
Particle RRT for Path Planning with Uncertainty

Nik A. Melchior and Reid Simmons

Abstract— This paper describes a new extension to the
Rapidly–exploring Random Tree (RRT) path planning algo-
rithm. The Particle RRT algorithm explicitly considers uncer-
tainty in its domain, similar to the operation of a particle filter.
Each extension to the search tree is treated as a stochastic
process and is simulated multiple times. The behavior of the
robot can be characterized based on the specified uncertainty
in the environment, and guarantees can be made as to the
performance under this uncertainty. Extensions to the search
tree, and therefore entire paths, may be chosen based on the
expected probability of successful execution. The benefit of this
algorithm is demonstrated in the simulation of a rover operating
in rough terrain with unknown coefficients of friction.

I. INTRODUCTION

The Rapidly–exploring Random Tree (RRT) algorithm [1]

is a popular technique for path planning with kinodynamic

constraints. In simple terms, RRT builds a search tree of

reachable states by attempting to apply random actions at

known–reachable states. Unless the action causes the robot

to make contact with an obstacle or violate some dynamics

constraint, the action is considered successful, and the result-

ing state is added to the tree of reachable states. A simulator

is generally treated as a black box that determines the result

of an action given the robot’s initial state. This allows the

algorithm to be applied to domains where complex system

dynamics make analytic control difficult or impossible. RRT

has been successfully applied to wheeled and legged vehi-

cles, as well as underwater robots and aircraft.

However, this binary decision as to the success of an

action can limit the application of this algorithm in two

important ways. First, it does not allow for ranking or scoring

multiple actions which may succeed from a given initial

state. Actions often have associated costs (such as the energy

or time required for execution), and planning may produce

several paths from start to goal with varying cumulative

costs. High–cost extensions might therefore be avoided in

hopes of finding a better path, but these extensions should not

be ignored completely, because a better path may not exist.

Most RRT implementations at least consider path length in

terms of Euclidean distance travelled, but other notions of

path cost should be incorporated as well.

The second important use for a fuzzy notion of action

success is when knowledge of the obstacles or dynamic

properties of the environment cannot be precisely known.

The application presented in this paper is a rover navigating

through unknown terrain. Stereo vision is used to build a

model of the terrain in the immediate area, but the accuracy

of this model decreases with distance from the rover, and

melchior@cmu.edu, reids@cs.cmu.edu. The Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA 15213-3890.

Fig. 1. A pRRT tree with several particles at each node

occlusions are possible. In addition, characteristics of the

terrain such as the coefficient of friction can be estimated

only roughly, but these characteristics can have substantial

impact on the rover’s behavior, particularly when traversing

rough terrain. Path planning can benefit from explicitly

considering the uncertainty in the terrain to generate paths

with high likelihood of success.

Related work in [2] has considered a changing envi-

ronment in the form of moving obstacles by predicting

the motion of these obstacles. If the obstacles move in

an unexpected manner, the path is simply replanned. One

approach for planning in uncertain terrain [3] ensures that

the planned actions produce the same result for the entire

range of expected values of the unknown conditions. Another

application [4] builds a forest of search trees, using a

different value for each tree.

This paper presents an extension to the RRT algorithm

that directly addresses the issue of plans under uncertainty

with a novel approach. The Particle RRT (pRRT) algorithm

facilitates the creation of an RRT in an uncertain environment

by propagating that uncertainty to the planned path. Each

extension to the search tree is attempted several times under

different likely conditions. Nodes in the search tree are

created by clustering the results from these simulations. The

likelihood of successfully executing each action is quantified

so that the probability of following entire paths may be

determined. An example search tree is shown in figure 1.

Experimental results from simulations are presented, show-

ing that this approach results in paths that are more robust

to uncertainty.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeE11.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1617

II. ALGORITHM DESCRIPTION

The pRRT algorithm extends the basic RRT algorithm to

operate efficiently in an environment with characterizable

uncertainty. The discussion in this paper considers a rover

driving over terrain whose friction is not known. However,

other types of uncertainty can be incorporated into this

algorithm, such as imprecise action execution or obstacles

whose size or location are uncertain.

