
Oracular Partially Observable Markov Decision Processes: A Very

Special Case

Nicholas Armstrong-Crews

Robotics Institute, Carnegie Mellon University

narmstro@cs.cmu.edu

Manuela Veloso

CS Department, Carnegie Mellon University

veloso@cs.cmu.edu

Abstract— We introduce the Oracular Partially Observable
Markov Decision Process (OPOMDP), a type of POMDP in
which the world produces no observations; instead there is an
“oracle,” available in any state, that tells the agent its exact state
for a fixed cost. The oracle may be a human or a highly accurate
sensor. At each timestep the agent must choose whether to take a
domain-level action or consult the oracle. This formulation com-
prises a factorization between information-gathering actions
and domain-level actions, allowing us to characterize the value
of information and to examine the problem of planning under
uncertainty from a novel perspective. We propose an algorithm
to capitalize on this factorization and the special structure of
the OPOMDP, and we test the algorithm’s performance on a
new sample domain. On this new domain, we are able to solve a
problem with hundreds of thousands of action-states and vastly
outperform a previous state-of-the-art approximate technique.

I. INTRODUCTION

The Oracular POMDP is like a traditional POMDP except

there is an oracle that takes the place of observations. The

oracle is an information source with full knowledge that

is equally accessible regardless of belief or state; however,

there is a cost to invoke the oracle. Despite having no

observations, the system is still “partially observable” in that

actions produce non-deterministic transitions between states

and thus the agent is afflicted by uncertainty.

The presence of an oracle corresponds to many real-world

situations, such as humans or robot sensors of high precision.

Although we are studying environments with both observa-

tions and an oracle, in this paper we focus on OPOMDPs

with only the oracle.

POMDPs provide an elegant and general framework for

many realistic problems, but unfortunately are computation-

ally intractable, in general [1] [2]. MDPs can be solved

much more efficiently, but do not provide as rich or realistic

a framework. Therefore, it is of practical significance to

investigate frameworks “between” these extremes on the

spectrum of observability, to achieve richly representative

and efficient solution techniques. Some examples of such

frameworks between POMDPs and MDPs are unobservable

MDPs [3], which are POMDPs which produce no observa-

tions; Zubek and Dietterich’s even-odd POMDPs [4], which

acquire perfect state information at every other timestep;

and Hansen’s POMDP variant, which has no observations

but acquires perfect information at finite intervals [5]. While

covering much the same scenario, [5] does not analyze the

special case in detail, proposes an algorithm with no better

computational guarantees than standard POMDP algorithms,

and indeed applies that algorithm to general POMDPs.

Finally, Jaulmes et al. use the concept of an oracle in [6],

though only for learning POMDP models and not at all in

solving them.1

The OPOMDP is our contribution to this set of frame-

works. It is a particularly useful one, insofar as it affords

several advantages over general POMDP techniques. Most

work on general POMDPs concentrates on finding vectors

to represent the value function in continuous belief space

[7] [8] [9] [10]; OPOMDPs open up the ability to consider

the value function as a non-stationary function over discrete

state space, a much more compact representation. Further-

more, the lack of observations in the OPOMDP allows

for complete factorization of information-gathering actions

and state-altering (or domain-level) actions. We present an

approximate algorithm, called JIV or JMDP Information

Value, that takes advantage of these characteristics and runs

in polynomial time. JIV can be viewed as an extreme of

“belief-points” approaches, such as PBVI [11], HSVI2 [12],

and PERSEUS [13]; it partially relies on QMDP [14], but does

not suffer its shortcomings (i.e., JIV will choose information-

gathering actions when necessary). As no domain exists in

the literature that fits the OPOMDP framework, we introduce

a new domain and show that JIV solves it quickly and

effectively. We also scale up this new domain and show that

JIV scales quite well, outperforming HSVI2 by several orders

of magnitude on the largest instance.

II. THE OPOMDP, FORMALLY

We define OPOMDPs following the same formalism as

MDPs and POMDPs, which we now review.

