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Abstract— In this paper we address the problem of de-
termining the relative pose of pairs robots that move on a
plane while measuring the distance to each other. We show
that the minimum number of distance measurements required
for the 3 degrees of freedom robot-to-robot transformation to
become locally observable is 3. Furthermore, we prove that the
maximum number of possible solutions in this case is 6, while a
minimum of 5 distance measurements is necessary in order to
uniquely determine the robots’ relative pose. Finally, we present
efficient algorithms for computing all possible solutions and
evaluate the validity of our theoretical results both in simulation
and experimentally.

I. INTRODUCTION AND RELATED WORK

In order to solve distributed estimation problems such
as cooperative localization, mapping, and tracking, robots
first need to determine their relative position and orienta-
tion (pose). This initial calibration process is necessary for
coordinating a robot team and registering measurements to
the same frame of reference. Since the accuracy of the rel-
ative (robot-to-robot) transformation can significantly affect
the quality of a sensor fusion task (e.g., tracking a target
using observations from multiple sensors), it needs to be
determined precisely. Mobile robots that move on a plane and
use distance and bearing sensors (e.g., laser scanners, stereo
cameras) can uniquely determine their relative pose by pro-
cessing 1 distance and 2 relative bearing measurements [1].
However, due to cost, power, and processing constraints,
robots often have to rely on sensors that provide only
distance measurements. In these cases alternative algorithms
and motion strategies are necessary in order to determine the
unknown robot-to-robot transformation.

Most current research on applications of range sensing
has focused on designing algorithms that process distance
measurements to determine only the position of each node in
a static network of sensors [2], or the position and orientation
of a mobile robot when static beacons are deployed within
an area of interest [3]. In the case of networks of sensors,
a variety of algorithms based on convex optimization [4]
and Multi Dimensional Scaling (MDS) [5], have been em-
ployed to localize the sensor nodes. Additionally, distributed
approaches that reduce the communication requirements and
better balance the computational load among sensors have
also received significant attention in the related literature
(e.g., [6], [7]). In all these cases, the objective is to determine
only the position of the sensor nodes with respect to anchor
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Fig. 1. A simplistic approach to determine an initial estimate for the
robot-to-robot relative transformation using 6 distance measurements. The
dark (light) triangles denote the location of robot R1 (R2), and ti, ti...j ,
i, j ∈ {1, 6} indicate the time step(s) that a robot remains at a certain
location.

nodes that can globally localize via GPS measurements.
Similarly, in the case of mobile robots the emphasis is on
using distance measurements to localize robots with respect
to static beacons [3], for example, and not on computing
the relative pose of the robots. However, determining the
robot-to-robot transformation is a prerequisite for efficiently
coordinating the motion of teams of robots and expressing
measurements in a common frame of reference.

The problem we are interested in is that of directly
computing the 3 degrees-of-freedom (d.o.f.) transformation
between cooperating robots using distance measurements.
Specifically, we consider pairs of robots1 equipped with
odometric sensors for tracking their motion and a range
sensor for measuring the distance to each other. In this
case, if no prior information about their relative position
and orientation is available, a human operator will need
to manually measure the transformation between the two
robots before they can be deployed to perform their assigned
task. This tedious process, however, limits the accuracy of
the robot-to-robot transformation and increases the cost of
deploying large teams of robots due to the time and effort
required.

A straightforward approach to automating this initial cal-
ibration process is for the robots to move randomly, col-
lect distance measurements, and then compute their relative
transformation using an iterative least squares algorithm. The
problem in this case is that any iterative process applied
to minimize the non-linear, in the unknown variables, cost
function relies on the existence of an accurate initial estimate
in order to converge to the correct solution. Additionally,
since the minimum number of range measurements necessary
is not known a priori, a conservative strategy would require
the robots to spend excessive time and energy measuring

1The extension to the problem of multiple robot teams is straightforward
once a solution to the pair-wise problem is determined.
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their distance numerous times. Instead it would be beneficial
for the robots to follow a two-step process: (i) Employ
a non-iterative algorithm to process the minimum number
of distance measurements required to compute an initial
estimate of their relative transformation. (ii) Apply iterative
least squares to refine this initial estimate using additional
range measurements. This second step can be repeated until
the user-specified level of accuracy is reached.

