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Abstract— We address general filtering problems on the Eu-
clidean group SE(3). We first generalize, to stochastic nonlinear
systems evolving on SE(3), the particle filter of Liu and West
[1] for simultaneously estimating the state and covariance. The
filter is constructed in a coordinate-invariant way, and explicitly
takes into account the geometry of SE(3) and P(n), the space
of symmetric positive definite matrices. An experimental case
study involving vision-based robot end-effector pose estimation
is also presented.

I. INTRODUCTION

This paper presents a generalization, to stochastic systems
evolving on SE (3), of the particle (or sequential Monte
Carlo) filter of Liu and West [1] for simultaneously estimat-
ing the state and model parameters. Here the geometry of
SE (3) and P(n), the space of n × n symmetric positive
definite matrices, plays a key role, and our results are
also relevant to generalizations of other particle filtering
algorithms. An experimental case study of our filtering
framework, involving vision-based pose estimation of a robot
manipulator, is also presented.

The practical advantages of particle filtering as an alterna-
tive to, e.g., the extended Kalman filter (EKF) for nonlinear
systems, have by now been well-documented in the literature
(see, e.g., [2]). Aside from a few exceptions that we mention
below, however, none of the previous particle filtering works
address systems that evolve on curved spaces such as SE (3).
In principle one could apply EKF after choosing a set
of suitable local coordinates; under assumptions of small
noise such methods may work locally. However, globally
and under large noise assumptions, their performance cannot
be assured. The usual problems associated with lack of
coordinate invariance (e.g., both the noise distribution and
filter performance depend on the choice of local coordinates,
and switching between different coordinate charts must be
managed) will moreover persist, making such approaches at
best cumbersome and unreliable.

The first paper to explicitly address Monte Carlo filtering
on Lie groups is [3], who generalize the sequential impor-
tance sampling particle filter to state equations of the form

dX = eV X dt, dV = dW, (1)
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where X is an element of a matrix Lie group, V an element
of its corresponding Lie algebra, and W a diffusion process
defined on the Lie algebra. The associated measurement
equation includes an additive noise term of the form y =
h(X)+ η, where η denotes zero-mean Gaussian noise. Case
studies involving SO(3) and SE (3) are also presented. Ear-
lier groundbreaking studies by Chirikjian et al. on Brownian
motions on SO(3) and SE (3) in a robotics context, and
stochastic differential equation models of the kinematics of
mobile robots and surgical needles, as well as exact solutions
to the associated Fokker-Planck equations, convolution for-
mulas on SE (3), and their applications to motion planning
and accuracy analysis, have also been presented in [4], [5],
[6], [7]. Geometric diffusions on SO(3) also appear in the
recent works of Srivastava [8], [9], on object recognition and
tracking.

Among the previous works, only [3] and [8] explicitly
address particle filtering on SE (3). In this paper we shall
consider systems whose state equations are more general than
either [3] or [8]. We also construct the filter in a coordinate-
invariant way, to avoid the pitfalls associated with local
coordinate-based approaches. This involves consideration of
a number of geometric issues on SE (3) and P(n), e.g., dis-
tance metrics, sample means, discretization and integration of
differential equations, and coordinate-invariant constructions
of probability distributions on these spaces.

The paper is organized as follows. Section 2 describes the
mathematical framework for the general filtering problem on
SE (3), and the generalization to SE (3) of the particle filter-
ing algorithm of [1]. Section 3 illustrates the methodology
for our experimental case study involving vision-based robot
end-effector pose estimation.