A. Basic RRT Algorithm

The Rapidly-exploring Random Tree (RRT) algorithm is a

randomized algorithm useful for exploring large states spaces

that cannot be searched exhaustively. The algorithm, listed

in figure 2 and depicted in figure 3, iteratively chooses a

random point p in the state space and attempts to extend the

current search tree toward that point. The RANDOM STATE

function may choose from a uniform distribution over the

state space, but it typically includes some bias toward the

goal. The extension is performed by considering the random

point p, and its nearest neighbor q, within the tree T . The

algorithm owes its rapid exploration to the bias implicit in

this procedure. A node q is extended only when it is the

nearest neighbor of the random point p. This means that p

must lie within the Voronoi region of q, and nodes on the

frontier of the search tree generally have the largest Voronoi

regions.

The NEW STATE function determines an action unew that

observes any dynamic constraints on the robot, and which,

when applied to the robot at state q, results in some new state

xnew. It is important to note that xnew is in the direction of p

from q, but xnew and p are not expected to coincide. Indeed,

it would be quite a coincidence if they did, since the RRT

algorithm does not require that the inverse kinematics of the

BUILD RRT(xinit)

1: T .init(xinit)

2: while (xgoal 6∈ T) do

3: {p, q} ← SELECT EXTENSION(T);

4: EXTEND(T , p, q)

5: Return T

SELECT EXTENSION(T)

1: p← RANDOM STATE();

2: q ← NEAREST NEIGHBOR(p, T);

3: Return {p, q}

EXTEND(T , p, q)

1: if (NEW STATE(p, q, xnew, unew)) then

2: T .add vertex(xnew);

3: T .add edge(q, xnew, unew);

Fig. 2. The RRT algorithm

x
new

p

q

Fig. 3. An RRT extension

robot be known. Only the forward kinematics are required to

determine xnew given q and unew. If NEW STATE finds a

new state and action without violating dynamic constraints or

colliding with an obstacle, the new state and action are added

to the tree. Thus, NEW STATE typically makes a binary

decision as to the success of an extension, even when there

is uncertainty in the environment, and thus in the outcome

of a simulation. It is this disparity that we seek to remedy.

This process of selecting a node to extend and executing a

simulation repeats until a state within some tolerance of the

goal, xgoal, is added to the tree. Since RRT is a randomized

algorithm, there is no guarantee that the goal will be found,

even when a feasible path exists. In addition, due to the

nature of exploration and extension used to generate the

search tree, the final path may be jagged and meandering.

Modest efforts to smooth the generated path are usually

applied in order to generate more natural motion. Both

these problems, though, are often addressed by using random

restarts.

B. Particle Extensions

To the RRT framework, we introduce a particle–based ex-

tension technique, similar to the prediction step of a particle

filter. In short, the pRRT algorithm operates by simulating

each extension multiple times under various likely condi-

tions. The resulting states are grouped into similar clusters,

and each cluster is treated as a single node in the tree. Thus,

nodes in the tree are comprised of distributions of states

(approximated using particles), rather than individual states.

The likelihood of reaching a particular node as the result of

an extension can be calculated based on the likelihood of

the conditions which generated the particles underlying its

distribution. While generating the search tree, we can use the

calculated likelihood of nodes to bias the search, and when

the goal is reached, we can evaluate the likelihood of the

entire generated path based on the nodes in the path.

During the EXTEND step, an action unew is chosen as

usual to apply to the known–reachable state q. In the applica-

tion domain described in this paper, the coefficient of friction

for the terrain is not known with certainty, so we simulate

the execution of the chosen action using several likely values.

In general, the uncertain parameter, or parameters, may be

represented as a single variable F, and we assume that a

WeE11.3

1618

probability density function (PDF) is available from which

to sample F. In fact, F may have a different distribution in

different parts of the state space. For simplicity of notation,

we assume here that F is represented by a single PDF. The

technique of repeated simulation can always be applied since

it requires no additional knowledge about the kinematics of

the robot beyond the ability to simulate an action, and this

capability is already required by the basic RRT algorithm.

