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Abstract— A decentralized, adaptive control law is presented
to drive a network of mobile robots to a near-optimal sensing
configuration. The control law is adaptive in that it integrates
sensor measurements to provide a converging estimate of the
distribution of sensory information in the environment. It is
decentralized in that it requires only information local to each
robot. A Lyapunov-type proof is used to show that the control
law causes the network to converge to a near-optimal sensing
configuration, and the controller is demonstrated in numerical
simulations. This technique suggests a broader application
of adaptive control methodologies to decentralized control
problems in unknown dynamical environments.

I. INTRODUCTION

In this paper we present a control strategy which is
both adaptive and decentralized, thereby combining two of
the defining qualities of biological swarming, flocking, and
herding systems. More importantly, the adaptive, decentral-
ized control law has provable stability and convergence
properties, which are summarized in the main result. This
work describes one example of the successful combination of
these two disciplines, and, it is hoped, will provide a method
that can be applied to other problems requiring control with
local information in uncertain dynamical environments.

The specific problem we address is coverage control for
mobile sensor networks. We consider controlling a group of
mobile robots to monitor some quantity of interest over an
area. Our solution to this problem would be useful in control-
ling teams of robots to carry out a number of tasks including
search and rescue missions, environmental monitoring (e.g.
for forest fires), automatic surveillance of rooms, buildings,
or towns, or simulating collaborative predatory behavior.
Virtually any application in which a group of automated
mobile agents is required to monitor an area could benefit
from the proposed control law. We are constrained to use
only local sensory and locational information available to
each robot. Our control law causes the robots to spread over
an area in such a way that their density in different regions
of the area is directly related to the sensory importance of
those regions. Thus areas of greater importance receive more
concentrated coverage than areas that are less important.
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What is more, the robots do not know before hand what are
the regions of sensory interest, but acquire this information
dynamically.

A. Relation to Previous Work

There has been considerable activity in the controls and
robotics community in studying decentralized control as a
metaphor for natural and engineered swarming, flocking, and
herding systems. A far from exhaustive selection of such
works can be found in [1]-[5], where consensus problems
are treated, [6], which deals with the synchronization of
oscillators, [7], [8], which deals with stability, and [9]-
[11], which considers abstractions for representing decen-
tralized dynamical systems. These works are formulated
assuming local information to some degree, however, models
of the dynamics of the robots and their surroundings are
usually assumed to be exact. Conversely the discipline of
adaptive control [12]-[14] focuses on controlling systems
whose dynamics are not known to the controller. Controllers
collect information as the system evolves, identifying system
dynamics simultaneously while controlling the system. This
work combines these two disciplines to produce a controller
that is provably stable, uses only local information, and has
limited prior knowledge of the sensing environment.

Various strategies have been introduced to address the spe-
cific problem of coverage control for mobile sensor networks,
and our work builds on several important results in this cate-
gory. In [15], mobile sensing agents are controlled using po-
tential functions for inter-agent interactions. Stability results
are derived, but the optimality of the network configuration is
not addressed. Similarly, in [16] an algorithm is proposed that
allows for agents to concentrate in areas of high event density
while maintaining area coverage constraints. The algorithm
is proved to maintain sensor coverage for a limited case
without addressing optimality. Most relevant to this paper is a
body of results reported in [17]-[19]. In this work, Cortés et
al derived decentralized control laws for positioning mobile
sensor networks optimally with respect to a known event
probability density. This approach is advantageous because
it guarantees that the network (locally) minimizes a cost
function relevant to the coverage problem. However, the
control strategy requires that each agent have a complete
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foreknowledge of the event probability density, thus it is not
reactive to the sensed environment. In our previous work,
[20], we removed the constraint on the global knowledge of
the event density. We presented a control law based on a
linear estimation of a sensory function and showed that the
controller performed robustly in simulation and in hardware
experiments. However, analytical stability guarantees were
not obtained.

In this work, a new control law is proposed which imple-
ments an estimation of the sensory distribution by integrating
measurements gathered throughout a robot’s trajectory into
a parametric model of the sensory distribution. We use the
locational optimization framework introduced in [18], and
provide a control law that does not require foreknowledge of
the distribution of sensory information in the environment,
in the spirit of [20]. Using a Lyapunov-like proof, we show
that the control law causes the network to converge to a near-
optimal sensing configuration given that the actual sensory
distribution is adequately represented by a parametric model.
Furthermore, we require that each agent can sense the value
of the sensory distribution at its position—a relaxation of
the conditions in [20], in which both the value and gradient
were required. We provide some background on the results
of locational optimization in Section II. We present the
controller and prove its stability in Section III. The results
of numerical simulations are described in IV.