A simplistic method to compute an initial estimate for the
3 d.o.f. transformation would require the robots to follow a
sequence of coordinated motions and measure distances to
each other at certain locations and time instants. Specifically,
as shown in Fig. 1, if robot R2 remains static while R1

measures its distance to R2 at 3 different locations (time
instants t1, t2, and t3), the position of R2 with respect to
R1 can be uniquely determined. In order to also compute
their relative orientation, robot R2 will need to move to a
new location and remain again static till robot R1 records
another 3 distance measurements (time instants t4, t5, and
t6) and triangulates the new relative position of robot R2.
Using these 2 inferred relative position measurements and
knowing the direction of motion of R2 (computed from
its own odometry), the relative orientation between the 2
robots can be uniquely determined. The main drawback of
this approach is that it requires tight coordination between
the robots for performing the sequence of necessary motions
and recording the distance measurements at the appropriate
locations. Additionally, this initial calibration phase delays
the onset of the actual robot task which can be detrimental
in time-critical situations involving large robot teams.

In this paper, we address this problem by developing non-
iterative algorithms for computing the initial estimate of the
3 d.o.f. robot-to-robot transformation without restricting their
motion. Specifically, we prove that when 2 robots move
randomly and collect 3 distance measurements at different
locations, the maximum number of possible solutions is 6
(cf. Lemma 1, Section II). When 4 range measurements
are available, we show that there can exist no more than
4 solutions (cf. Lemma 2, Section III). Furthermore, in Sec-
tion IV (cf. Lemma 3) we prove that the minimum number
of distance measurements necessary in order to uniquely
determine the relative pose of the robots is 5 (instead of 6
based on the simplistic method outlined in Fig. 1). Efficient
algorithms for computing all possible solutions for the cases
described above are presented. Additionally, we provide a
novel linear algorithm for determining the unique solution
(i.e., when 5 range measurements are available) that mini-
mizes the numerical error in the computed transformation (cf.
Section IV-B). In Section V, we describe the iterative least
squares algorithm that uses additional range measurements
to refine the initial estimate for the unknown robot-to-robot
transformation. Finally, in Section VI, we present simulation
and experimental results that verify the validity of our
theoretical analysis.

II. DETERMINING THE RELATIVE POSE FROM 3
DISTANCE MEASUREMENTS: AT MOST 6 SOLUTIONS

Consider two robots R1 and R2 whose initial poses
are indicated by the frames of reference {1} and {2}
respectively (cf. Fig. 2). The two robots move randomly
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Fig. 2. The trajectories of robots R1 and R2. The odd (even) numbered
frames of reference depict the consecutive poses of robot R1 (R2). dij ,
i ∈ {1, . . . , 2n − 1}, j ∈ {2, . . . , 2n} denotes the distance between the
two robots when aligned to frames {i} and {j} respectively.

through a sequence of poses {1}, {3}, . . . , {2n − 1} for
R1, and {2}, {4}, . . . , {2n} for R2 and measure their dis-
tance dij , i ∈ {1, . . . , 2n − 1}, j ∈ {2, . . . , 2n} at each
of these locations.2 Additionally, the robots are equipped
with odometric sensors for estimating their poses with re-
spect to their initial frames of reference. That is, robot
R1 estimates the position vectors 1p3, . . . ,

1p2n−1 and the
angles 1φ3, . . . ,

1φ2n−1 necessary for determining the ro-
tational matrices 1

3C, . . . , 1
2n−1C. Similarly the quantities

2p4, . . . ,
2p2n and 2φ4, . . . ,

2φ2n (and hence 2
4C, . . . , 2

2nC)
are estimated by robot R2 from its own odometry.