Within the framework introduced by [5], this uncertainty is

in the realm of environment sensing. Uncertainty in initial

configuration sensing can also be trivially incorporated by the

same method. To incorporate uncertainties in the remaining

categories of configuration and environment predictability

would require altering the forward simulator such that each

step is stochastic rather than deterministic.

Two elements are required for an extension step: the

starting state for the simulation (the node q in figure 3),

and the destination (the point p in figure 3) or, equivalently,

the nominal action u used to extend q toward p. When

extending from a particle node — a node that includes

multiple particles — we have two primary options for the

starting state. We might simply use the weighted mean of

the state variables of each particle to represent the node,

and execute all extensions from this state. This mean state,

q, is an estimate of the mean of the true PDF at particle

node, q. That is, it is an estimate of the mean if this particle

node included an infinite number of particles. This is the

best estimate of the true state of the robot at this node of

the tree under the uncertainty considered by the algorithm.

The weight of each particle used for computing q is the

probability that the condition used to compute that extension

is the true condition. Let us denote the particles contained

in the node q as q1, q2, · · · , qn. Each particle qi has an

associated value of the parameter F, which we denote Fqi
.

F ∗ will represent the true value of F. Using this notation,

we can calculate the weighted mean state of a particle node

by:

Fs =
∑

qi∈q

P (Fqi
= F ∗)

q =
1

Fs

∑

qi∈q

(P (Fqi
= F ∗)qi) (1)

Since several extensions will be attempted, we also have

the option of sampling the starting state for an extension

from the PDF at the node q. If we were to approximate

the true, continuous PDF by fitting a function such as a

Gaussian to the particles at q, we could sample the starting

state from this distribution. However, we expect to have few

particles at each node. In fact, some nodes may only have a

single particle, so the statistical basis for fitting a continuous

function is somewhat precarious. Instead, we may choose to

sample proportionally from the discrete set of particles. This

has the added benefit of ensuring that the state from which

we extend is truly feasible, since it has been calculated as

the result of a simulation rather than interpolation between

true particles.

The choice of strategy for choosing a starting state, either

by calculating the mean state or by discrete sampling, is

explored in section III. Once this choice is made, the action

used to extend toward p can be calculated as usual. In the

EXTEND step of the algorithm, we apply this action to

the starting state or states using forward simulation multiple

times in order to produce new particles. For each simulation,

we apply a value of F sampled from its PDF. The states that

result from successful simulations are clustered as described

below before they are added to the tree.

C. Clustering

The underlying purpose of clustering is to group parti-

cles that are substantially similar. Although particles within

clusters will differ somewhat, we wish to detect qualitative

bifurcations in the tree caused by the changing values of

F. Otherwise, the mean value q, used to extend the node,

becomes a poor approximation of the distribution of particles

within that node. The example trajectories in figure 4 illus-

trate significant bifurcations in the path of the rover. In this

example, the rover is moving along a ridge line toward the

goal represented by a cylinder. If the coefficient of friction is

sufficiently large, the rover can ascend the slope and reach

the goal. For progressively smaller coefficients of friction,

the rover slips down the hill as it moves. Depending on how

much it slips, it may impact, or pass to the left or right of the

rock ahead of it. These semantically different cases should

be represented as different nodes in the planning tree.

Clustering is accomplished using a hierarchical clustering

tree [6] with a weighted Euclidean distance metric. Since we

are interested in the position (x, y) and yaw (θ) of the robot,

we have chosen to use the following distance metric:

d =

√

α ∗ (δx2 + δy2) + β ∗ δθ2

where α and β are scaling factors used to normalize the

units of measurement when determining the difference be-

tween particles. The hierarchical clustering tree algorithm

uses this metric to iteratively agglomerate the particles and

clusters separated by the shortest distance. The distance

between particles is straightforward to calculate, but the

distance between clusters may be calculated by a variety

of strategies. The results section below will examine the

difference in performance between two strategies known as

single and complete linkage [7]. Single linkage computes the

distance between two clusters as the minimum of all pairwise

distances between particles in the clusters, while complete

linkage uses the maximum.