II. PARTICLE FILTERING ON THE EUCLIDEAN GROUP

We first consider the following general setting. Let G be
an m-dimensional matrix Lie group and g its corresponding
matrix Lie algebra, with basis elements E, . . . , Em ∈ g. The
state equations and measurements are assumed to be in left-
invariant form (the development for right-invariant systems
is analogous, and is not repeated):

dX = X · A(X) dt + X

m∑
i=1

bi(X)Ei dwi (2)

dy = c(X) dt + dη, (3)

where X ∈ G is the state, y ∈ �p is the measurement vector,
the maps A : G → g, c : G → �p, and bi : G → � are
assumed C2, and dwi ∈ �, dη ∈ �p denote independent
Wiener processes. The objective is to estimate the current
state X(t) from the measurements y up to the current t.
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Vector space particle filtering algorithms have now become
firmly entrenched among the tools of probabilistic robotics.
Various measure-theoretic issues for performing particle fil-
tering on Lie groups are discussed in [3], together with a
discussion of the basic methods of particle filtering. Any
geometrically well-defined particle filtering algorithm on a
group G involves consideration of the following issues: (i)
constructing appropriate notions of distributions on G; (ii)
the metric structure of G, and formulas for the sample mean;
(iii) discretization and propagation of the state equations on
G.

A. Distributions and Sample Means

The Special Euclidean Group: The problem of construct-
ing probability distributions on SE (3) is addressed in detail
in Wang and Chirikjian [10]. In particular, they show how
to construct concentrated local distributions on SE (3) in a
coordinate-invariant way, so as to have all the properties
typically associated with the Gaussian (e.g., the convolution
of Gaussians results in another Gaussian); this is achieved
by establishing an equivalence between highly concentrated
Gaussian distributions on SE (3) and se(3).

We now discuss formulas for the sample mean on SE (3).
There is extensive literature on distance metrics on SE (3)
that we do not recount here; we instead cite the main result
of Moakher [11], who shows that the mean rotation (in the
Euclidean sense) of N rotations {R1, . . . , RN}, defined as
the R ∈ SO(3) that minimizes

∑N
n=1 ‖Rn − R‖2, where ‖·‖

denotes the Frobenius norm, is given by the orthogonal pro-
jection of R̄ =

∑N
n=1

Rn

N . This can be explicitly evaluated
as

R =

{
V U�, if det(R̄�) > 0,

V HU�, otherwise,
(4)

where U and V are obtained from the singular value decom-
position of R̄�, i.e., R̄� = UΣV �, and H = diag[1, 1,−1].
The sample mean on SE (3) can be obtained by augmenting
the previous sample mean formula for SO(3) with the tradi-
tional algebraic sample mean for the translational component
in SE (3).

The Symmetric Positive-Definite Matrices: Models may
contain unknown static parameters (for example, in (2), the
covariance S of the noise term, or even the parameters A and
b themselves may be unknown), and a common technique
to addressing such problems is to include the parameters
as part of the state vector, e.g., [1]. In this subsection
we focus on the estimation of the unknown covariance S.
Covariance matrices are characterized by being symmetric
and positive-definite; we denote this space by P(n), and note
that it is a subgroup of the general linear group GL(n). The
Riemannian structure of P(n) is discussed at length in [12]
and [13]; here we present only relevant formulas.

P(n) admits the structure of a metric space in the standard
way, i.e., the distance between two points A and B is defined
as the infimum of the lengths of piecewise-differentiable
curves from A to B, denoted δ(A,B). The geodesic γ(t) :

[0, 1] → [A,B] connecting A and B is given by

γ(t) = A1/2
(
A−1/2BA−1/2

)t
A1/2 = ΓA1/2

(
ΓA−1/2(B)t

)
(5)

where Γg is defined as Γg(p) = gpgT , with g is a fixed
element in GL(n) and p ∈ P(n). From this the distance
δ(A,B) between A and B is given by

δ(A,B) =
( n∑

i=1

log2 λi

)1/2
, (6)

where λ1, . . . , λn are the eigenvalues of the matrix
AB−1. Since AB−1 is similar to A−1/2(AB−1)A1/2 =
Γ1/2

A (B−1) > 0, the eigenvalues of AB−1 are all positive,
and hence log λi is well defined for each i. Note that
δ(A, γ(t)) = tδ(A,B).