II. LOCATIONAL OPTIMIZATION BACKGROUND

In this section, we state the basic definitions and results
from locational optimization that will be useful in this work.
More thorough discussions can be found in [18], [20].

Let there be n robots in a known, convex polytope @ C
RY. An arbitrary point in @ is denoted g, the position of
the i*" robot is denoted p;, and the set of all robot positions
is denoted P = {p1,...,pn}- Let ¥V = {V1,...,V,,} be the
Voronoi partition of (), for which the robot positions are the
generator points. Specifically,

Vi={qe Q| llg—pill <llg—p;ll,Vj #i}.

Define the sensory function, ¢(q), as a scalar function, ¢ :
@ — R,. The function ¢(q) is not known by the robots in
the network, but the robots are equipped with sensors from
which a measurement of ¢(p;) can be derived at the robot’s
position p;.

Let the unreliability of the sensor measurement be de-
fined by a quadratic function f(||q — psll) = 3llg — pil*
Specifically, f(|l¢ — pi||) describes how unreliable is the
measurement of the information at ¢ by a sensor at p;
(henceforth, ||| is used to denote the ¢?-norm). This form
of f(|l¢ — p:||) is physically appealing since it is reasonable
that sensing will become more unreliable farther from the
Sensor.

We can formulate the cost incurred by the network sensing
over the region @) as

wp =3 [ glo-pitewdn
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Notice that unreliable sensing is expensive and high values
of ¢(q) are also expensive. An optimal network configuration
corresponds to a set of robot positions P that minimize (1).
Next we define three properties analogous to mass-
moments of rigid bodies. The mass of V; is defined as

My, = / ¢(q)dy, 2)
Vi
the first mass-moment (not normalized) is defined as
Ly, = / qé(q)dg 3
Vi
and the centroid of V; is defined as
Ly,
Cy = : 4
V=, 4)

Note that ¢(q) strictly positive imply both My, >0V V; #
{0} and Cy, € V;\0V; (Cy, is in the interior of V;). Thus
My, and Cly, have properties intrinsic to physical masses
and centroids. A standard result in locational optimization is

that

OH

Op;
Equation (5) implies that local minima of H correspond to
the configurations such that p, = C'y, Vi, that is, each agent
is located at the centroid of its Voronoi region. Thus, the
optimal coverage task is to drive the group of robots to what
is called a centroidal Voronoi configuration.

= —My,(Cv; — pi). (5)

III. DECENTRALIZED ADAPTIVE CONTROL

We will design a control law with an intuitive interpreta-
tion and prove that it causes the network to converge to a
near-centroidal Voronoi configuration. The control law will
integrate sensory measurements available to each robot to
form an on-line approximation of the centroids of its Voronoi
regions.

Let the dynamics of each robot be modeled by the first-
order equation

Di = Uy, 6)

where wu; is the control input. Since this work is primarily
concerned with the application of adaptive control to the de-
centralized coverage problem, simple dynamics were chosen
so as not to obscure the result. More complicated dynamics
can be accommodated.

Assume, furthermore, that the sensory function ¢(¢q) can
be parameterized as an unknown linear combination of a set
of known basis functions. This requirement is formalized in
the following two assumptions.

Assumption 1 (Matching Conditions): Ja € R and K :
Q— R, such that

¢(q) = K" (q)a, ©)

where the vector of basis functions K is available to each
agent, but the parameter vector a is unknown.
Assumption 2 (Lower Bound):

a(j) =B Vji=1,...,m, ®)
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where a(j) denotes the j!* element of the vector a, and
B > 0 is a known real bound. This assumption implies a
lower bound on ¢(gq) over Q.