A. MDPs and POMDPs

The Markov Decision Process, or MDP, is a framework

for modeling an agent moving stochastically among a finite

set of states via probabilistic transitions influenced by the

agent’s choice of actions. The agent’s next state is only

dependent upon its previous state and its current choice of

action. The agent receives a reward signal at each timestep,

associated with the current state and action. In this paper, we

consider the case of discounted reward and infinite horizon.

The tuple (γ, s0,S,A, T ,R) specifies the MDP: γ is the

scalar discount factor; s0 is the initial state; S is the set of

1We developed both the concept and the term “oracle” independently
from Jaulmes et al. – suggesting the term is descriptive and the concept
useful.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC3.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2477

all states in the world; A is the set of all possible actions;

T : S × A 7→ Π(S) is the state transition function, written

T (s, a, s′) for the transition s to s′; and R : S ×A 7→ R is

the (immediate) reward function.

The objective of the agent is to maximize long-term

expected reward E[
∑

∞

0
γtrt], where rt is the immediate

reward at time t associated with the state st and action at at

time t. The agent maximizes this expectation by determining

a policy π : S 7→ A, which completely determines the

agent’s behavior. The optimal policy can be generated by,

for each state s, greedily choosing the action that maximizes

J(s), the long-term expected reward for s assuming the

agent acts optimally (also called the value function and often

denoted V). J(s) is given by Bellman’s Equation (1), and can

be solved by a variety of techniques (e.g., value iteration).

J(s) ≡ max
a

(
R(s, a) +

∑

s′

T (s, a, s′)J(s′)

)
(1)

The Partially Observable Markov Decision Process, or

POMDP, extends the MDP framework to allow for incom-

plete knowledge of state. The agent now receives observa-

tions that are generated stochastically from a set of possible

observations at each state. Rather than true state, the agent

maintains in memory a belief state, which consists of a

discrete probability distribution over states. The POMDP

is then Markovian in belief state, since all the agent re-

quires to model the transition to next belief state is its

current belief state and its action. The tuple for a POMDP,

(γ, b0,S,A, T ,R,Ω,O), contains the same elements as an

MDP (except for initial state), plus: b0, the initial belief; Ω,

the set of all possible observations; and O : S ×A 7→ Π(Ω),
the observation function.

The optimal solution for a POMDP can be found by

considering the problem as a continuous MDP in belief state.

Unfortunately, this technique has been proven to be PSPACE-

hard in computation time [1], and most realistic domains

are intractable to solve. A variety of optimal and heuristic

techniques have been proposed (far too many to list here),

but computation time remains the primary limiting factor in

applying POMDPs to real systems.

B. OPOMDPs

The Oracular POMDP, or OPOMDP, replaces observations

with an additional action, o, that provides the agent with full

state knowledge; of course, as the agent continues to act in

subsequent timesteps, its knowledge again becomes fuzzy.

The action o is associated with consulting an oracle and is

available in every state; however, the oracle requires a flat

fee for each consultation. The policy’s output is now from

the expanded action space of domain-level actions and the

oracle action.

The OPOMDP is a special case of a POMDP; specifically,

any POMDP with an action producing an observation that

is unique to the current state while all other actions produce

a single (NULL) observation in all states, is an OPOMDP.

In addition, an MDP is a special case of an OPOMDP;

it is an OPOMDP with oracle cost 0 that performs a

domain-level action followed immediately by an oracular

consultation. Hence, we can see that OPOMDPs are strictly

“between” POMDPs and MDPs, both in terms of generality

and observability.

We will now formulate the OPOMDP, not in the typical

POMDP fashion, but instead in terms of belief state b

(as in the belief state MDP [8]). The OPOMDP tuple is

(γ, λ, b0,S,A, τ, ρ), with: γ, the scalar discount factor; λ, the

oracle cost; b0, the initial belief; S, the set of all states in the

world; A, the set of actions, including domain-level actions

and the oracle action; τ : B × A 7→ B, the belief transition

function (a.k.a. state estimator); and ρ : B × A 7→ R, the

(immediate) expected reward function. Note that the set of

possible beliefs B, which contains elements b, is a discrete

probability distribution over states. It is induced from S, so

is not necessary for specifying the OPOMDP and need not

appear in the tuple.