Sample Means and Covariances on P(n) : The mean
of p1, . . . , pN ∈ P(n) in the Euclidean sense is simply
the arithmetic mean

∑N
i=1 pi. Since P(n) is convex, the

arithmetic mean lies in P(n). From a geometric perspective it
is pointed out by [12] that the arithmetic mean has a number
of disadvantages. The intrinsic mean of N given symmetric
positive matrices p1, . . . , pN is defined as

arg min
µ∈P(n)

N∑
i=1

δ(µ, pi)2, (7)

which is unique for P(n). Given only two points A and B,
the intrinsic mean can analytically be derived as γ(1

2 ) with
γ(t) given in (5). For three or more points, the intrinsic mean
must be found via optimization. For this purpose the gradient
of (7) is given by

∑N
i=1 log(µp−1

i ). Details of the steepest
descent algorithm are given in [12].

Numerical computation of the intrinsic covariance matrix
of a set of points in P(n) is also discussed in [13]. Given N
elements, p1, . . . , pN , and an intrinsic mean µ, the covariance
matrix relative to µ is defined by

Σµ =
1

N − 1

N∑
i=1

vkvT
k , (8)

where vk is the tangent vector at µ such that the geodesic
γ(t) goes through γ(0) = µ and γ(1) = pk with γ̇(0) = vk.
Based on these mean and covariance formulas, the general-
ized normal distribution on P(n) is constructed by taking
the curvature into account; see [13] for details.

B. Discretization of the State Equations

The main issue in the discretization of the general state
equations (2), with initial conditions X(0) = X0 ∈ G, where
X ∈ G and A(X, t) ∈ g, is that at each time step X(t)
remains on the group. Beginning with the pioneering work
of Crouch and Grossman [14], considerable literature exists
on the subject (see [15] and the references cited therein). The
primary motivation in these works is to generalize Runge-
Kutta and other numerical integration methods developed for
ODEs on �n to general Lie groups. The simplest first-order
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discretization, and one that is for the most part sufficient for
our purposes, is the exponential Euler discretization given by

Xi+1 = Xi exp

⎛
⎝A(X, t)∆t +

m∑
j=1

bj(X)Ej

√
∆tεi+1,j

⎞
⎠ ,

(9)
where each εi = (εi,1, . . . , εi,m) is an m-dimensional zero-
mean Gaussian with specified covariance matrix S.

C. Particle Filtering with Unknown Covariance

We now generalize the combined state-parameter estima-
tion particle filter of Liu and West [1] to SE (3), where
the parameter space is restricted to be P(n) (i.e., the noise
covariance S is assumed unknown a priori). The observation
equation is a generic function on G = SE (3) and has an
additive Gaussian noise:

dX = X · A(X) dt + X

m∑
i=1

bi(X)Ei dwi (10)

y = h(X) + η, (11)

where A(X, t) is an element of g = se(3). η is Gaussian
white noise which is independent of dwi’s.

The filtering problem on SE (3) that we consider is the
estimation of the state X(t) and S, the covariance of dwi’s,
given the time series of measurements, y(t0), y(t1), . . . ,
y(tn). One means of simultaneously estimating the pose
and the relevant covariance parameters is by embedding the
covariance parameters into the state. This is a fairly common
technique in system identification, and the mathematical and
engineering justification for this technique in the context of
particle filtering is covered in, e.g., [1] and the references
cited therein.

Since in our case the unknown parameter S evolves on
P(n), any kernel smoothing introduced in [1] must be per-
formed to always ensure that S lies on P(n). If there are N
parameter particles θ(1), . . . , θ(N), the mean θ̄ and covariance
Σθ̄ can be calculated from (7) and (8). The kernel mean,
aθ(i)+(1−a)θ̄, can be understood as the corresponding point
on the geodesic γ(t) connecting θ(i) and θ̄ with γ(0) = θ(i)

and γ(1) = θ̄; that is, aθ(i) + (1 − a)θ̄ = γ(1 − a), which
can be calculated from (5). The Gaussian sampling with
the determined kernel mean and covariance can be realized
following the method in [13].