The dendrogram in figure 5 illustrates the operation of

the algorithm on the particles from figure 4. Particles are

numbered along the horizontal axis, and distances are rep-

resented on the vertical. The iterative algorithm builds the

dendrogram from the bottom up. The closest particles in this

case are 8 and 9, so these are combined first, as represented

by the horizontal line segment near the lower left corner of

the diagram. The next closest particles are joined together

until all particles have been combined into a single cluster.

WeE11.3

1619

(a) Simulation (b) Plot

Fig. 4. Trajectories with qualitatively different endpoints

Fig. 5. Dendrogram produced by the hierarchical clustering tree algorithm

In this case, the final agglomeration combines particle 1 with

a cluster containing all other particles.

Although agglomeration continues until all particles are

linked, we must determine how much aggregation is actually

appropriate for each set of particles. We locate the link in

the tree which combines the most dissimilar subtrees by

searching for the largest difference in distances between

successive agglomerations. This link and all following links

are disregarded, while any links made previously are used to

determine the particle clustering. This cutoff is represented

by the dashed horizontal line in figure 5. In this case, the

particles have been split into five clusters.

In tests, we found that this approach performs better

than the Gaussian clustering of the k–means algorithm [8].

The hierarchical clustering tree allows us to calculate fewer

parameters since we do not need to directly estimate the

means and covariance matrices of each cluster. This is

especially important since we are clustering only a handful

of points.

D. Node and Path Probability

The particles at each node provide an estimate of the

distribution of values of F that allow the robot to reach that

state. By combining this with a prior distribution over F, the

probability of reaching any particular node, or indeed the

probability of following an entire path, may be calculated.

In this way, the growth of the tree structure can be biased

toward generating paths that are more likely to be followed

by the robot.

To bias the search, we adapt Urmson’s hRRT technique for

heuristically biasing RRT growth [9]. The heuristic modifies

the SELECT EXTENSION function of the RRT algorithm.

Rather than simply accepting a random point, p, in the state

space and its nearest neighbor, q, in the tree, the hRRT

technique chooses to extend proportional to the quality of

the node q. In our case, the quality of q is defined as:

qquality =
qprob −m

1.0−m
(2)

where qprob is the probability of reaching q from the root

of the tree, and m is the minimum probability of all leaf

nodes of the search tree. A random value, r is drawn from a

uniform distribution between 0 and 1. If qquality > r, the pair

of points p and q are accepted and an extension is attempted.

Otherwise, a new pair of points are chosen. Alternately, we

might keep p and try the next nearest neighbor in the tree [9].

The random value r is used to promote the use of extensions

from high quality nodes without excluding the possibility of

extending lower quality nodes should the algorithm become

stuck in a situation where reaching the goal at all is unlikely.

The effectiveness of the quality heuristic might be im-

proved if we could calculate not only the probability of

reaching a node from the root of the tree, but also an estimate

WeE11.3

1620

of the probability of reaching the goal from this node. This

would produce a heuristic in the style of A∗ [10] that would

estimate the probability of successfully travelling from start

to goal through any particular node. However, any estimate of

the probability–to–go must be optimistic, meaning it cannot

underestimate the possibility of completing the path from

any state. Without exploring all options from this state, the

only admissible heuristic is 1.0, which does not provide

any additional information. Future work may investigate

whether non–admissible heuristics improve the runtime of

the algorithm without significantly affecting path quality.

In practice, we found that the probability of reaching nodes

of the tree drops quickly with path length. This causes the

algorithm to favor making extensions from nodes near the

root, even when reasonably likely nodes exist closer to the

goal. In order to encourage more extensions from nodes

far from the root, the path probability qprob is normalized

using the path length. We substitute n
√

qprob in the quality

calculation, where n is the depth of node q in the tree. This

improves the runtime since node quality does not drop so

quickly as the distance from the root increases. However,

the effect of averaging the path probability over the length

of the path may allow the effect of a single unlikely node

to go unnoticed in a long path of otherwise likely nodes.

Test results in the next section illustrate the effects of this

tradeoff.

