The position of
the light LP1 is determined based on the pan angle of the
camera. The distance to the light source LD1 is estimated
based on its size in the image. The robots also have access
to four memory bits, which can be manipulated using some
of the basis behaviors. Table II lists the basis behaviors the
robot can perform. These behaviors are activated based on
the output of the ANT controller, and all occur within a
single time-step. The evolutionary algorithm population size
for the experiments is P = 100, with crossover probability
pc = 0.7, mutation probability pm = 0.025 and a tournament
size of 0.06P . The tissue is initialized as a “seed culture” ,
with 3×6 motor control neurons in one layer. After this, the
tissue is grown to include 70–110 neurons (selected from a
uniform random distribution) before starting the evolutionary
process.
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Fig. 6. Evolutionary performance comparison of ANT-based solutions for
1 to 5 robots. Error bars indicate standard deviation.

Fig. 7. Evolutionary performance with 4 robots for fixed topology and
with light beacon off. Error bars indicate standard deviation.

V. RESULTS AND DISCUSSION

Fig. 6 shows the fitness (population best) of the overall
system evaluated at each generation of the artificial evolu-
tionary process. The performance of a fixed-topology, fully-
connected network with 12 hidden and output neurons is also
shown in Fig. 7. While this is not intended as a benchmark
network, in a fixed-topology network there tends to be more
“active” synaptic connections present (since all neurons are
active), and thus it takes longer for each neuron to tune these
connections for all sensory inputs.

The results with ANT controllers in Fig. 6 show that
performance increases with the number of robots. With more
robots, each robot has a smaller area to cover in trying to
gather and dump resources. The simulation runs indicate
that a point of diminishing returns is eventually reached.
Beyond this point, additional robots have a minimal effect
on system performance with the initial resource density and
robot density kept constant. The evolutionary process enables
the decomposition of a goal task based on global fitness, and
the tuning of behaviors depending on the robot density.

In an ANT-based architecture, networks are dynamically
formed with decision neurons processing the sensory input

and in turn “selecting” motor-control neurons through the
coarse-coding framework [3]. The behavioral activity of
the controllers (see Fig. 10) shows the formation of small
networks of neurons, each of which handles an individual
behaviors, such as dumping resources or detecting visual
templates (boundary perimeters, target area markings, etc.).
Localized regions within the tissue do not exclusively handle
these specific user-defined, distilled behaviors. Instead, the
activity of the decision neurons indicate distribution of
specialized “feature detectors” among independent networks.

A. Behavioral Adaptations

Some of the emergent solutions evolved indicate that the
individual robots all figure out how to dump nearby resources
into the designated berm area, that but not all robots deliver
resource all the way to the dumping area every time. Instead,
the robots learn to pass the resource material from one
individual to another during an encounter, forming a “bucket
brigade” (see Fig. 9). This technique improves the overall
efficiency of system as less time is spent traveling to and
from the dumping area. Since the robots cannot explicitly
communicate with one another, these encounters happen
by chance rather than through preplanning. As with other
multiagent systems, communication between robots occurs
through the manipulation of the environment in the form of
stigmergy. The task in [14] is similar in that distributed ob-
jects must be delivered to a confined area; however, the hand-
designed controller does not scale as well as the “bucket
brigade” solution that the ANT framework discovered here.

While the robot controllers can detect and home in on a
light beacon (exhibiting “phototaxis”), this source of navi-
gation is not always used. Although not necessary, the light
beacon helps in navigation by allowing the robots to locate
the dumping area. It is notable that the overall fitness is
unaffected when the controllers are evolved with the light
source turned off. However, when the light source is turned
on, the controllers do make use of it to navigate to the
dumping area even though this does not appear to translate
into a higher fitness (see Fig. 7). When a controller evolved
with the light source on is tested with the light source off,
the fitness is substantially lower.