Our goal is to use the odometry-based estimates and the
n distance measurements to determine the maximum number
of solutions for the 3 d.o.f. relative transformation between
the two robots, i.e., their relative position 1p2 and orientation
1φ2 = φ, or equivalently θ and φ, with3

1p2 = ρ

[
cθ
sθ

]
, 1

2C =
[
cφ −sφ
sφ cφ

]
(1)

Note that ρ = d12 is measured and consider known.
We first address the case when n = 3 distance mea-

surements (d12, d34, and d56) are available and prove the
following lemma:

Lemma 1: Given 3 distance measurements between the
two robots at 3 different locations, the maximum number of
possible solutions for the 3 d.o.f. robot-to-robot transforma-
tion is 6.

We proceed by substituting the geometric relations for the
position vectors 3p4, 5p6 (cf. Fig. 2)

3p4 = 1
3C

T (1p2 + 1
2C

2p4 − 1p3) (2)
5p6 = 1

5C
T (1p2 + 1

2C
2p6 − 1p5) (3)

in the following expressions for the distance measurements
d34 and d56, respectively:

d2
34 = 3pT

4
3p4 , d2

56 = 5pT
6

5p6 (4)

2Without loss of generality, we assume that only one of the robots records
range measurements at each location. If both robots measure the same
distance, the two measurements can be combined to provide a more accurate
estimate of their distance.

3From here on we use the concatenated forms cα and sα to denote the
sin and cos functions of a real number α.
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After rearranging terms and substituting ρ2 = d2
12 for

1pT
2

1p2, these can be written as:

0.5(d2
34 − ρ2 − 2pT

4
2p4 − 1pT

3
1p3) =

(1p2 − 1p3)T 1
2C

2p4 − 1pT
2

1p3 (5)

0.5(d2
56 − ρ2 − 2pT

6
2p6 − 1pT

5
1p5) =

(1p2 − 1p5)T 1
2C

2p6 − 1pT
2

1p5 (6)

Note that the quantities on the left-hand side of these last
two equations are known (measured or estimated), while the
unknown variables θ and φ (embedded in 1p2 and 1

2C) only
appear in the right-hand side expressions.

Eq.s (5) and (6) form a system of 2 non-linear equations in
the 2 unknowns θ and φ. Applying standard numerical tech-
niques, such as Newton-Raphson [8], for solving this system
has a number of drawbacks. Firstly, iterative processes often
require a large number of steps before converging to a
solution. Secondly, in order for the algorithm to converge to
the correct answer, initial estimates close to the true values
of the unknown variables need to be specified. In practice,
however, no such information is available; the only prior
knowledge we have for θ and φ is that they lie within
the interval [0, 2π). Furthermore, in the particular case
where only n = 3 distance measurements are available, the
total number of solutions that need to be determined is 6.
To compute all possible roots, the initial estimates for the
unknowns θ and φ will need to span a wide range of values
within the 2-dimensional region [0, 2π) × [0, 2π). Such
procedure would require a large number of initializations of
the iterative process with no guarantees that all 6 solutions
will be computed.

Instead we hereafter describe an elimination process to
remove the quantities cθ, sφ, cφ from the expression in
Eq.s (5) and (6) which results in a 6th order polynomial in the
unknown variable y = sθ; all solutions of this polynomial
can be determined through efficient algorithms. The idea
behind this approach is similar to the Gaussian Elimination
in linear systems of equations. Due to space limitations only
the main steps of this process are shown while reassignment
of variables is used to preserve the clarity of presentation.

By substituting the displacement estimates (known from
odometry) for the two robots:

1p3 =
[
a1

a2

]
, 2p4 =

[
a3

a4

]
, 1p5 =

[
b1

b2

]
2p6 =

[
b3

b4

]

in Eq.s (5) and (6), we have:

(ρa3cθ + ρa4sθ − a6)cφ + (ρa3sθ − ρa4cθ − a7)sφ =
a5 + ρ(a1cθ + a2sθ) (7)