III. TESTING AND RESULTS

The pRRT algorithm has been implemented and tested in

simulation using several rover navigation scenarios. Testing

began with fairly simple domains like the slope in figure

6. Situations like these allow us to verify that the decisions

made by the pRRT algorithm reflect a concern for consistent

execution regardless of friction. The robust path represented

in this image by the string of spheres advances along flat

ground, makes a wide turn, then climbs the slope head–on.

Since the rover is capable of climbing over rocks, a shorter

path is possible by crossing the slope at an angle. However,

taking advantage of these capabilities would result in a less

robust path.

Additional tests were conducted in more complicated

environments, such as the terrains shown as contour plots

in figure 7. The rover’s starting position is marked with a

star, and the goal is marked with a circle. These terrains

were chosen as representative of situations that real rovers

are expected to encounter, but they are also meant to illustrate

that the most direct path is not always the best. In both

the plateau and the crater scenarios, the direct path to

the goal requires the rover to negotiate elevation changes

that the physical simulations will show are safe for the

rover to traverse. Unfortunately, given that the real terrain

characteristics cannot be determined with certainty by a real

rover, it would be unlikely that the rover would track those

paths successfully. Thus, the longer paths on flatter terrain

are to be preferred.

The purpose of these tests is not merely to show that the

pRRT planner is capable of avoiding what would otherwise

Fig. 6. A tree built by pRRT. Spheres mark the planned path.

Fig. 7. Contour plots of some terrains used for testing: Plateau (top), Crater
(bottom)

WeE11.3

1621

(a) Endpoint error (b) Endpoint standard deviation

Fig. 8. Error and standard deviation plots for extension strategies

Start node Probability heuristic Success Nodes Nodes per extension Path probability Normalized path probability

Mean non–normalized 80.6% 123.93 1.40 59.6% 96.8%

Mean normalized 81.8% 97.92 1.37 51.3% 94.8%

Sample non–normalized 72.2% 233.82 2.00 25.7% 91.2%

Sample normalized 81.0% 173.57 1.95 17.9% 82.3%

— RRT 82.2% 80.92 1 — —
TABLE I

EFFECTS OF PARTICLE NODE REPRESENTATIONS

be considered high–cost terrain. However, simulations are

likely to produce different results in these areas for different

coefficients of friction. Any area in which a small expected

range of values of F can produce great variability in simu-

lation results will produce unlikely paths, and will thus be

avoided by pRRT.

To quantify the robustness of paths using pRRT and regu-

lar RRT, paths were planned in each scenario, then executed

open–loop under a variety of uniform friction conditions.

Conventional RRT extensions such as the connect heuristic

[11] were also implemented in both cases to improve planned

paths and decrease planning times. Trees built using conven-

tional RRT assumed a single value of friction at all times,

while pRRT considered a uniform distribution over a range

of possible values. Several variations of the pRRT algorithm

were used in order to determine the best choices for the

algorithmic and parameter options presented in the previous

section.

A. Extension Strategy

For the first set of tests, four different variations of the

pRRT algorithm were used. As discussed in section II-B, we

must choose the strategy for determining the initial state for

each extension. We tested the algorithm using the mean state

q of a node, and by sampling from the particles at each node.

We also explored the effect of normalizing the probability

of successfully tracking paths. This option was discussed in

section II-D as a method of reducing the bias toward shorter

paths. All combinations of these choices were tested.

Error measurements were taken to compare the endpoints

of the planned paths to the endpoints arrived at by open–loop

execution of the plans when the actual coefficient of friction

was less than that planned by RRT. The plots in figure 8 show

the average error (and standard deviation of error) averaged

over 500 runs in the plateau scenario (top of figure 7). Results

are similar for the crater scenario. The horizontal axis in

these plots shows the uniform coefficient of friction for the

open–loop execution as a fraction of the value used by the

RRT. The pRRT algorithm considered all values of friction to

the right of the vertical line in the plots while planning. The

error shown on the vertical axis is expressed as a fraction of

the distance between the specified start and goal states. This

metric facilitates comparisons of the performance in various

scenarios because the distance from start to goal will differ.