The belief transition function τ takes as input an action a

and a belief b, where b is a discrete probability distribution

over states: b(s) = Pr(s|history). The output of τ is the

updated belief state after taking action a, and thus is also

a discrete probability distribution over states. Hence, we

write: b′ = τ(b, a). It is also sometimes convenient to write

τ(b, a)|s′ , which indicates b′(s′) = Pr(s′|b, a).
The elements of the OPOMDP tuple can be induced from

those of the MDP tuple:

S ≡ SMDP (2)

A ≡ AMDP
⋃
{o} (3)

τ(b, a)|s′ =
∑

s

b(s)T MDP(s, a, s′) ∀ a ∈ AMDP (4)

ρ(b, a) =

{∑
s
b(s)RMDP(s, a) a ∈ AMDP

∑
s
b(s)RMDP(s, NO OP) a = o

(5)

Note that the NO OP domain-level action is assumed to

occur simultaneously with the oracle action. NO OP often

refers to staying in the same state, or simply letting the

system proceed naturally. If the agent lacks a NO OP action,

then we simply set ρ(b, o) = 0.

III. THE JIV APPROXIMATION

Since an OPOMDP can be viewed as a POMDP, we could

use the same techniques to solve it; however, we present an

approximate algorithm that provides high-quality solutions

at reduced computational complexity. First, however, we

analyze the distinctive characteristics of the OPOMDP that

the algorithm exploits, which also afford some illuminating

insights into the nature of rewards under uncertainty and the

value of information.

A. Insights

One important characteristic of the OPOMDP framework

is the absence of observations. This fact makes the transitions

between belief states totally deterministic and the agent can

foresee to an arbitrary horizon the exact effect on its belief

state of performing a sequence of domain-level actions. This

ThC3.1

2478

fact holds true until it consults an oracle, introducing non-

determinism in the belief state transition. Furthermore, the

lack of observations means that the only way the agent can

attain information is through the oracle, not by any of its

domain-level actions. In contrast, regular POMDPs make no

distinction between domain-level and information-gathering

actions [8].

Our factorization is not perfect; consider a robot (with no

sensors) driving down a hallway. It might not know where

it is in the hallway, but if it keeps driving straight for long

enough it will certainly finish at the end of the hallway. In

other words, uncertainty can be reduced somewhat just by

choice of action. However, in practice these situations are

rare and policies that rely on them are typically not very

good.

If we assume the factorization is perfect, however, we

know that a greedy decision to consult the oracle is a good

one. Intuitively, if at some timestep the agent is confused

and doesn’t know what to do next, it should ask the oracle

immediately rather than waiting, since, according to our

assumption, any other action would only confuse it further.

Using our explicit factorization of the OPOMDP action set

into strictly information-gathering actions and strictly state-

altering actions, we can discuss the value of information.

In an OPOMDP, the only type of “information” available

is the oracle, resulting in perfect state knowledge. Hence,

“information value” is essentially defined for us: the value

of one of the perfectly informed beliefs. However, since we

do not know beforehand what response the oracle will give,

we must take the expectation over states using our prior

belief. Note that in regular POMDPs, one could also define

information value in this way, but there’s no guarantee of

ever being able to reach a perfectly informed belief and

many ways to get information without ending up perfectly

informed; so such a definition would be rather less useful.

Some previous attempts have been made to examine,

equivalently, the cost of uncertainty. The Expected Entropy

and Entropy Value techniques of Cassandra et al. [14]

compress the uncertainty parameters into a single number,

entropy, but do not address the cost of that uncertainty by

examining it in connection with the value function over

state space. Information (lack of uncertainty) has no inherent

value; one can imagine a value function that is constant

everywhere, so knowing more precisely the state does not

help an agent accumulate greater reward. On the contrary,

the value of information is only defined with respect to some

value function over a specific state space. Similarly, the value

of information is tied to the available actions; in a situation

where the agent only observes and has no actions, it will

accumulate the same reward regardless of whether it knows

its state or not. Hence, in defining the value of information

for an OPOMDP, we must reference the states, actions, and

value function.

Similar to [14], we’d expect a close connection between

an OPOMDP’s value function over belief space and its

underlying MDP’s value function over state space (much

closer than that of a general POMDP, because we can

intermittently achieve perfect information via the oracle).