(ρb3cθ + ρb4sθ − b6)cφ + (ρb3sθ − ρb4cθ − b7)sφ =
b5 + ρ(b1cθ + b2sθ) (8)

with a5 � 0.5(d2
34 − ρ2 − 2pT

4
2p4 − 1pT

3
1p3)

a6 � a2a4 + a1a3 , a7 � a2a3 − a1a4

b5 � 0.5(d2
56 − ρ2 − 2pT

6
2p6 − 1pT

5
1p5)

b6 � b2b4 + b1b3 , b7 � b2b3 − b1b4

Eq.s (7) and (8) can be written in a matrix form as:[
u1 v1

u2 v2

] [
cφ
sφ

]
=

[
w1

w2

]
(9)

where

u1 � ρa3cθ + ρa4sθ − a6 , v1 � ρa3sθ − ρa4cθ − a7

u2 � ρb3cθ + ρb4sθ − b6 , v2 � ρb3sθ − ρb4cθ − b7

w1 � a5 + ρ(a1cθ + a2sθ) , w2 � b5 + ρ(b1cθ + b2sθ)

Note that Eq. (9), is linear in the unknowns cφ and sφ.
Solving for these two variables we have:[

cφ
sφ

]
=

1
det

[
v2w1 − v1w2

u1w2 − u2w1

]
(10)

where, det = u1v2−u2v1. Substituting the above expressions
for cφ and sφ in the trigonometric constraint sφ2 +cφ2 = 1,
results in a single equation in the variables cθ and sθ

(v2w1 − v1w2)2 + (u1w2 − u2w1)2 = (u1v2 − u2v1)2

⇒(v2
2 + u2

2)w
2
1 + (v2

1 + u2
1)w

2
2 − 2(v1v2 + u1u2)w1w2

= (u1v2 − u2v1)2 (11)

As described in [9], the terms v2
2 +u2

2, v2
1 +u2

1, v1v2 +u1u2,
and u1v2 − u2v1 are all linear in cθ and sθ, while w2

1 , w2
2 ,

w1w2 are all quadratic in the same quantities. Hence Eq. (11)
is a 3rd order polynomial in x � cθ and y � sθ, and can be
written in the following simpler form:

f1 =m9x
3 + m8x

2y + m7xy2 + m6x
2 + m5xy + m4x+

m3y
3 + m2y

2 + m1y + m0 = 0 (12)

where the constants m0, . . . ,m9 are functions of known
quantities [9]. The final step in the elimination process is
to invoke the trigonometric constraint

f2 = x2 + y2 − 1 = 0 (13)

to eliminate x from Eq. (12) by using the Sylvester Resul-
tant [10]. Specifically, by multiplying Eq. (12) with x, and
Eq. (13) with x and x2 and rewriting all these equations in
a matrix form, we have:




s3 s2 s1 s0 0
0 s3 s2 s1 s0

1 0 y2 − 1 0 0
0 1 0 y2 − 1 0
0 0 1 0 y2 − 1







x4

x3

x2

x
1


 =




0
0
0
0
0


 (14)

where s0 � m3y
3 + m2y

2 + m1y + m0

s1 � m7y
2 + m5y + m4

s2 � m8y + m6 , s3 � m9

For the polynomials in Eq.s (12) and (13) to have common
roots, the determinant of the Sylvester matrix above must be
equal to zero. It can be shown [9] that the determinant is a
6th order polynomial in the single variable y:

g2 = y6 + n5y
5 + n4y

4 + n3y
3 + n2y

2 + n1y + n0 (15)

where the constants n0, . . . , n5 are functions of the known
quantities m0, . . . ,m9. Therefore, the maximum number of
possible solutions, including complex roots, is 6.

There are many standard methods to compute the roots of
a single variable polynomial [11]. Our approach is based on
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the eigen-decomposition of the 6×6 companion matrix [12]:


0 −n0

1 0 −n1

. . .
...

1 −n5




While this method will determine all 6 roots of the poly-
nomial, only the real ones are of practical interest since
they have a geometric interpretation. Once y is known, x
is determined by computing the null space of the matrix in
Eq. (14).