These plots indicate that consideration of the uncertainty

in friction by the pRRT algorithm results in paths that are

significantly more accurate for all variations of the pRRT

algorithm. Although regular RRT produces no error in a

completely deterministic world (where true friction is always

equal to the friction used for planning), pRRT produces less

error than RRT when uncertainty is introduced. This means

that paths planned by pRRT can be executed safely and

consistently as the true value of F changes. In fact, pRRT

continues to produce more accurate paths to the left of the

vertical line, outside the range of friction values which it

considered when planning.

WeE11.3

1622

(a) Single linkage (b) Complete linkage

Fig. 9. Error plots for particle and clustering strategies

Error was reduced the most when sampling the starting

state for each extension from among the particles at a node.

In fact, figure 8(b) shows that the variation in endpoint error

was also significantly reduced in these cases. This approach

is more robust because the effect of uncertainty is more

faithfully considered at each extension of the tree. However,

the cost of this increased accuracy and precision can be seen

in the statistics presented in table I. This table presents some

of the differences caused by the variations which have been

discussed for pRRT. The algorithm is halted if the goal is not

reached by the time the search tree contains 250 nodes, so

the success column lists the percentage of the 500 attempted

runs in which the goal was found. Without the normalization

of the path probability heuristic, the natural bias toward short

paths prevents any branch of the search tree from growing

long enough to reach the goal. This effect is most pronounced

when the start node is sampled because this approach also

leads to more nodes per extension. Since each start node

is less precise, the particles of a single extension will be

spread over a larger area, thus leading to more clusters. Each

of these clusters will have a lower probability, so without

the effect of normalization, probabilities of long paths will

suffer. The final two columns list the probability of tracking

a complete path from the root to the goal.

The version of pRRT described by the second row in the

table performs most similarly to RRT because the effects

of uncertainty are minimized by using the mean state q for

starting extensions and normalizing the path probability. The

third row corresponds to the variation which produced the

lowest error and standard deviation in the plots.

B. Clustering Strategy

Another important parameter for this algorithm is the

number of particles created with each extension. Since the

simulation of the rover’s actions is the most computationally

expensive step in this algorithm, the running time of pRRT

is nearly equal to the running time of RRT multiplied by

the number of particles per extension. Choices for this

parameter were explored in conjunction with the choice of

linkage strategy for clustering particles. Error plots in figure

9 summarize the results of these tests. Surprisingly, single

linkage produced worse results as the number of particles

increased. We believe that this is due to the lack of a natural

limit on the size of a cluster. To illustrate this problem,

consider a set of nearly–equally spaced points along a line.

A complete linkage strategy will subdivide the points into

clusters of nearly equal size. The divisions produced by

single linkage will appear to be arbitrary, so the probability

of particles arranged in this manner will be split arbitrarily

between clusters. Figure 9(b) is encouraging since it shows

that the best performance with complete linkage may be

reached with very few particles.

C. Execution Monitoring

The discussion so far has evaluated the robustness of

open–loop execution of planned paths. However, if the rover

has some method reliably estimating its location during

execution, it may be able to improve the tracking of a planned

path by adjusting the executed actions based on its actual

location and the location of the next node in its planned

path. Again, we discuss two strategies for performing this

update. The first is a well–known algorithm called pure

pursuit [12]. In this strategy, we calculate the new action

using the same simple kinematic equations that are used by

RRT to estimate the action for an extension. These equations

assume flat terrain and ignore dynamics and the effects of

terrain interaction. The second strategy, which we call the

proportional approach, attempts to use information about the

terrain that was captured in the building of the planning tree.

This strategy makes use of the fact that, due to slippage, the

steering angle used by the vehicle to advance from one node

to another is not necessarily equal to the angle between the

WeE11.3

1623

Fig. 10. Error of execution monitoring strategies

nodes. The ratio of these two angles is used to compute a

new steering angle.

The results of these tests are shown in figure 10. In both

cases, the new action that was computed did not completely

replace the planned action. Instead, a linear combination of

the two actions was used with a gain parameter to determine

the proportion assigned to the new action. For both strategies,

the best performance was achieved with a gain near 30%, so

this is the gain shown in the plots. Although the simpler pure

pursuit method produced lower error than the proportional

approach, we note that pRRT was able to produce better

results, even without execution monitoring, than the original

RRT with execution monitoring.