Phototaxis requires a means to determine the light gradient
and intensity, both of which are made available in these
simulations. The robot model assumes the light-detection
sensor is directional and has a limited field of view. Hence,
once a robot faces away from the light source, the light
detection sensor is in the “Not Visible” state. Although the
light intensity input appears to be unused, light direction
values appears to be used intermittently (see Fig. 9) in
combination with other visual templates. When a robot faces
a boundary region, the direction of the light source is used
to determine whether to “Turn Right” or “Turn Left.” This
behavior in turn is triggered when the robot had accumulated
resources along the way.

In our simulations, the dumping area is usually next to the
boundary region. Where possible, the controllers appear to
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Fig. 8. System activity for the resource-collection task.

Fig. 9. Snapshots of robots and trajectories of a task simulation (4 robots).

perform “sensor fusion,” making use of data from multiple
sensors to perform navigation to and from the dumping area.

In these simulation experiments, the robots have no way
to measure the remaining time available; hence, the system
cannot greedily accumulate resource materials without peri-
odically dumping the material at the designated area. This
explains why we see a steady increase in the amount of
resource material gathered over time (see Fig. 8).

B. Controller Scalability

We examine the fittest solutions from the simulation runs
shown in Fig. 11 for scalability in the number of robots
while holding the amount of resources constant. Taking
the controller evolved for a single robot and running it on
multirobot system shows limited performance improvement.
In fact, using four or more robots results in a decrease in
performance, due to the increased antagonism created.

The scalability of the evolved solution depends in large
part on the number of robots used during the training runs.
The single-robot controller expectedly lacks the coopera-
tive behavior necessary to function well within a multia-
gent setting. For example, such controllers fail to develop
“robot collision avoidance” or “bucket brigade” behaviors.
Similarly, the robot controllers evolved with two or more

Fig. 10. Tissue Topology and neuronal activity of a select number
of decision neurons. These decision neurons in turn “select” (excite into
operation) motor control neurons within its diffusion field.

Fig. 11. Scaling of ANT-based solutions from one to five robots.

Fig. 12. Scaling of ANT-based solutions with change in resource density.
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Fig. 13. Snapshots of two rovers performing the resource collection
task using an ANT controller. Frames 2 and 3 show the “bucket brigade”
behaviour, while frames 4 and 5 show the boundary avoidance behaviour.

robots perform demonstrably worse when scaled down to
a single robot, showing that the solutions are dependent
on cooperation among the robots. To limit the effects of
antagonism, controllers would need to be trained under
conditions in which the probability of encounters among
robots is sufficiently high.

The effect of changes in resource density is also examined
in the evolved solutions (see Fig. 12). Keeping the number
of robots and the maximum number of time-steps constant
while increasing the amount of resource material, the per-
centage of resource material accumulated in the dumping
area appears to decline steadily. The peak performance
appears to occur when the resource density is at or near
the training conditions.

VI. CONCLUSIONS
The “Artificial Neural Tissue” (ANT) architecture has been

successfully applied in simulation and on hardware to a
multirobot resource-collection task. ANT controllers require
only a global fitness function that measures the performance
of the controller and a generic set of basis behaviors. Because
little preprogrammed knowledge is given, an ANT archi-
tecture may discover novel solutions that might otherwise
be overlooked by a human supervisor. ANT controllers are
shown to exploit a number of mechanisms known to be
used in unsupervised multiagent systems nature, including
environmental templates, stigmergy, and self-organization.
An analysis of the scalability of ANT-based multirobot
controllers shows ways in which we can reduce the effects of
antagonism caused both by increasing the number of robots
and scaling the resource density.

The hardware experiments have shown that an ANT
controller can be developed in simulation and successfully
ported to a real rover system. The interesting emergent
behaviors seen in simulation (such as obstacle avoidance
and “bucket brigades”, see Fig. 13) were also evident in
the hardware tests. In addition, a noticeable improvement
in fitness was evident when moving from a single to a two-
rover system.
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