To prove our claim that there exist at most 6 solutions
for (θ, φ), we need to show that for every solution of y (cf.
Eq. (15)), only one solution for x can be found (cf. Eq. (12)).
To do this, we need to use Groebner bases [13]. One base,
g2, is exactly the same as the polynomial in Eq. (15), and
g1 has the form

g1 = x + k5y
5 + k4y

4 + k3y
3 + k2y

2 + k1y + k0

where the constants k0, . . . , k5 are functions of the known
quantities [9]. Therefore, for every value of y there is only
one solution of x corresponding to it. In fact we can draw
the same conclusion without computing the Groebner basis.
All we need to do is to show that the leading term of g1,
LT(g1) is linear in x. This can be easily seen by using the
definition of a Groebner basis. A set {g1, . . . , gs} ⊂ I is a
Groebner basis of an ideal I if and only if the leading term
of any element of I is divisible by one of the LT(gi). We
can construct one element q of the ideal I =< f1, f2 > by
setting

q = f1 − (m9x + m8y + m6)f2

= (m7 − m9)xy2 + (lower order terms)

Since the leading term LT(q)=(m7 − m9)xy2 must be di-
visible by LT(g1), the degree of x in LT(g1) has to be 1.
Equivalently, g1 is linear in x. Hence, the total number of
distinct solutions for (x, y) remains 6.

Finally, φ is uniquely determined by back substitution of
x = cθ and y = sθ in Eq. (10). The total number of real
roots in each case will depend on the robot trajectories. A
situation where 6 real solutions exist is shown in Fig. 4.

III. DETERMINING THE RELATIVE POSE FROM 4
DISTANCE MEASUREMENTS: AT MOST 4 SOLUTIONS

Consider now the case where the robots R1 and R2

continue their paths shown in Fig. 2 and move to the
new poses {7} and {8}, respectively, where they record
an additional distance measurement d78. We will prove the
following:

Lemma 2: Given 4 distance measurements between the
two robots at 4 different locations, the maximum number of
possible solutions for the 3 d.o.f. robot-to-robot transforma-
tion is 4.

We proceed in a similar manner as for the case of 3 dis-
tance measurements. Specifically, the new position estimates
for the two robots at the locations where they record their
4th distance measurement

1p7 =
[
e1

e2

]
, 2p8 =

[
e3

e4

]

are related through the geometric constraint (analogous to
Eq. (2)):

7p8 = 1
7C

T (1p2 + 1
2C

2p8 − 1p7) (16)

Substituting in the expression for the new distance measure-
ment d2

78 = 7pT
8

7p8, results in the following equation:

0.5(d2
78 − ρ2 − 2pT

8
2p8 − 1pT

7
1p7) =

(1p2 − 1p7)T 1
2C

2p8 − 1pT
2

1p7 (17)

Following the same algebraic process as in the previous
section we have:

(ρe3cθ + ρe4sθ − e6)cφ+(ρe3sθ − ρe4cθ − e7)sφ =
e5 + ρ(e1cθ + e2sθ) (18)

where e1, . . . e7 are defined as before. Rearranging Eq.s (7),
(8), and (18) in a matrix form, we have:

u1 v1 −w1

u2 v2 −w2

u3 v3 −w3





cφ

sφ
1


 =


0

0
0


 (19)

where the ui’s, vi’s, and wi’s, i = 1, 2, 3, are functions of
sθ, cθ, and known (measured or estimated) quantities. For
the above system to have non-zero solutions, the determinant
of the coefficient matrix must vanish, i.e.,

(u1v2 − u2v1)w3 + (v1u3 − v3u1)w2

+(u2v3 − u3v2)w1 = 0

Note that the terms u1v2−u2v1, v1u3−v3u1, and u2v3−u3v2

are again all linear in x � cθ and y � sθ and so are w1,
w2, and w3, which makes the above polynomial quadratic
in x and y [9]. Following the same elimination procedure as
in Section II, we arrive at a 4th order polynomial in y

n4y
4 + n3y

3 + n2y
2 + n1y + n0 = 0 (20)

where n0, . . . , n4 are known constants [9]. In this case the
maximum number of possible solutions for y is 4. Once y
is determined, back-substitution allows us to determine x.
Finally, sφ and cφ are retrieved by computing the null space
vector of the coefficient matrix in Eq. (19).