Rather than solving for the true value of information, which

is essentially as hard as solving the whole POMDP, we

will use the MDP’s value function as an approximation.

This approximation, along with the perfect factorization

assumption, is the basis of our solution algorithm.

B. The JIV Algorithm

We now present our algorithm for efficiently solving

an OPOMDP using a greedy approximation to the value

function. This approximation defines the value of information

using the JMDP value function, so we title the approximation

and algorithm JMDP Information Value, or JIV.

The basic idea is to first solve the underlying MDP during

a pre-planning phase, then use the MDP solution at execution

time. During execution, at each timestep, the agent decides

whether to take the domain-level action that maximizes long-

term expected reward, or to consult the oracle to reduce

uncertainty and pay the immediate oracle cost. The former

option uses the QMDP approximation, just as in [9]; however,

the latter option addresses the major flaw of QMDP (namely,

that it will never take information-gathering actions) by also

considering the single available information-gathering action:

consulting the oracle. Hence, we achieve essentially the same

alacrity as QMDP, while executing a sane policy that keeps

the agent well-informed.

The QMDP approximation is:

Ĵ QMDP(b) ≡ max
a

∑

s

b(s)QMDP(s, a) (6)

This is a weighted voting scheme, in which each state’s vote

for best action is weighted by the probability of being in that

state. This approximation would be exact if its assumption

were satisfied that the agent would acquire full knowledge

at the next timestep and retain full knowledge thereafter.

We define the information value (J IV) of a belief to be:

J IV(b) ≡ E[J cert(s)] =
∑

s

b(s)J cert(s) (7)

Here, J cert(s) represents the long-term expected reward of

being in state s with full instantaneous certainty and there-

after executing the optimal policy. The information value is

the expected value over the states the oracle might say the

agent occupies. Since the oracle tells the truth, this is an

expectation over the agent’s belief b. Upon consulting the

oracle, the agent knows the true state with no uncertainty.

How do we determine the values for J cert? We could start

with the approximation Ĵ cert(s) ≡ JMDP(s), then perform

value or policy iteration to convergence; but we’d need

to keep track of the value of every possible belief, an

uncountably infinite set. We could discretize belief space,

but the computation time would be prohibitive and would

degrade with finer discretizations.

In favor of performance and simplicity over optimality

(again, standard techniques could solve the problem as a

POMDP), we choose to simply approximate J cert(s) with

JMDP(s), the value function of the underlying MDP, since

ThC3.1

2479

it requires negligible computation, can be performed at

execution time, and, as we shall soon see, produces an

effective policy.

We define the JMDP information value (Ĵ JIV) of a belief

to be:

Ĵ JIV(b) ≡
∑

s

b(s)JMDP(s) (8)

Hence, we use Ĵ JIV to calculate the value of invoking the

oracle and weigh this against the value of the best domain-

level action. The long-term expected reward of executing an

action a and thereafter executing the optimal policy is given

by:

Q̂ JIV(b, a) ≡

{
ρ(b, a) + γĴ QMDP(b′) if a 6= o

ρ(b, o)− λ + γĴ JIV(b) if a = o
(9)

The two cases highlight the tradeoff between taking a

domain-level action and an information-gathering action.

With this definition of Q̂, Bellman’s Equation is as usual:

Ĵ(b) = max
a

Q̂ JIV(b, a) (10)

The policy is then given by:

π(b) = arg max
a

Q̂ JIV(b, a) (11)

As previously mentioned, JIV should typically perform

better than QMDP, since it will sometimes choose the

information-gathering action (oracle). Since both Ĵ JIV and

Ĵ QMDP are upper bounds, JIV won’t necessarily choose to

consult the oracle at the optimal time nor with the optimal

frequency, nor is it guaranteed to achieve higher reward than

QMDP on all problems. But qualitatively, it does solve QMDP’s

major shortcoming; and we will soon see quantitatively that

JIV indeed performs quite well in comparison to QMDP and

to HSVI2.

Finally, note that JIV can be applied in POMDPs that

meet the requirement of an oracle but still have regular

observations as well. The only necessary change would be

to append a Bayesian update for observations to (4). JIV

should still outperform QMDP, since it doesn’t reason about

observations, either.