We now introduce a number of definitions which will be
important in stating and proving the main stability result.
Let a,(t) be robot i’s approximation of the parameter vector.
Naturally, ¢; = K7 (¢)d; is robot i’s approximation of ¢(q).
Define the mass moment approximations

My, = / idg, )
Vi
Ly, = / qoidqg, and (10)
Vi
. Ly
Cy, = 24, (11)
My,

which are analogous to (2), (3), and (4) respectively. Next,
define the parameter error

a/z = dz A, (12)
and the mass moment errors
My, = | K"(q)asdg = My, — My, (13)
Vi
Ly, = / gK" (q)aidg = Ly, — Ly, (14)
Vv

k3

However, notice that OW = ivi / MVL, # C’w — Cy,. From
(11), (13), and (14) we find that

Ly, = My,Cy, + My,(Cy, — Cv,). (15)

This property will be useful in what follows. We also define
two error vectors, the actual error, e; = Cy, — p;, and the
estimated error ¢; = CA'V,L. — p;. Finally, in order to compress
the notation somewhat, we use the shorthand K; = K(p;(t))
for the value of the basis function vector at the position of
robot ¢, and ¢; = ¢(p;(t)) for the value of ¢ at the position
of robot i. As stated previously, robot ¢ can measure ¢; with
its sensors.
We now propose to use the control law

where k € R is a proportional control gain. The parameters
a; used to calculate C‘V are adjusted according to a set of
adaptation laws which are introduced below.

Firstly, we define two quantities, A;(t) and s;(¢), accord-
ing to the differential equations (with zero initial conditions)

Ai = —al; + ICZ'IC;T,

(16)

a7)

and

Si = —as; + Ingbl (18)

These quantities can be interpreted as integrals of the mea-
surements taken by the agent ¢ throughout its trajectory.
The time constant o determines how much to discount old
measurements ¢;(7), 0 < 7 < ¢, and can be considered a
“forgetting factor.”
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The adaptation law for a; is now defined as
bi = */ K(q)(q — Cv,)"dgé; — v (Nié; — s3),  (19)
V;

a; = T(b; — I,b;) (20)

where T € R™*™ is a diagonal, positive definite adaptation
gain matrix, and v € R, is an adaptation gain scalar. The
term b; is used as an intermediary placeholder to simplify the
expression. The diagonal matrix /g, is defined element-wise
as

0 for a;(j) >0

0 for a;(j) = 8 and b;(j) >0
1 otherwise

I, (j) = 2

where (j) denotes the j** element for a vector and the
4t diagonal element for a matrix. Equations (20) and (21)
implement a projection operation [14], [21] that prevents any
element of G; from dropping below the lower bound (. This
is done by forcing a;(j) = 0 whenever a;(j) = ( and
bi(j) < 0. The projection is desirable for two reasons: 1)
because the control law has a singularity at a; = 0, and 2)
because we know from Assumption 2 that the true parameters
are lower bounded by f.

The main result of this work is now stated as follows.

Theorem 1 (Convergence Theorem): Under Assumptions
1 and 2, for the system of agents with dynamics (6) and
the control law (16), with initial conditions A; =0, s; = 0,
Vi, and a;(j) > B Vi, j,

i) limy_se () =0  Vi=1,...,n (22

i) limg_oo K (T)ai(t) =0 VO<7<tand (23)
Vi=1,...,n.

Proof: We will define a lower-bounded function and

show that it is non-increasing along the trajectories of the

system, and that its time derivative is uniformly continuous.

Theorem 1 is then an implication of Barbalat’s lemma.
Let

n
1
V=H ~al kI 'a,. 24
+ ; 50i a (24)
Taking the time derivative of V' along the trajectories of the
system gives

e i
V:Z lapz pl—l—a?kl—‘ 1&;|,
i=1

and substituting from (5) and noticing that Qi = a; yields
n
V = Z |:(MV¢pi — MV?CVL)sz + &;Tkrildljl .
i=1

Now we make use of the property in (15) to write

V:

n
i=1
C

[(My,p; — My,Cv,) " p; +
vi(Cv,

vi — Ovi)Tp; +al kD 1a).
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Substituting for p; with (6) and (16), and simplifying with
Ly, = My, CV leads to

V=> [-My(Cv, —p)"k(Cv, —pi) +
i=1

(Lv, — My,Cv,)"k(Cy, — pi) + @] kT~ a).