IV. DETERMINING THE RELATIVE POSE FROM 5
DISTANCE MEASUREMENTS: UNIQUE SOLUTION

We now treat the case where the robots R1 and R2 move
again and arrive at the locations {9} and {10}, respectively.
At that point, they record their 5th distance measurement
d9,10 and also have available the additional estimates for
their positions 1p9 and 2p10. We will first prove that in this
case at most one solution exists (Section IV-A) and then
propose an efficient and robust algorithm for computing its
value (Section IV-B).

A. Unique solution

Lemma 3: Given 5 distance measurements between the
2 robots at 5 different locations, there exists at most one
solution for the 3 d.o.f. robot-to-robot transformation.

Following the same procedure as in Section II, we arrive
at the following 4 equations (3 of these are the same ones as
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in Eq. (19) and the 4th one is computed in a similar manner
using the latest distance measurement):

uicφ + visφ = wi , i = 1 . . . 4 (21)

where the ui’s, vi’s, and wi’s, are functions of cθ, sθ,
and known constants [9]. Choosing 2 out of any of these
4 equations, and using the elimination process detailed in
Section II, we can derive 6 polynomial equations each of
6th order in the unknown variable y = sθ:

ξ6,jy
6 + . . . + ξ1,jy + ξ0,j = 0 (22)

where the ξi,j’s, i, j = 1 . . . 6, are functions of measured
and estimated quantities. By rewriting these polynomials in
matrix form, we have:


ξ6,1 . . . ξ1,1

...
. . .

...
ξ6,6 . . . ξ1,6







y6

...
y


 = −




ξ0,1

...
ξ0,6


 (23)

Solving this linear system of equations for the vector y =[
y6 . . . y

]T
, allows us to uniquely determine the value of

the unknown y. Once y = sθ is uniquely determined, the
remaining unknowns, sθ, cφ, and sφ, can be computed via
back-substitution as in the previous two cases [9].

B. Efficient Computation of the Unique Solution

The approach for computing the unique solution presented
in the previous section, requires to repeat the elimination
procedure of Section II 6 times. In addition to being time
consuming, this method may result in incorrect values for
the robot-to-robot transformation or even fail due to the
accumulation of numerical errors. In this section, we present
an alternative approach based on a linear algorithm that
efficiently computes the unique solution given 5 distance
measurements.

As described in Sections II, III, and IV-A, for each of the
last 4 distance measurements, d34, . . . , d9,10, we can write an
equation similar to Eq. (7), repeated below after rearranging
terms and renaming the known quantities αi,j’s:

α7,jcφ + α6,jsφ + α5,jcθ + α4,jsθ − α3,jc(θ − φ)
− α2,js(θ − φ) + α1,j = 0 , j = 1 . . . 4

The unknowns in these 4 equations are cφ, sφ, cθ, sθ, c(θ−
φ), s(θ − φ). Rewriting them in a matrix form, we have




α7,1 . . . α1,1

...
. . .

...
α7,4 . . . α1,4







cφ
sφ
cθ
sθ

c(θ − φ)
s(θ − φ)

1




=




0
...
0


 ⇐⇒ Ax = 0

where A is the 4 × 7 coefficient matrix (known), and x
is the unknown vector we want to solve for. Once we have
computed the three vectors r, s, and t that span the null
space of A, x can be written as:

x = λ1r + λ2s + λ3t (24)

for some scalars λ1, λ2, λ3. To determine their values, we
use the trigonometric identities

c2φ + s2φ = 1, c2θ + s2θ = 1, c2(θ − φ) + s2(θ − φ) = 1
cθcφ + sθsφ = c(θ − φ), sθcφ − cθsφ = s(θ − φ) (25)

and λ1r7 + λ2s7 + λ3t7 = 1 (26)

where r7, s7, and t7 denote the 7th scalar elements of vectors
r, s, and t, respectively. Substituting the corresponding
elements of x from Eq. (24), in the constraints (25), and
eliminating λ3 using Eq. (26), we obtain the following
system of equations:




β1,1 . . . β1,5

...
. . .