The algorithm for execution using the Ĵ JIV approximation,

the JIV algorithm, is listed as Algorithm 1. In this listing,

SOLVE MDP is any algorithm that solves the MDP.

C. Computational efficiency

The benefits of performing some calculations at execution

time are not to be underestimated. “Reachable beliefs” ap-

proaches [13] [12] reduce the number of beliefs whose value

must be computed, with great success; the “execution time”

approach (as presented here) uses only the beliefs actually

reached during execution, the minimum possible number of

beliefs necessary for acting optimally.

In fact, the theoretical complexity of the algorithm is

reduced from that of solving a general POMDP; now all we

must do is: 1) solve the MDP beforehand, a polynomial-time

problem [15]; then 2) at execution time, examine |A| actions,

each with a single expectation to compute over |S| states,

Algorithm 1 EXEC JIV(γ, λ, b0,S
MDP,AMDP, T MDP,RMDP)

1: (QMDP, JMDP)← SOLVE MDP(γ,SMDP,AMDP,

T MDP,RMDP)

2: S ← SMDP

3: A ← AMDP
⋃
{o}

4: b← b0

5: loop

6: (js, as)← CHOOSE BEST ACTION(b, γ,AMDP, JMDP)
7: jo ← ρ(b, o)− λ + γĴ JIV(b)
8: if jo ≥ js then

9: b← ground truth {consult oracle}
10: else

11: b← τ(b, as) {perform action as}

Algorithm 2 CHOOSE BEST ACTION(b, γ,AMDP, JMDP)

Ensure: Returns best domain-level action and its value

(using the QMDP approximation)

1: (js, as)← (−∞, undefined)
2: for all a ∈ AMDP do

3: b′ ← τ(b, a)
4: j ← ρ(b, a) + γĴ QMDP(b′)
5: if j > js then

6: (js, as)← (j, a)

7: return (js, as)

which clearly takes time linear in both actions and states.

Hence, this algorithm is polynomial. Additionally, note that

the computation time per timestep is minimal, so there is

little concern of lagging decisions during execution.

Note that the worst-case complexity of optimally solving

an OPOMDP is still intractable. Consider the case when the

oracle is too costly to ever make consultation worthwhile;

now we have an unobservable POMDP, whose difficulty is

still NP-complete [3]. It remains an open question whether

general OPOMDPs are PSPACE-hard.

IV. EXAMPLE DOMAIN

To illustrate the theoretic analysis above, we introduce

the following example domain, The Wizard’s Curse. It is

necessary to construct a new example domain, because no

POMDP instances in the literature satisfy the conditions of

an OPOMDP. However, in future work, we plan to present

a method that approximates a general POMDP with an

OPOMDP, at which point examinations of classical POMDP

instances with JIV will be feasible.

In a faraway kingdom, a princess is kidnapped by an evil

wizard and imprisoned in a remote tower. Clearly, the hero

must go rescue the princess. The wizard, knowing this, places

a curse on the hero that blinds him. The king’s hunting

grounds lie near the tower, and if the hero travels through

them he incurs a tax; however, he can’t tell when this happens

due to his blindness. The hero’s only tools are his precise

knowledge of the region (map) and a magic ring with which

ThC3.1

2480

he can consult the king’s oracle for exact knowledge of his

location; however, the king provides this service only at a

nominal fee per invocation.

A. Specification

The state space is a 6 × 6 grid, as pictured in Figure 1.

In each state, the hero (agent) can attempt to move in any

cardinal direction or stay in place, but the outcome is noisy –

see Table IV-A (if the hero ends up moving off the map, he’ll

be replaced on it at the closest cell). The oracle action does

not change the true state, so its effect on state is equivalent

to the STAY action. The oracle cost is λ = .25 and the

discount factor is γ = .75. The immediate reward is the

same across all actions and is only a function of state. The

reward associated with the princess’ location is +2; for the

hunting grounds it is -1; and for all other states it is 0.

Fig. 1. Wizard’s Curse problem

B. Experimental results

Figure 2 shows the contours of the JMDP values and the

hero’s path for an example execution. The red line represents

the true path the hero takes, while the blue line represents

the sequence of most-likely states (MLS) at each timestep.