Simplifying further with &; = C‘V — p; and expanding L and
M with (14) and (13) gives

V=Y [f My, éTke; +
i=1
( / al'KKqTdg — / alkct dq) ké; 4+ arl kr—lai]
i Vi
Collecting terms under the integral, and noticing the crucial
fact that a; is not a function of ¢ we get

v=>" [— My,eTke; +
i=1

afk/ K(q — Cv,)Tdgé; + &fkr*léi]
V;
Now we substitute for &i with (20) to get

n

V=— Z [Mve ké; + al ky(Nia; — s;) +
=1

(25)

aTkly, bl} ,

where the first term in the adaptive law (19) cancels the
integral term. Notice from (17) and (18) that, with zero initial
conditions,

Ai(t)z/o == (KT (7)dr

si(t) = /0 eI, (1) ¢ (7)dr

Substituting these into (25), combining terms under the
integral, and noting that a;(t) is not a function of 7 leads to

and

-3 [Mv,i eTke; + aTkIgb; +

Ty [ e IR () - outr)ar].

Using (7) and bringing the a@;(t) inside the integral in the
second term gives
v=-%" [Mvi T ke; + aTklgb; +
i=1

(26)

by /0 e=t=7) (KT (1) (1)) 2d7 .

Inside the sum, the first and third terms are clearly non-
negative. We focus momentarily on the second. Expanding
it as a sum of scalar terms, we see that the jth scalar term
is of the form

kai(§)1s: (3)bi(5)- (27)
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From (21), if a,(j) > B, or a;(j) = B and b;(j) > 0,
then Is,(j) = 0 and the term vanishes. Now, in the case

a;(j) = B and b;(j) < 0, we have a;(j) = a;(j) —a(j) <0
(from Assumption 2). Furthermore, I, (j) = 1 and b;(j) < 0
implies that the term is non-negative. In all cases, then, each
term of the form (27) is non-negative, and all three terms
inside the sum in (26) are non-negative. Thus V is negative
semi-definite.

Also, the facts that u; is continuous Vi, V has contin-
uous first partial derivatives, V' is radially unbounded, and
V<0 imply that V is uniformly continuous, therefore, by
Barbalat’s lemma lim, ., V' = 0, which directly implies
(22) from Theorem 1, and

t
lim e
t—o0 0

=) (KT (1) (t))?dr = 0
Vi=1,...,n.

(28)

Now notice that the integrand in (28) is non-negative, there-
fore it must converge to zero for all 7. Finally, e=*(=7) > 0
V0 <71 <t implies (23) from Theorem 1. [ |

Remark 1: The term KI'(7)a;(t) in (23) can be inter-
preted as the difference between any previously measured
value of ¢(q) and the current estimate, ¢;(q). Informally, this
assertion from Theorem 1 states that the estimate q@z(q) will
converge asymptotically to all previously measured values
of ¢(q). This does not, however, imply that ¢;(q) — ¢(q)
Vq € @, as this would require an extra persistent excitation
condition.

Remark 2: The tunable parameters k, I', v, and « can
potentially have different values for each agent without
affecting the stability proof. The less general from used here
was chosen for clarity.

A. Practical Algorithm

A practical method for implementing the proposed control
law on a network of robots is detailed in Algorithm 1. Notice
that the control law in (16) and adaptation law in (20) both
require the computation of integrals over V;, thus robot ¢
must be able to calculate continuously its Voronoi region.
Several algorithms exist for computing V; in a distributed
fashion, for example those given in [18], [22].

Algorithm 1 Adaptive Coverage Control Algorithm

Require: Each robot can compute its Voronoi region
Require: ¢(q) can be parameterized as in (7)
Require: a(j) are lower bounded as in (8)
Initialize A;, s; to zero, and a;(j) to 3
loop
Compute the robot’s Voronoi region
Compute OW according to (11)
Update a,; according to (20)
Update A; and s; according to (17) and (18)
Apply control input u; = —k(Cy. — p;)
end loop

Algorithm 1 is decentralized, fully distributed, and re-
quires minimal communication between neighboring robots.
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It can be used on teams of large robots, on teams of small
robots such as [23], or on mobile sensor network nodes
with limited computation and storage capabilities such as
the mobile Mica Motes described by [24].

IV. NUMERICAL SIMULATIONS
A. Implementation

Simulations were carried out in a Matlab environment.
The dynamics in (6) with the control law in (16), and the
adaptation laws in (20), (17), and (18) for a group of n =
20 robots were modeled as a system of coupled differential
equations. The Matlab numerical solver ode45 was used to
integrate the equations of motion of the group of robots.
The region () was taken to be the unit square. The sensory
function, ¢(g), was parameterized as a Gaussian network
with 9 Gaussians and a constant offset. In particular, for

K=[1 K(2) K(10) 17, each component, K(j) for
2 < j <10, was implemented as
1 _ (a—n;)?
K(j) = e T, (29)

gj \/ﬂ

where o; = .18. The unit square was divided into an even 3 x
3 grid and each p; was chosen so that one of the 9 Gaussian
was centered at the middle of each grid square. The parame-
ters were chosenasa =[ 3 1000 B8 --- (3 1000 |7,
with 8 = .1 so that only the lower left and upper right
Gaussians contributed significantly to the value of ¢(q),
producing a bimodal distribution.