IV. CONCLUSIONS AND FUTURE WORK

The Particle RRT algorithm is an effective method for

generating robust paths that are more precise and more

accurate in the face of uncertainty in the environment. Paths

planned using pRRT are inherently safer, since they can be

followed more closely despite variations in the uncertain

characteristics of the environment.

Now that Particle RRT has shown itself to be an effective

extension to randomized path planning, we would like to

combine it with other extensions such as cost–based tree

building heuristics. The probability of successfully following

a path and the expected cost of that path are both important

criteria in guiding the selection of nodes to extend in a tree

and in assessing potential paths from root to leaves in that

tree.

Although RRTs are often considered to be single–query

path planners, we expect to be able to reuse portions of an ex-

isting tree for replanning as additional information becomes

available to the robot. As a planned path is executed, the

uncertainty about the environment decreases, while portions

of the planning tree remain relevant. If past simulations are

cached, they can be used to build new RRTs for additional

queries or refined if the same query is issued again. We

will investigate methods for reactive, real–time replanning

[13] when exploration of the terrain causes the PDF of F to

be reshaped, thus changing the probabilities of nodes in the

planned tree.

Immediate plans for continuing investigation of pRRT

include the move from simulation to execution on a real

rover. Implementation is planned for the iRobot ATRV–Jr

robotic platform using the CLARAty programming frame-

work [14]. This testbed will demonstrate the efficacy of

pRRT in the face of the true uncertainty of a terrain model

built using stereo vision. It will also help prepare for planned

deployment on a future NASA rover mission on Mars.

The advancements in this algorithm will improve the

efficiency of future rovers in especially rough terrain com-

pared to the Mars Exploration Rovers which are currently

in service. Some of the most interesting science targets for

those rovers are rock outcroppings located in areas of difficult

terrain such as craters and steep hillsides. Currently, the

rovers must be teleoperated in these areas, which requires a

delay of at least one day. The rovers sit idle while a team of

humans analyzes stereo vision data and constructs a precise

set of driving commands to upload to the rover. Even with

increased computational demands on the modest hardware of

a rover, the pRRT algorithm should help reduce the amount

of time that the rovers spend waiting for their next driving

commands. The algorithm will also be useful as a ground–

based tool for verifying plans which are to be uploaded to

the rovers.

REFERENCES

[1] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[2] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal

of Robotics Research, vol. 21, no. 3, pp. 233–255, 2000.
[3] A. Hait and T. Simeon, “Motion planning on rought terrain for an ar-

ticulated vehicle in presence of uncertainties,” IEEE/RSJ International

Symposium on Intelligent Robots and Systems, pp. 1126–1133, 1996.
[4] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validat-

ing hybrid robotic control systems,” International Workshop on the

Algorithmic Foundations of Robotics, July 2004.
[5] S. M. Lavalle and R. Sharma, “On motion planning in changing,

partially–predictable environments,” International Journal of Robotics

Research, 1997.
[6] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”

ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.
[7] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy. London, UK:

Freeman, 1973.
[8] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.

John Wiley & Sons, 1973.
[9] C. Urmson and R. Simmons, “Approaches for heuristically biasing

RRT growth,” in IEEE/RSJ IROS 2003, October 2003.
[10] N. J. Nilsson, Principles of artificial intelligence. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1980.
[11] S. M. Lavalle and J. J. Kuffner, “RRT–Connect: An efficient approach

to single–query path planning,” in Proceedings of IEEE International

Conference on Robotics and Automation, April 2000, pp. 995–1001.
[12] R. C. Coulter, “Implementation of the pure pursuit path tracking

algorithm,” Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-92-01, January 1992.

[13] J. Bruce and M. Veloso, “Real–time randomized path planning for
robot navigation,” in Proceedings of IROS–2002, Switzerland, October
2002.

[14] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das, “The
claraty architecture for robotic autonomy,” in Proceedings of IEEE

Aerospace Conference, March 2001.

WeE11.3

1624