An open circle indicates an oracle consultation, at which

point the blue line breaks and begins again on the true path.

Notably, the hero travels through the hunting grounds but

believes he avoids it; the oracle is not consulted at this

point because the hunting grounds penalty is not severe (-1)

and the hero is reasonably certain he won’t walk through

it (although, in this rare case, he does anyway). However,

the oracle is consulted twice near the princess, since in this

area the value function changes steeply and the value of

information is quite high. This example substantiates our

previous theoretical analysis.

We compare the JIV algorithm with two naı̈ve approaches

in order to support our claim of JIV “behaving reasonably.”

One naı̈ve approach, “Always Ask” (AA), acts timidly and

consults the oracle every other timestep, thereby always

having complete state information when choosing domain-

level actions (essentially enforcing the assumption of the

even-odd POMDP [4]). The other naı̈ve approach is “Never

Ask” (NA), which never consults the oracle and behaves

equivalently to QMDP would if the POMDP were unobserv-

able [3]. All of these algorithms, including JIV, utilize the

MDP solution determined offline. Additionally, we compare

l

*

l

*
Start State

Goal State

Oracle Consultation

True Path

MLS Path

MLS=True Path

Fig. 2. Contours of J
MDP and agent path

JIV against HSVI2 [12], one of the most scalable general

POMDP solvers available (unfortunately, not all competitive

algorithms are available for comparison, and previous results

for these algorithms on typical non-oracular problems are not

particularly edifying).

Figure 3 compares the performance of these approaches by

accumulated reward as the agent progresses in time, averaged

over 500 runs. Overall, JIV far outstrips the naı̈ve algorithms,

while achieving statistically indistinguishable results from

HSVI2 (which is guaranteed to be within .001 of the optimal

value2). The dips in the plot correspond to when the agent

moves between the two eastern hunting grounds and tends

to lose reward. JIV dips lower than NA, since it pays

the immediate cost to the oracle for the benefit of state

information; but it is apparent that this behavior later pays

off. AA doesn’t produce a dip, since it successfully avoids the

hunting grounds as a result of its perpetual state certainty; but

its accumulated reward decreases drastically as it repeatedly

pays the oracle cost (until it reaches the princess, at which

point its accumulated reward begins to increase).

Figure 4a shows how JIV results in fewer oracle consul-

tations as the cost of the oracle is increased, up until some

point at which the oracle is never consulted. The number of

consultations is averaged over 100 runs. This decline also

satisfies intuitive expectations of reasonable agent behavior.

To examine scalability, we increased the size of the

original domain by subdividing the grid an integral number

of times in both the x and y dimensions. Figure 4b shows

the necessary computation time for solving the MDP as we

grew the domain.

A domain of 4,500 action-states was solved in 4.2 seconds

with JIV, taking over 2 hours to solve with HSVI2. The

largest domain solved consisted of over 300,000 action-

states and took 3h49m. The simulation was run using the

R software package on a Pentium IV 3.4 GHz machine

2Cassandra’s optimal solver software was unable to find a solution.

ThC3.1

2481

TABLE I

NOISY ACTION OUTCOMES

Action N S W E STAY

Outcome

.1 .7 .1

0 .1 0

0 0 0

0 0 0

0 .1 0

.1 .7 .1

.1 0 0

.7 .1 0

.1 0 0

0 0 .1

0 .1 .7

0 0 .1

0 0 0

0 1 0

0 0 0

0 5 10 15 20 25 30 35

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

timesteps

m
e
a
n
 a

c
c
u
m

u
la

te
d
 r

e
w

a
rd

JIV

Never Ask

Always Ask

HSVI2

Fig. 3. Comparison of algorithms by accumulated reward

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6

oracle cost

m
e

a
n

 n
u

m
b

e
r

o
f

c
o

n
s
u

lt
a

ti
o

n
s

(a) Consultations

0 50000 150000 250000

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

2
0

0
0

number of action−states

s
o

lv
e

 t
im

e
 (

s
e

c
o

n
d

s
)

(b) Scalability

Fig. 4. (a) Frequency of oracle consultation as a function of oracle cost;
(b) Solve time (in seconds) as a function of number of action-states

with 2 GB RAM. We used simple value iteration to solve

the MDP; faster techniques suggested by [15] would surely

improve JIV’s performance, as well as would a C/C++ imple-

mentation. While we’ve only compared JIV against a single

POMDP solver on a single domain, these initial empirical

results are encouraging and demonstrate the soundness of

our theoretical complexity results and of the JIV algorithm.