With the above geometric constructions, the particle filter-
ing algorithm for simultaneous covariance and state estima-
tion with kernel smoothing can be described as follows (by
a slight abuse of notation, in what follows we continue to
use the vector space kernel mean notation for the geometric
kernel mean of (5)).

Algorithm:

1) Initialization: t = 0
• Set number of particles N .
• Set δ between 0.95 ∼ 0.99.
• For i = 1, . . . , N , draw the states X

(i)
0 and the

covariance parameters θ
(i)
0 for S from the priors

ρ(X0) and ρ(θ0), respectively.

2) Importance sampling step
a) Set t = t + 1.
b) Compute the intrinsic mean θ̄t−1 and covariance

Σθ̄t−1
of {θ(i)

t−1, i = 1, . . . , N} from (7) and (8).

c) For i = 1, . . . , N , draw X
(∗i)
t ∼

ρ(Xt|X(i)
t−1, θ

(∗i)
t ), i.e.,

i) Determine the kernel mean aθ
(i)
t−1 + (1 −

a)θ̄t−1 from (5).
ii) Draw θ

(∗i)
t from N(aθ

(i)
t−1 + (1 −

a)θ̄t−1, h
2Σθ̄t−1

) where a = (3δ− 1)/2δ and
h2 = 1 − a2.

iii) Generate the Gaussian εt from N(0, θ
(∗i)
t ∆t),

and propagate X
(i)
t−1 to X

(∗i)
t via (9).

d) For i = 1, . . . , N , weight each draw by

w
(i)
t ∝ ρ(yt|X(∗i)

t ), (12)

e) For i = 1, . . . , N , normalize the importance
weights:

w̃
(i)
t = w

(i)
t

⎡
⎣ N∑

j=1

w
(j)
t

⎤
⎦
−1

(13)

3) Selection step (resampling)
a) Resample from {X(∗1)

t , . . . , X
(∗N)
t } and

{θ(∗1)
t , . . . , θ

(∗N)
t } with probability proportional

to w̃
(i)
t to produce a random sample

{X(1)
t , . . . , X

(N)
t } and {θ(1)

t , . . . , θ
(N)
t }.

b) For i = 1, . . . , N , set w
(i)
t = w̃

(i)
t = 1

N .
4) Go to the importance sampling step
For practical implementation purposes, in our case study

we will assume S is block-diagonal of the form S =
diag{S1, S2}, where S1 ∈ P (3) and S2 ∈ P (3) are
covariances for the orientation and position, respectively. In
this case two covariance parameters need to be introduced;
the extension of the above algorithm to this case is straight-
forward.

The output of the algorithm is a set of samples that can
be used to approximate the posterior distribution of X(t) on
the Lie group:

π(Xt|yt) ≈ π̂(Xt|yt) =
1
N

N∑
i=1

δ(Xt − X
(i)
t ), (14)

where δ(·) denotes the Dirac delta function. To obtain the
optimal estimate X̂(t), we use the sample mean formula on
SE (3) as given in (4).

III. APPLICATION TO VISION-BASED END-EFFECTOR

POSE ESTIMATION

As an experimental case study, we consider the problem
of estimating the end-effector pose of a robot using vision
sensors. For robots in typical laboratory or industrial settings,
one usually has available accurate kinematic models of the
robot (often obtained via a kinematic calibration procedure
involving the use of laser, ball-bar, or other position mea-
surement sensors of reasonably high accuracy), together with
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accurate joint encoders, so that it is enough to evaluate the
forward kinematics for reliably determining the end-effector
pose as:

X = eA1q1eA2q2 · · · eA6q6M (15)

where X ∈ SE (3) represents the location of the end-effector
frame relative to the fixed frame, q1, . . . , q6 denote the joint
variables, A1, . . . , A6 ∈ se(3) denote the kinematic parame-
ters, and M ∈ SE (3) denotes the end-effector location when
the robot is in its home position.