...
β5,1 . . . β5,5







λ2
1

λ2
2

λ1λ2

λ1

λ2


 =




ε1

...
ε5




where βi,j’s, i, j = 1 . . . 5 and εi’s are functions of
known quantities [9]. This system can be solved to uniquely
determine the unknown vector [λ2

1 λ2
2 λ1λ2 λ1 λ2]T . Given

the values of λ1 and λ2, λ3 is computed from Eq. (26). At
this point the vector x (cf. Eq. (24)) is uniquely determined.
The unknown robot-to-robot transformation can be retrieved
from the first 4 elements of x.

V. DETERMINING THE RELATIVE POSE FROM MORE

THAN 5 DISTANCE MEASUREMENTS

When more than 5 distance measurements are available to
the robots, their relative pose can be computed with higher
accuracy. To do so we follow a two step procedure: (i) We
process 5 of these distance measurements to compute an
initial estimate for the 3 d.o.f. transformation (cf. Section IV-
B), (ii) We use this initial estimate in a weighted least squares
algorithm that processes all distance measurements available.
We hereafter describe the second step of this process.

Assume that the robots have recorded n distance measure-
ments, which are used to form a system of n − 1 nonlinear
equations equivalent to Eq. (7). Rearranging terms, these can
be written in a compact form as

h(x,u) = 0 (27)

where x = [θ, φ]T is the vector of unknowns, and u =
[ 1pT 2pT zT ]T is the vector of the known quantities: 1p =
[ 1pT

3
1φ3 · · · 1pT

2n−1
1φ2n−1 ]T estimated by robot R1,

2p = [ 2pT
4

2φ4 · · · 2pT
2n

2φ2n ]T estimated by robot R2,
and z = [ d12 · · · d(2n−1)(2n) ]T the distances measured by
the robots.

Since 1p, 2p, and z are estimated or measured indepen-
dently, the covariance matrix P of u has a block diagonal
structure:

P =


P11 0 0

0 P22 0
0 0 R




where P11 = E[1p̃1p̃T ] (P22 = E[2p̃2p̃T ]) is the covari-
ance matrix for 1p (2p), and R = σ2

dij
In×n is the covariance

matrix for the noise in the distance measurements dij , with
σdij

denoting the standard deviation in each of them.
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Given the estimate û of u (from the robots’ odometry and
the recorded distance measurements) and the initial estimate
x̂1 of x computed based on the method of the previous
section, the weighted least squares algorithm computes the
new estimate for x through the following iterative process:

x̂κ+1 = x̂κ − [HT
x (HuPHT

u )−1Hx]−1HT
x (HuPHT

u )−1h(x̂κ, û)

where Hx =
∂h
∂x

|x=x̂κ
, Hu =

∂h
∂u

|u=û

are the Jacobians of the nonlinear function h evaluated using
the current estimates for x and u. The detailed expressions
for these matrices are presented in [9].

At this point a comment is necessary on observability.
In order for the iterative least squares process to converge,
the robot-to-robot transformation needs to be observable.
There exists a large number of singular configurations where
the matrix Hx looses rank (e.g., when 1p3 = 1p5 and
2p4 = 2p6). In these cases, the robots will need to move to
new locations and acquire additional range measurements. A
detailed study of the observability of the system along with
a list of cases when it becomes unobservable is presented
in [9].

VI. SIMULATION AND EXPERIMENTAL RESULTS

1) Simulations: The purpose of our simulations is to ver-
ify the validity of the presented algorithms, and demonstrate
the accuracy and robustness of the method presented in
Section IV-B (vs. that of Section IV-A) for computing the
relative pose of the two robots using 5 distance measure-
ments.

In our simulations we randomly generated 100 trajectories
for the robots and computed the distances between them at
distinct points. The trajectories and distance measurements
were generated as follows: (i) The two robots start at initial
positions 10 m apart from each other and record their first
distance measurement. (ii) Each robot rotates and moves
approximately 10 m towards a direction selected randomly
from a uniform distribution over [0, 2π). (iii) The robots
record their distance measurement at the current position.
Steps (ii) and (iii) were repeated until 5 distance measure-
ments were collected. While moving, the robots estimate
their position and orientation independently based on their
odometric measurements. In this case, the standard deviation
of the noise in the robots’ linear and rotational velocity
measurements was set to 0.02 m/sec and 0.01 rad/sec, re-
spectively. The standard deviation of the noise in the distance
measurements was 5 cm.