The robots in the network were started from random initial
positions. Each robot used a copy of the Gaussian network
described above for K(q). The estimated parameters ; for
each robot were started at a value of 3, and A; and s; were
each started at zero. The gains used by the robots were k£ = 3,
I' =10"°I1p, v = 2 x 107 and « = 1. In practice, the first
integral term in the adaptive law (19) seems to have very little
effect on the performance of the controller. Choosing I' small
and ~ correspondingly large puts more weight on the second
term, which is responsible for integrating measurements of
¢(p;) into the parameters. The spatial integrals in (9), (10),
and (19) required for the control law were computed by
discretizing each Voronoi region V; into a 7 x 7 grid and sum-
ming contributions of the integrand over the grid. Voronoi
regions were computed in a centralized fashion using the
built-in Matlab function, although equivalent performance is
observed with a custom decentralized Voronoi algorithm. The
Matlab Voronoi command was used only for computational
speed.

B. Results

Figure 1 shows the positions of the robots in the network
over the course of a simulation run. The initial configuration
of the network is shown in Figure 1(a), the trajectories of the
agents (dashed lines) in Figure 1(b), and the final configu-
ration in Figure 1(c). The centers of the two contributing
Gaussian functions are marked with x’s. The somewhat
jagged trajectories are caused by the discrete nature of the
spacial integration procedure required by the control law. The
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Fig. 1.  The initial configuration of the network is shown in 1(a), the
trajectories of the robots (dashed lines) in 1(b), and the final configuration
in 1(c). The Gaussian centers of ¢(q) are marked by the red x’s.

jaggedness would be eliminated and overall computing speed
would be greatly enhanced if the integral could be computed
analytically as in [20]. Nonetheless, the performance of the
control scheme is clearly demonstrated in the simulation.

In figure 2 the first assertion (22) of Theorem 1 is
demonstrated for the same network of robots. The norm of
the estimated error averaged over all the robots is shown to
converge asymptotically to zero. This implies that the robots
move to the estimated centroid of their Voronoi regions.
We call such a configuration near-optimal. The jagged time
history is again attributed to the discrete spatial integral
computation which is a significant computational bottleneck.

The second assertion (23) of Theorem 1 is demonstrated in
figure 3. The plot shows the integral in (28) as a function of
time averaged over all the robots in the network converging
asymptotically to zero. This implies that the parameters
adjust in such a way that the estimate, qASZ-, matches all
previously measured values of ¢(q). As stated previously,
this does not imply that a; — a.

V. CONCLUSION

In this work we proposed an adaptive, decentralized
controller to drive a network of robots to a near-optimal
sensing configuration. The controller was proven to cause the
robots to move to the estimated centroids of their Voronoi
regions, while also causing their estimate of the sensory
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Fig. 2. The norm of the estimated error averaged over all the robots in
the network is shown as a function of time for a network of 20 robots. The
plot demonstrates the first assertion of Theorem 1.
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Fig. 3. The integrated ¢(q) error averaged over all the robots is shown for
the same network of 20 robots. The plot demonstrates the second assertion
of Theorem 1.

distribution to improve over time until all previous sensor
measurements fit the estimated sensory distribution. The
control law was demonstrated in numerical simulations of
a group of 20 robots sensing over an area with a bimodal
Gaussian distribution of sensory information.

This work can be expanded along several avenues. One
which is especially promising is to have robots share param-
eters with their neighbors through an agreement algorithm,
along the lines of [1]. Such an algorithm will allow each
robot to make use of the measurements of each other robot,
improving the speed and robustness of the overall function
approximation. Furthermore, we expect that the technique
used in this paper will find broader application beyond
the problem chosen here. For example, this control law
can be directly applied as an algorithm for adaptive vector
quantization. We hope that the approach will yield fruitful
combinations of adaptive control and decentralized control
to produce engineered agents that can cooperate with one
another while gathering information from their environment
to proceed toward a common goal.
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