Things change considerably for low-cost personal robots
operating in unstructured home settings. The kinematic mod-
els provided by the manufacturer are often inaccurate and un-
reliable, and high precision sensors are usually not available
for performing kinematic calibration. Further compounding
matters is that the robots themselves are subject to greater
manufacturing tolerances (and thus greater errors), resulting
in a greater degree of parametric errors, backlash, friction,
joint and link elastic deformations, and tracking control
errors. Torque-level control is also typically not feasible,
making attempts to construct accurate dynamic models and
associated observers moot.

The vision-based pose estimation algorithm presented here
is intended for a low-cost personal robot. We also assume a
low-cost noisy vision sensor (such as a webcam) capable
of measuring a pre-specified set of feature points on the
end-effector, and a nominal kinematic model with potentially
large parameter errors. Because of the relatively noisy vision
sensor, accurate end-effector pose estimation based on vision
measurements alone is inadequate (not least of all because
the classical depth ambiguity problem cannot be easily re-
solved in our setting); it is essential to make use of the vision
measurements in conjunction with the available kinematic
model.

For the vision sensor, we assume that a single perspective
projection camera is available, and that the image plane
coordinates can be measured for a fixed number n of feature
points on the end-effector frame. Let Y = (y1, . . . , yn)
denote the measurements from the vision sensor, where
each yi represents the 2-D homogeneous coordinates of
feature point i in the image plane and can be represented
as a function of X , i.e., yi = K

[
R −Rc̄

]
Xxi, where

R ∈ SO(3) is the camera rotation matrix, c̄ ∈ �3 is the
camera center in the fixed frame, xi represents the 3-D
homogeneous coordinates of each feature point attached to
the end-effector with respect to the end-effector frame, and
K ∈ �3×3 is the camera calibration matrix determined by the
focal length f and the principal point (px, py) on the image
plane. The measurement equation can be expressed in the
form Y = h(X), where h(·) represents the aforementioned
perspective projection mapping onto the 2-D image plane.

We choose to express the kinematic state equations in
right-invariant form, i.e.,

dX = V (u1, . . . , u6) · Xdt + dW · X(16)

V (u1, . . . , u6) = A1u1 + AdeA1q1 (A2)u2 + . . . (17)

Y = h(X) + η. (18)

(a) (b)

Fig. 1. (a) The Cycloid 3 currently being used in experimental studies.
(b) The “3Com HomeConnect PC Digital WebCam”, “Krypton GCS300”
stereo camera, and its probe.

where Ad denotes the adjoint mapping on SE (3) (i.e.,
AdX(V ) = XV X−1 for X ∈ SE (3) and V ∈ se(3)), and
ui = q̇i, i = 1, . . . , 6 the joint velocity inputs. The joint
velocities are taken to be the control inputs. Equations (16)
and (18) are discretized as

Xt = exp(V (u1, . . . , u6)∆t + dW ) · Xt−1 (19)

Yt = h(Xt) + η. (20)

Experiments are performed with the Cycloid 3 shown in
Fig. 1(a), a small, inexpensive 19-DOF humanoid developed
for educational and entertainment purposes. For the exper-
iment we fix all joints except for the one waist joint and
the three joints in the right arm, so that we can effectively
regard the Cycloid as a 4-DOF open chain. We use the 3Com
HomeConnect PC Digital WebCam shown in Fig. 1(b), with
640 × 480 resolution, as the vision sensor.

To evaluate the experimental performance of our pose
estimation algorithm, we use the Krypton GCS300 real-
time stereo camera and sensor probe system (see Fig. 1(b))
to measure the actual 3-D pose of the end-effector frame
with respect to the fixed frame. The probe, now regarded
as the end-effector frame, is attached to the right hand of
the Cycloid, and the camera frame is taken to be the fixed
frame. The four infrared LED’s on the probe are used as
feature points for the end-effector frame.