V. CONCLUSIONS AND FUTURE WORKS

The OPOMDP is a special case of the POMDP that

deserves special attention, as its unique characteristics afford

novel analytical techniques, tractable solution algorithms,

and insight into the value of information in an uncertain en-

vironment. Furthermore, OPOMDPs correspond to a number

of real-world cases and are therefore practically useful. This

paper is merely an introduction to OPOMDPs; much more

work remains to be done.

The JIV algorithm is perhaps the simplest of all algorithms

that approximate J cert, and in the future we will construct

efficient exact algorithms that draw on the special structure of

the OPOMDP (in particular, heuristic search lookahead looks

promising). Furthermore, in many cases, the oracle does not

in fact know the truth entirely and exactly; hence, we plan

to examine partial-knowledge oracles. These should allow

us to approximate general POMDPs by treating observations

as partial-knowledge oracles and thus make OPOMDPs

and their efficient solution techniques much more univer-

sally applicable. This extension should also enable a larger

comparison of JIV against standard POMDP algorithms

on standard POMDP benchmark domains. Finally, we plan

to address distributed multi-agent systems (DEC-POMDPs)

with OPOMDP techniques by casting communicating agents

as partial-knowledge oracles.

VI. ACKNOWLEDGMENTS

Special thanks to Tony Cassandra and Trey Smith for

their open-source POMDP solvers; also to Reid Simmons

(and again Trey Smith) for many helpful discussions. This

research is partially supported by a DoD NDSEG fellow-

ship and under Grant No. NBCH-1040007. The views and

conclusions contained herein are those of the authors only.

REFERENCES

[1] C. Papadimitriou and J. Tsisiklis. The complexity of markov decision
processes. Mathematics of Operations Research, 12(3):441–450, 1987.

[2] O. Madani. Complexity Results for Infinite-Horizon Markov Decision

Processes. PhD thesis, University of Washington, 2000.
[3] O. Madani. Models for decision making in dynamic and uncertain

domains. Technical Report UW-CSE-98-12-01, 1998.
[4] V. Zubek and T. Dietterich. A POMDP approximation algorithm that

anticipates the need to observe. In Proceedings of PRICAI-00, 2000.
[5] E. Hansen. Markov decision processes with observation costs. Tech-

nical Report UM-CS-1997-001, 1997.
[6] R. Jaulmes, J. Pineau, and D. Precup. Active learning in POMDPs.

In Proceedings of ECML-05, 2005.
[7] E. Sondik. The Optimal Control of Partially Observable Markov

Processes. PhD thesis, Stanford University, 1971.
[8] L. P. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence Journal,
101(1-2):99–134, 1998.

[9] M. Littman, A. Cassandra, and L. P. Kaelbling. Learning policies
for partially observable environments: Scaling up. In Proceedings of

ICML-95, 1995.
[10] M. Hauskrecht. Value-function approximations for partially observable

markov decision processes. Journal of Artificial Intelligence Research,
13:33–94, 2000.

[11] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In Proceedings of IJCAI-03, 2003.

[12] T. Smith and R. Simmons. Point-based POMDP algorithms: Improved
analysis and implementation. In Proceedings of UAI-05, 2005.

[13] M. Spaan and N. Vlassis. A point-based POMDP algorithm for robot
planning. In Proceedings of ICRA-04, 2004.

[14] A. Cassandra, L. P. Kaelbling, and J. Kurien. Acting under uncertainty:
Discrete bayesian models for mobile robot navigation. In Proceedings

of IEEE/RSJ-96, 1996.
[15] M. Littman, T. Dean, and L. P. Kaelbling. On the complexity of

solving markov decision problems. In Proceedings of UAI-95, 1995.

ThC3.1

2482