The solutions for the relative pose of the two robots
were computed using 3, 4, and 5 distance measurements.
An example of the 6 possible robot-to-robot transformations
when 3 distance measurements are available is shown in
Fig. 4. In order to evaluate the accuracy of the method of
Section IV-B compared to that of Section IV-A, we have
computed the mean error and the standard deviation for the
unknown quantities θ, φ over 100 trials. These results are
shown in Table I.

As evident, both the mean value and the standard deviation
of the error in the estimates computed using Algorithm IV-
B, are significantly smaller than those from Algorithm IV-
A. Furthermore, for higher values of measurement noise,

TABLE I

5 MEASUREMENTS CASE
Algorithm IV-A Algorithm IV-B

θ mean error (rad) 0.0317 0.0225
φ mean error (rad) 0.1042 0.0100
θ error std (rad) 0.0843 0.0265
φ error std (rad) 0.0259 0.0097
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Fig. 3. The trajectories of the two robots and the locations where distance
measurements were recorded.

Algorithm IV-A fails to compute the correct solution in 15%
of the cases compared to a 4% failure rate for Algorithm IV-
B. Failure in this context is considered the case when
the error in the estimate is larger than 3σ, where σ is
obtained from the diagonal elements of the covariance matrix
[HT

x (HuPHT
u )−1Hx]−1 computed subsequently using the

iterative weighted least squares algorithm.
2) Experiments: For our experiments we deployed two

identical Pioneer II robots within an area of 4 m × 5 m
(cf. Fig. 3). The robots estimated their poses with respect
to their initial locations using linear and rotational velocity
measurements from their wheel-encoders. An overhead cam-
era mounted on the ceiling of the room was used to provide
ground truth for evaluating the errors in the computed esti-
mates. Additionally, using the position measurements from
the camera, we were able to compute the distances between
them and control their accuracy by adding noise in these
measurements.

We have tested the algorithms presented in this work for
the cases where 3-6 distance measurements were available to
the robots. In this experiment, the standard deviation of the
noise in the distance measurements was set to σ=0.01 m. The
solutions with 3, 4, and 5 distance measurements are shown
in the first three columns of Table II. Note that for the case
of 3 or 4 distance measurements, only the solutions which
are closest to the true value (last column, computed using
the camera) are included. Finally, using as initial estimate the
value of the relative pose computed from Algorithm IV-B and
5 distance measurements, we have tested the iterative least
squares algorithm for the case of 6 distance measurements.
The computed estimates in this case are shown in the 4th

column of Table II.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented efficient algorithms for solving
the relative pose problem for pairs of robots moving on a
plane using only robot-to-robot distance measurements. Non-
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Fig. 4. An experiment with 6 real solutions. Solution 4 is the true robot configuration. The distance measurements are depicted by circles centered at
robot R1 with radii equal to the distance to robot R2 at each location.

TABLE II

RESULTS WITH 3, 4, 5, 6 DISTANCE MEASUREMENTS
No. meas. 3 4 5 6 Cam
θ (rad) -0.9490 -0.9469 -0.9319 -0.8985 -0.9160
φ (rad) 0.3312 0.3286 0.3328 0.3408 0.3280

iterative algorithms for computing the initial estimate of the
3 d.o.f. transformation were presented for the cases when
3, 4 and 5 distance measurements were available. We have
shown that the maximum number of solutions for the above
cases are 6, 4, and 1 respectively (i.e., at least 5 distance
measurements are required to uniquely solve for the initial
relative robot pose). Furthermore, we presented a novel linear
algorithm for computing the unique solution that is robust to
numerical errors. Finally, an iterative weighted least squares
algorithm was used to further refine the initial relative
pose estimate provided by the non-iterative algorithm. Our
approach does not require any robot coordination or specific
motion strategies, thus increasing the flexibility of robot
control. One future extension of this work is the analysis
of the relative robot transformation in 3D. In this case, the
transformation that we need to solve for has 6 d.o.f. which
makes the problem significantly more challenging.
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