We use the direct linear algorithm of [16] to obtain the
camera matrix of the webcam, from a large set of point
correspondences between the measured 3-D points of the
four feature points and their 2-D corresponding points on the
image plane. The variance of the additive Gaussian noise η is
heuristically set to 4. Nominal values for the Cycliod’s highly
imprecise kinematic parameters (which are not provided by
the manufacturer) are obtained via direct measurement, and
are shown in Table I.

TABLE I

KINEMATIC PARAMETERS FOR EACH JOINT OF THE CYCLOID 3.

Joint ω v
Joint 1 (0.9651,-0.1075,-0.2389) (-199.3,-1834.4,20.2)
Joint 2 (-0.1700,-0.9507,-0.2593) (-1790.9,311.7,31.7)
Joint 3 (0.1993,-0.2909,0.9358) (-646.7,-344.4,30.7)
Joint 4 (-0.1700,-0.9507,-0.2593) (-1793.6,331.5,-39.1)
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Fig. 2. Trajectories of the feature points of the end effector frame on the
webcam image plane.

0 5 10 15 20 25 30 35 40
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0 5 10 15 20 25 30 35 40
−200

−100

0

Time

Position

Fig. 3. The measured (solid line) and nominal (dotted line) end-effector
frames. Top: Blue, green, and red lines represent the three independent
elements of the logarithm of the rotation matrix. Bottom: Blue, green, and
red lines represent (1,4), (2,4) and (3,4) elements of the frame.

The Cycloid is manipulated for 20 seconds according to
a set of pre-specified joint control inputs, while the webcam
captures the end-effector feature points every 0.5 seconds.
Trajectories of the feature points captured by the webcam,
i.e., Y1:40, are shown in Fig. 2. Fig. 3 shows the end-effector
pose trajectory X1:40 as measured by the Krypton GCS300.
The end-effector pose trajectory calculated from the nominal
forward kinematics equation (15), X̃1:40, is also shown
together as the dotted line, clearly showing large errors
from the actual end-effector pose. As for the orientation
components of the end-effector frame, three independent
elements of the logarithm of the rotation matrix are shown.

5000 particles are used in the filtering algorithm. Each
particle X

(i)
0 is initialized from the nominal end-effector pose

X̃0 as X
(i)
0 = X̃0 · exp(N) with some specific covariance

matrix whose values are rather small for N which represents
the zero mean Gaussian noise on se(3). We set δ to 0.99 and
initialize the covariance matrices. For S1, a symmetric matrix
is uniformly sampled between 0 and 0.00001 for the diagonal
elements and between -0.000005 and 0.000005 for the off-
diagonal elements. Then, we perform the singular value de-
composition for the sampled symmetric matrix, into UΣV T ,
and replace V with U to make the sampled symmetric matrix
positive definite. For S2, the uniform distribution between 0
and 1 is used for the diagonal elements and between -0.5
and 0.5 for the off-diagonal elements.

0 5 10 15 20 25 30 35 40
−1

0

1

Time

Orientation

0 5 10 15 20 25 30 35 40
−200

−100

0

Time

Position

Fig. 4. The measured (solid line) and estimated (dotted line) end-effector
frames. Top: Blue, green, and red lines represent the three independent
elements of the logarithm of the rotation matrix. Bottom: Blue, green, and
red lines represent (1,4), (2,4) and (3,4) elements of the frame.

0 5 10 15 20 25 30 35 40
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0 5 10 15 20 25 30 35 40

−20

−10

0

10

Time

Position Errors

Fig. 5. The estimation errors (solid line) and the errors between the
measured and nominal end-effector frames (dotted line). Top: Blue, green,
and red lines represent the errors for the three independent elements of
the logarithm of the rotation matrix. Bottom: Blue, green, and red lines
represent the errors for (1,4), (2,4) and (3,4) elements of the frame.

The estimated end-effector pose trajectory X̂1:40 is shown
in Fig. 4, while Fig. 5 shows the estimation errors. The
errors between the measured end-effector frame and that
obtained from the nominal forward kinematics frame are
shown together as the dotted line for comparison. The norms
of the errors for X̂1:40 are 0.2495 for the orientation compo-
nent and 9.6908 for the position, while those for X̃1:40 are
0.5454 and 88.1265, respectively. The orientation component
of the errors are clearly less severe compared to position
errors. Both orientation and position estimation accuracy are
improved, with the position components showing particularly
large improvement. Finally, Fig. 6 shows the elements of the
estimated covariances.

IV. CONCLUSIONS

This paper has investigated particle filtering on the Eu-
clidean group SE (3). Assuming the covariance of the state
space noise model is a priori unknown, we generalize
the particle filter of Liu and West [1] for simultaneously
estimating state and model parameters to SE (3) × P(n),
where P(n) denotes the space of n×n symmetric positive-
definite matrices. Both the theoretical underpinnings of the
filter and the implementation and performance issues are
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Fig. 6. The estimated covariance parameters.

discussed in the context of an experimental study on vision-
based end-effector pose estimation. It is important to account
for the geometry of SE (3) and P(n) in any generalization
of vector space particle filtering algorithms. In this regard
we discuss the metric structure, formulas for the sample
mean, the construction of distributions, discretization and
propagation of the state equations, and other geometric issues
involving the two groups.

The framework and experimental case study presented in
the paper represent just one aspect of the larger problem of
Monte Carlo estimation on Lie groups, and as such several
open problems and extensions can be posed in a more general
setting, e.g., extending the estimation algebra approach of
[17] to stochastic systems on Lie groups, determining the
minimum variance linear filter for bilinear systems on Lie
groups (see [18] for the corresponding minimum variance
linear filter for bilinear systems on vector spaces), general-
ization of other particle filtering algorithms, and improving
the computational efficiency of the algorithms.

Finally, an extension to other applications, and other Lie
groups, would also be of interest. In particular, the problem
of attitude estimation using global positioning system (GPS)
data as measurements can be kinematically formulated (see
[19]) as a set of state equations on SO(3) of the form
dR = RA(t) dt + R dW , where R ∈ SO(3), dW ∈
so(3), and A(t) ∈ so(3) is allowed to be time-varying.
The noise accounts for errors due to various factors such
as parameter uncertainty, unmodelled dynamics, etc. The
measurement equations can be conveniently expressed in
matrix form Y = S�RB + V , where the measurements
are arranged as elements of the matrix Y ∈ R

n×m, B =
(b1, b2, . . . , bm) ∈ R

3×m and S = (ŝ1, ŝ2, . . . , ŝn) ∈ R
3×n

are given matrices obtained from the measurement data, and
the elements of V ∈ R

n×m represent standard independent
identically distributed Gaussian noise.

Another application involves the simultaneous estimation
of the needle position and noise covariance in needle steering
[5]. The uncertainties in the needle tip motion can be
captured by a stochastic kinematic state equation of the form
dX = XAdt+XdW , where dW ∈ se(3) is standard Wiener
noise with a covariance S, and A = (ω, v) ∈ se(3) is of the
form ω = (κu1, 0, u2), v = (0, 0, u1); here κ is the curvature

that describes the amount of bending, and u1 and u2 are
respectively the translational and rotational insertion speeds
along the needle at the point of insertion. The measurement
equations for the needle tip position y ∈ �3, obtained via
electromagnetic tracking, are corrupted by noise of the form
y = p+n, where p denotes the tip position and n represents
three-dimensional Gaussian noise with covariance Q.

Other matrix Lie groups that arise in various engineering
applications include the group SL(3) of volume preserving
linear transformations, which plays a prominent role in vision
and medical imaging, as does the affine group.
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